载银多壁碳纳米管抗菌剂的制备及其在PET纤维中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
健康生活已成为我们生活的一个主题,人们对生存环境的要求日益提高。然而,在我们生活的社会环境中存在着大量的细菌,对我们的健康生活造成了极大的影响或危害。为此,抗菌纤维制品越来越受到人们的青睐。由于无机抗菌剂具有抗菌广谱、持久耐热、不易产生抗药性等优点,而被广泛采用。碳纳米管(CNTs)以其优异的物理和化学性能,被认为是一种性能优良的添加相;聚对苯二甲酸乙二醇酯(PET)是应用最为广泛的合成纤维,因此以CNTs为载体制备载银CNTs抗菌剂,并研究其在PET纤维中的应用具有重要意义。
     本文以多壁碳纳米管(MWCNTs)为载体,AgNO3溶液为反应液,通过化学吸附的方法制备了载银多壁碳纳米管(Ag/MWCNTs)抗菌剂,主要考察了Ag/MWCNTs抗菌剂的制备工艺,对其结构与性能进行了研究,并采用抑茵环法测定了样品的抗菌性能。以Ag/MWCNTs抗菌剂为功能材料,采用双螺杆挤出机制备了Ag/MWCNTs抗菌PET母粒,并通过熔融共混纺丝.法制成了Ag/MWCNTs抗菌PET纤维,主要研究了抗菌PET纤维的纺丝工艺,以及不同母粒添加量对抗菌PET纤维的可纺性、结构与力学性能的影响,并采用振荡烧瓶法对抗菌PET纤维的抗菌性能进行了测试。
     Ag/MWCNTs抗菌剂抗菌金属离子的含量通过电感耦合等离子体质谱仪(ICP-MS)进行测定,通过扫描电镜(SEM)观察样品的形貌,高分辨透射电镜(HRTEM)、X射线衍射分析(XRD)、傅里叶变换红外光谱分析(FT-IR)等表征样品的结构,样品的抗菌性能通过抑菌环法和最小抑菌浓度法(MIC)进行测定。
     通过以上研究,主要得到如下几点结论:
     1. Ag/MWCNTs抗菌剂的最佳制备工艺为:AgNO3反应液浓度为0.2mol/L,pH值为6-7,温度为65℃,反应时间为5.5h。
     2.Ag含量为0.68%(wt)的Ag/MWCNTs抗菌剂对大肠杆菌的MIC为30μg/mL,对金黄色葡萄球菌的MIC为15μg/mL。
     3. Ag/MWCNTs抗菌PET纤维纺丝的最佳制备工艺为:螺杆一区、二区、三区、四区的温度分别为278℃、286℃、290℃、292℃,弯管温度为298℃,箱体温度为305℃,热辊一、热辊二、热辊三的温度分别为90℃、115℃、130℃,熔体温度为293.6℃。Ag/MWCNTs抗菌剂在PET基体中均匀分散,与PET基体有良好的相容性。
     4. Ag/MWCNTs抗菌PET母粒的添加量为1%(wt)时,抗菌PET纤维的抗菌性能、可纺性、结构与力学性能最好。
With more requirements for the surviving environment, how to live a green and healthy life has become a daily issue for us. While, there exist plenty of bacteria in our living social environment, that jeopardizes our healthy life. Taking all above into consideration, the antimicrobial-fiber products increasingly prevail among the people. Given that the inorganic antibacterial agents possess antibacterial spectrum, and that it has many merits such as long-lasting and heat-resistant characteristics, as well it won't generate the resistance to other components easily, this antibacterial fiber material was put into the widespread use. On account of the CNTs and other brilliant physical and chemical property and function, antimicrobial-fiber is regarded as good additive. PET is the most prevalent synthetic fiber, so we CNTs will be carrier of the Ag/MWCNTs Antibacterial agent. Ag/MWCNTs antibacterial agent and we researched the significance of this fiber's employment in the PET fiber.
     In this research, the MWCNTs was used as carrier and AgNO3 solution, the reactive fluid, through the chemical absorption approached to producing the Ag/MWCNTs antbacterial agent. We mianly investigated the method and process of the production of the Ag/MWCNTs antibacterial agent and had the concrete research of the structure and performance of the Ag/MWCNTs, meanwhile we tested the antibacterial performance of some samples by the inhibition zone method. The Ag/MWCNTs was applied as the functional material and we processed the Ag/MWCNTs antibacterial PET masterbatch with the double helix stem extruder. We also produced the Ag/MWCNTs antibacterial PET fibre in the method of melt blending method. The thesis mainly researched the processing method of the antimicrobial PET fiber and possible structural and mechanics influence of the tentative additives, which were the different masterbatches. We examined the PET fiber's antimicrobial performance in the oscillation flask method.
     The metal ions in the Ag/MWCNTs antibacterial agent was quantified with the ICP-MS. We observed PET fiber's appearance and features through SEM, and PET fiber's sample structure through the HRTEM, XRD and FT-IR. The samples'antibacterial function can be examined in the bacteriostatic annulus method or MIC.
     According to the above research, we mainly drew several conclusions as below:
     1 The Ag/MWCNTs antibacterial agent's most suitable processing method was:reactive fluid density:0.2mol/L, pH value:6-7, temperature:65℃, reactive hours:5.5h.
     2 Colon bacillus MIC of the Ag/MWCNTs antibacterial agent with 0.68%(wt) Ag was 30ug/ml to E. coli, the MIC of Staphylococcus aureus was 15ug/mL.
     3 The processing method of the Ag/MWCNTs antibacterial PET fiber was: the temperature of the first, second, third and fourth bacillus area was respectively 278℃,286℃,290℃,292℃, elbow pipe's temperature was 298℃The temperature of the cabinet temperature was 305℃. The temperature of hot roll 1,2,3 is individually 90℃,115℃130℃. The melt temperature was 293.6℃. The Ag/MWCNTs antibacterial agent dispersed properly in the PET matrix, and PET matrix possessed the beneficial compatibility.
     4 When the additive weight of the Ag/MWCNTs antibacterial PET fiber reached 1%, the antibacterial PET fiber would take the position of the best antibacterial performance and spinnability, as well as the best structure and mechanics function.
引文
[1]张玲霞.王永怡,陈文,等.2009年全球传染病疫情聚焦[J].传染病信息.2010, 23(1):4-7.
    [2]赵斌.无机抗菌剂的研究进展[J].上海建材,2003,3:14-16.
    [3]孙洪,夏英,陈莉等.国内外抗菌剂的研究现状及发展趋势[J].塑料工业,2006,34(9):1-17.
    [4]纪旭,熊金钰.抗菌剂研究进展[J].实用药物与临床,2005,8(1):45-47.
    [5]孙剑,乔学亮,陈建国.无机抗菌剂的研究进展[J].材料导报,2007,21:344-348.
    [6]王岩,王长平,林伦等.磷酸盐抗菌粉体的研究及应用[J].硅酸盐通报,2004,3:91-93.
    [7]王慧华.CaHPO4无机抗菌陶瓷的制备[J].沈阳化工学院学报,2006,20(1):20-23.
    [8]李伙,薛涛,何力等.磷酸盐玻璃载银抗菌PP复合材料的性能研究[J].塑料.2007,36(2):19-45.
    [9]吕国玉.载银羟基磷灰石/二氧化钛抗菌材料的制备和抗菌性能研究[D].四川大学博士学位论文,2007,4.
    [10]邹东梅,施利毅,张大卫等.载银羟基磷酸锆钠抗菌剂的制备[J].上海大学学报(自然科学版),2006,12(3):288-297.
    [11]Haozao Tan, Yousheng Ouyang, Liling Zhang et al. Study on the structure and antibacterial activity of silver-carried zirconium phosphate. Materials Letters,2008,62:2122-2124.
    [12]孙剑,乔学亮,陈建国.无机抗菌剂的研究进展[J].材料导报,2007.21:344-348.
    [13]Yi Zhang, Shengliang Zhong, Maisheng Zhang et al. Antibacterial activity of silver-loaded zeolite A prepared by a fast microwave-loading method[J]. J Mater Sci,2009,44:457-462.
    [14]王维清,冯启明,董发勤.银型5A沸石抗菌性能及银的赋存状态研究[J].非金属矿,2006,29(2):6-11.
    [15]M.Rivera-Garza, M.T. Olguin, Garcia-Sosa, I et al. Silver supported on natural Mexican zeolite as an antibacterial material[J]. Microporous and Microporous Materials,2000,39:431-444.
    [16]Brigita Tomsic. Antimicrobial activity of AgCl embedded in a silica matrix on cotton Fabric[J]. Carbohydrate Polymers,2009,75:618-626.
    [17]叶瑛,周玉航,夏枚生等.新型无机抗菌材料:载铜蒙脱石及其抗菌机理讨论[J].无机料学报,2003,18(3):569-574.
    [18]Limei Zhou, Hua Chena, Xiaohui Jiang et al. Modification of montmorillonite surfaces using a novel class of cationic gemini surfactants[J]. Journal of Colloid and Interface Science,2009,332:16-21.
    [19]Katerina Malachova, Petr Praus, Zuzana Pavlickova et al. Activity of antibacterial compounds immobilised on montmorillonite[J]. Applied Clay Science.2009.43:364-368.
    [20]S.M. Magana, P. Quintana, D.H. Aguilar et al. Antibacterial activity of montmorillonites modified with silver[J]. Journal of Molecular Catalysis A:Chemical,2008,281:192-199.
    [21]曾汉民.功能纤维[M].北京:化学工业出版社,2005.
    [22]Hyung-Jun Jeon. Sung-Chul Yi, Seong-Geun Oh et al. Preparation and antibacterial effects of Ag-SiO2 thin filmsby sol-gel method[J]. Biomaterials,2003,24:4921-4928.
    [23]任书霞,田秀淑,张光磊等.载银麦饭石抗菌剂的制备及性能研究[J].中国陶瓷,2008,,44(7):30-33.
    [24]任书霞,李彦芳,任瑞合等.新型无机抗菌剂的制备及性能研究[J].新型建筑材料,2009,5:83-85.
    [25]黄凤萍,李缨.一种多孔抗菌麦饭石矿化陶瓷球的研究[J].陶瓷,2006,5:15-35.
    [26]张彬,李西平,白金锋等.抗菌白炭黑的制备及抗菌效果[J].化工新型材料,2004,32(3).23-25.
    [27]张彬,唐晓宁,杨棣.载Zn白炭黑抗菌剂的制备及抗菌性能的研究[J].石河子大学学报(自然科学版),2007,25(2):217-221.
    [28]张彬,谢刚,唐晓宁.铜型抗菌白炭黑的改性研究[J].化工新型材料,2007,35(5):65-67.
    [29]张彬,唐晓宁,谢刚.载Ag白炭黑抗菌剂的制备及应用研究[J].化工新型材料,2008,36(2):71-73.
    [30]Lingling Zhang, Yulong Ding, Malcolm Povey et al. ZnO nanofluids — A potential antibacterial agent[J]. Progress in Natural Science,2008,18:939-944.
    [31]李长全,罗小玲,傅敏恭.直接沉淀法制备纳米ZnO及其抗菌试验的研究.化工新型材料,2005,33(5):55-17.
    [32]程友刚,陈宇岳,林红.纳米氧化锌对蚕丝织物抗菌性能的研究[J].丝绸,2007,12:31-33.
    [33]Weiwei Zhang, Yuqing Chen, Shuaiqin Yu et al. Preparation and antibacterial behavior of Fe3+-doped nanostructured TiO2 thin films[J]. Thin Solid Films,2008,516:4690-4694.
    [34]李竹英,韦顺文,柴立元等.掺氟和银的二氧化钛复合抗菌粉体的制备及表征[J].中南大学学报(自然科学版),2009,40(1):56-59.
    [35]马登峰,彭兵,柴立元等.载银纳米二氧化钛抗菌粉体的制备工艺研究[J].精细化工中间体,2006,36(1):63-66.
    [36]李志杰,侯博,徐耀等.共沉淀法制备氧化硅改性的纳米二氧化钛及其性质[J].物理化学学报,2005,21(3):229-233.
    [37][2002]282号,消毒技术规范[S],北京:中华人民共和国卫生部,2002.
    [38]Sumio lijima. Helical microtubules of graphitic carbon[J]. Narure,1991,354:56-58.
    [39]徐吉勇,范旭,孙唯.机械球磨对碳纳米管电化学性能的影响[J].广东化工.2008,35(9):14-17.
    [40]米常焕,曹高动,赵新兵.多壁碳纳米管的球磨特性及其嵌锉行为.材料导报,2004,18(11):92-94
    [41]Peng Cheng Ma, Ben Zhong Tang, Jang-Kyo Kim.Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites.Carbon,2008,46:1497-1505.
    [42]Peng Cheng Ma,Ben Zhong Tang,Jang-Kyo Kim.Conversion of semiconducting behavior of carbon nanotubes using ball milling.Chemical Physics Letters,2008,458:166-169.
    [43]辛育东,刘晓东.碳纳米管酸氧化改性[J].东华理工大学学报(自然科学版),2010,33(1):75-78.
    [44]李晓峰,王芳,张斌.多壁碳纳米管表面修饰化学官能团的定量分析[J].山东大学学报(理学版),2009,44(1):17-23.
    [45]Yingkui Yang, Shengqiang Qiu, Xiaolin Xie et al. A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition[J]. Applied Surface Science,2010,256:3286-3292.
    [46]J. Mikroyannidis, K. Papagelis, M. Fakis et al. Carbon nanotube - fluorenevinylene hybrids:Synthesis and photophysical properties[J]. Chemical Physics Letters,2009,483:241-246.
    [47]Bingyong Yan, Kaiyou Qian, Yafei Zhang, et al. Effects of argon plasma treating on surface morphology and gas ionization property of carbon nanotubes[J]. Physica E,2005,28:88-92.
    [48]陈传盛,宁振武,夏清等.微波技术在碳纳米管中的应用研究[J].化工新型材料,2010,38(8):7-72.
    [49]王宏,李来风,张浩等.多壁碳纳米管表面等离子体有机聚合改性[J].复合材料学报,2004,24(3):121-125.
    [50]何侃,肖南,于畅等.壳聚糖/碳纳米管复合膜的合成及其葡萄糖氧化酶吸附性能[J].中国科技论文在线,2010,5(12):907-923.
    [51]罗天勇,李辰砂,梁彤祥等.碳纳米管承载氧化锆纳米粒子的研究[J].稀有金属材料与工程,2004,33(8):885-888.
    [52]杨莉蓉,何少波,梁国正等.多壁碳纳米管改性氰酸酯树脂体系的研究[J].中国粘胶剂,2007,16(3):1-4.
    [53]C.-H. Wang, H.-Y. Dub, Y.-T. Tsaib et al. High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC[J]. Journal of Power Sources,2007,171:55-62.
    [54]张晓明,王洪艳,李俊锋等.改性MWNTs/纳米HA/PLA骨修复材料的制备[J].吉林大学学报(工学版),2008,38(4):844-847.
    [55]Sang-Bok Ma, Kyung-Wan Nam, Won-Sub Yoon et al. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications[J]. Journal of Power Sources,2008, 178:483-489.
    [56]Ruixue Zhang, Louzhen Fan, Yueping Fang el al. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO[J]. Journal of Materials Chemistry,2008,18:4964-4970.
    [57]Virendra Singh, Rene Diaza, Kantesh Balani et al. Chromium carbide - CNT nanocomposites with enhanced mechanical properties[J]. Acta Materialia,2009,57:335-344.
    [58]林海燕,朱红,郭洪范等.Fe填充碳纳米管微波吸收材料的研究[J].北京交通大学学报,2007,31(3):97-104.
    [59]王沛,姜博,叶雄英等.多壁碳纳米管/SBS复合材料的制备及其渗流特性[J].功能材料与器件学报,2008,14(1):231-235.
    [60]Ren-Jang Wu, Huang, Yu-Ching, Yu, Ming-Ru et al. Application of m-CNTs/NaClO4/Ppy to a fast response, room working temperature ethanol sensor[J]. Sensors and Actuators B[J]:Chemical,2008,134: 213-218.
    [61]易双萍,张海燕,欧阳玉等.真空热处理碳纳米管的储氢性能研究[J].物理学报,2006,55(5):2644-2650.
    [62]姚运金,张素平,颜涌捷等.热处理对多壁碳纳米管储氢性能的影响[J].合肥工业大学学报(自然科学版),2008,31(12):1969-1972
    [63]秦玉香,胡明,李海燕等.碳纳米管的场致发射及在平板显示领域中的应用[J].无机材料学报,2006,21(2):277-283.
    [64]马燕萍,尚学府,顾智企等.单壁碳纳米管在场发射显示器中的应用研究[J].物理学报,2007,56(]1):6701-6704.
    [65]杨莉蓉,何少波,梁国正.多壁碳纳米管改性氰酸酯树脂体系的研究[J].中国粘胶剂.2007,16(3):1-4.
    [66]Ruixue Zhang, Louzhen Fan, Yueping Fang el al. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO[J]. Journal of Materials Chemistry.2008,18:4964-4970.
    [67]Ren-Jang Wu, Yu-Ching Huang.Ming-Ru Yu et al. Application of m-CNTs/NaC104/Ppy to a fast response,room working temperature ethanol sensor[J]. Sensors and Actuators B:Chemical,2008,134: 213-218.
    [68]欧阳玉,彭景翠,王慧等.碳纳米管的稳定性研究[J].物理学报,2008,57(1):615-620.
    [69]刘桐,唐慧琴,张学华等.镀银碳纳米管的抗菌性研究[J].功能材料,2007,38(5):802-805.
    [70]刘桐,唐慧琴,张学华等.镀铜碳纳米管的抗菌性研究[J].透析与人工器官,2006,17(4):1-5.
    [71]O. Akhavan, M. Abdolahad, Y. Abdi et al. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation[J]. CARBON,2009.47:3280-3287.
    [72]V. KRISHNA, S. PUMPRUEG, S.-H. LEE et al. PHOTOCATALYT1C DISINFECTION WITH TITANIUM DIOXIDE COATED MULTI-WALL CARBON NANOTUBES[J]. Process Safety and Environmental Protection.2005.83(B4):393-397.
    [73]T.J. Simmons. S.-H. Lee. T.-J. Park. Antiseptic single wall carbon nanotube bandages[J]. CARBON. 2009,47:1561-1564.
    [74]王震遐,李欣年,任翠兰等.多壁碳纳米管上的银纳米晶生长及Ag-C管的相互作用[J].中国科学E辑:技术科学,2009,39(11):1800-1803.
    [75]Chen-sha Li, Bin-song Wang, Ying-jie Qiao et al. Decoration of activated carbon nanotubes by assembling nano-silver[J]. Materials,2009,36(5):598-602.
    [76]李和平,王月影,高峰霞.绿色抗菌剂-壳聚糖[J].畜牧与饲料科学.2009,30(6):179-180.
    [77]王文淑.环保抗菌纤维-竹纤维[J].合成纤维工业,2003,26(6):42-43.
    [78]周永凯,张建春,张华.大麻纤维的抗菌性及抗菌机制[J].纺织学报,2007,28(6):12-15.
    [79]李文莉,顾明波,张巍巍等.含银聚乙烯醇/丝素共混纤维中银离子分布的研究[J].合成纤维,2010,3:31-34.
    [80]曹铁平,李跃军,王莹等.静电纺丝法制备聚丙烯腈/聚苯胺复合纳米纤维及其表征[J].高分子学报,2010,12:1464-1469.
    [81]王强,封严.聚丙烯腈纤维改性技术及其应用[J].合成纤维,2010,1:7-10.
    [82]陈蓉,朱平,张林等.羊毛织物的抗菌肽整理[J].印染,2010,2:15-19.
    [83]孟庆夫,姜立鹏,胡翱翔等.PA6抗菌纤维的研制与开发[J].合成纤维工业,2008(5):50-52.
    [84]牛润林,魏丽乔,王淑花等.抗菌粘胶纤维的合成与结构研究[J].太原理工大学学报,2008,39: 17-22.
    [85]朱平,隋淑英,李静等.纳米抗菌涤纶纤维的性能研究[J].纳米科技,2007,2:21-28.
    [86]费燕娜,高卫东,王鸿博等.茶多酚/聚乳酸复合纳米纤维膜的制备及抗菌性能研究[J].材料导报:研究篇,2010,24(8):42-45.
    [87]高铭,董瑛,朱平等.抗菌超细纤维及其织物的开发[J].印染12006.16:21-23.
    [88]王俊,王平华,唐龙祥等.PP/碳纳米管复合材料的结构与性能[J].高分子材料科学与工程,2010,2](10):52-55.
    [89]王国建,刘跃东.碳纳米管原位改性聚氨酯的研究[J].工塑料应用.2009,37(3):9-13.
    [90]伍建国,刘艳丽.竹纤维织物抗菌整理研究[J].丝绸,2010,10:12-14.
    [91]Mohammad Shateri Khalil-Abad, Mohammad Esmail Yazdanshenas, Mohammad Reza Nateghi. Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity[J]. Cellulose,2009,16:1147-1157.
    [1]Sumio lijima. Helical microtubules of graphic carbon[J]. Nature,1991,354:56-58.
    [2]Sang-Bok Ma, Kyung-Wan Nam, Won-Sub Yoon et al. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications[J]. Journal of Power Sources,2008, 178:483-489.
    [3]Virendra Singh, Rene Diaz, Kantesh Balani et al. Chromium carbide-CNT nanocomposites with enhanced mechanical properties[J]. Acta Materialia,2009,57:335-344.
    [4]姚运金,张素平,颜涌捷.热处理对多壁碳纳米管储氢性能的影响[J].合肥工业大学学报(自然科学版),2008,31(12):1969-1972.
    [5]马燕萍,尚学府,顾智企.单壁碳纳米管在场发射显示器中的应用研究[J].物理学报,2007,56(11):6701-6704.
    [6][2002]282号,消毒技术规范[S],北京:中华人民共和国卫生部,2002.
    [7]高向华,许并社,魏丽乔等.银型沸石抗菌剂的制备与性能研究.太原理工大学学报.2008,39(5):455-458.
    [8]墙蔷,倪红卫,幸伟等.银的抗菌作用机理[J].武汉科技大学学报(自然科学版),2007,30(2):121-124.
    [1]常桂霞.几种抗菌纤维的生产方法简介[J].非织造布.2008,16(2):34-36.
    [2]王玉鹏,王春华、曲荣君等.抗菌纤维的研究进展[J].鲁东大学学报(自然科学版),2009,,25(3):256-262.
    [3]葛婕,王军.徐虹.抗菌纤维的最新研究进展[J].纤维技术,2006,,3:50-59.
    [4]邢彦军,宋阳,吉友美等.银系抗菌纺织品的研究进展[J].纺织学报.2008,29(4):127-133.
    [5]秦益民.Cupron铜基抗菌纤维的性能和应用[J].纺织学报,2009,30(12):134-136.
    [6]张娜,吴政.含银离子纤维抗菌性能的研究[J].北京服装学院学报,2008,28(4):52-57.
    [7]Hao-Lin Hsu. Jih-Mirn Jehng, Yu-Chen Liu. Synthesis and characterization of carbon nanotubes synthesized over NiO/Na-montmorillonite catalyst and application to a hydrogen peroxide sensor[J]. Materials Chemistry and Physics.2009,113:166-171.
    [8]Virendra Singh. Rene Diaz, Kantesh Balani et al. Chromium carbide-CNT nanocomposites with enhanced mechanical properties[J]. Acta Materialia.2009,57:335-344.
    [9]Sang-Bok Ma, Kyung-Wan Nam, Won-Sub Yoon et al. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications[J]. Journal of Power Sources.2008,178: 483-489.
    [10]Ruixue Zhang, Louzhen Fan, Yueping Fang et al. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO[J]. Journal of Materials Chemistry,2008,18,4964-4970.
    [11]Ebengou R H. Adsorption as mechanism for nucleating activity. Journal of Polymer Science, Part B: Polymer Physics,1997,35,1333-1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700