含有协变量的地下水动态规划管理模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地下水系统的数值模拟和优化管理中,需要考虑地下水与其它水体的水力联系和交换。其中有一类交换量,如河水与地下水的交换量、蒸发排泄量、泉流量等,它们的共同特征是其大小都取决于补(排)点处地下水位的高低,不能人为给定,我们将这种交换量统称为协变量。将人工开采(补给)量、地下水位和协变量三者之间的关系称为互馈协变关系。
     本文通过分析地下水互馈协变关系行为的作用过程和特征,提出了应用状态转移方程法构建含有协变量的地下水动态规划管理模型的理论和方法,并采用微分动态规划方法求解。首先,把描述协变量和地下水位的数学关系式代入到数值模拟模型中,完成了含有协变量的地下水模拟模型的建立,应用有限差分法求解。其次,针对一个假想例子,即一个具有互馈协变关系的假想地下水系统,运用嵌入法建立了含有协变量的地下水非线性规划管理模型,运用状态转移方程法建立了含有协变量的地下水动态规划管理模型,然后分别采用Lingo软件和微分动态规划方法进行求解。两种管理模型的计算结果基本一致。
     在假想例子研究的基础上,以吉林省西部松原地区的地下水系统为研究实例,全面收集和整理资料,通过分析协变量与地下水位之间的相互作用过程和机制,完成了含有协变量的地下水数值模拟模型的建立,采用Visual MODFLOW软件求解。
     针对研究区内的主要互馈协变关系问题,在数值模拟模型的基础上,以前郭县和扶余县部分地区为重点研究区,应用状态转移方程法构建了该区含有协变量的地下水动态规划管理模型,采用微分动态规划方法求解,同步获得了优化的人工开采量、地下水位和协变量。
Water resources crisis including water resources shortage and water environmental problem is one of the major issue in the 21st century. The phenomenon of water resources shortage is serious with the development of economy, increasing of population and changes of climate. As an important component part of water resource, groundwater is an important water supply source of human life and industrial and agricultural production. At present, the shortage of macroscopical programming and scientific management has leaded to groundwater over extraction in the processes of groundwater pumping and utilization in some area, and has leaded to a series of water environmental problem.
     Groundwater optimization management is the application of decision science in groundwater exploitation and utilization process. It is a logistic process which is based on the inherent physical law of groundwater system, analyses and describes the groundwater system decision environment, and makes the action state and functional effect optimal though the optimum control of controllable input decision. At present, simulation and optimization of groundwater are still the main techniques of forecasting groundwater behaviors and optimizing the regulating schemes. In order to assure that the optimization process following the inherent principle and theory of groundwater system, optimal model must be on the basis of simulation model. We need to imbed the simulation model into optimization model using some approach, which makes the simulation model be a part of optimization model, implementing the connection of simulation model and optimization model. Embedding method, response matrix method and state transition equation method has been used in the past to solve how to embed and call the simulation model in the optimization model.
     During the numerical simulation and optimal management of groundwater system, the hydraulic connection and exchange between groundwater and other waters need to be considered. Among them, such as exchange between surface water and groundwater, evapotranspiration, spring discharge et al, its amount is strictly dependent on the groundwater level at the recharge or discharge point, can not be given artificially, and such exchange is called covariate. The interaction among artificial pumping or recharge, groundwater level, and covariates is called relation of mutual-feed joint-variation.
     In groundwater management model with covariates, the artificial pumping or recharge, groundwater level and covariates are all unknown. Moreover, these three variables inherently affect one another, resulting in such problems is difficult to resolve. Before this study is developed, embedding method and response matrix method has been used in building groundwater management model with covariates and has already got the result. However, document about treatment of groundwater dynamic programming management model with covariates and treatment of real groundwater system management problem using theory and methodology of relation of mutual-feed joint-variation has not been published, and this is the problem that the paper wants to solve.
     Through the analysis of groundwater relation of mutual-feed joint-variation behavior process and its character, the expression of covariate in simulation model and the coupling technique of simulation model with covariate and optimization model as well as the solving method of this model were researched in the paper. Here, a dynamic optimization groundwater management model containing covariates is solved using dynamic differential programming method is described.
     The main achievements of this research are as follows:
     (1) Through the analysis of interaction process and its mechanism of covariates and groundwater table, the mathematical expressions which express the relationship of covariates and groundwater table were embedded into groundwater numerical simulation model, and then the groundwater simulation model with covariates was built, which was solved by finite difference method.
     (2) The groundwater management model with covariates was built by the embedding method, the algebraic equations which obtained by discreting the groundwater simulation model with covariates was embed into optimization model as a part of constraint condition, together with other constraints and the objective functions, constitute the groundwater nonlinear programming management model with the ability to deal with relation of mutual-feed joint-variation, was solved using the Lingo software.
     (3) Simulation model with covariates was coupled with optimization model using the state transition equation method. First, the state transition equation was obtained using groundwater simulation model with covariates. In other words, the water level in the end time was expressed by the initial time water level and pumping amounts, then the state transition equation was embedded into dynamic programming optimal model, together with other constraints and the objective functions, constituted the groundwater dynamic programming management model with the ability to deal with relation of mutual-feed joint-variation.
     The groundwater dynamic programming management model with covariates was solved with differential dynamic programming method. Differential dynamic programming method can divide the optimal management process into several periods, the end time status variables of each period was only relevant to the initial time and decision variables, which reduce the computer load greatly. It was applicable to deal with the groundwater management problem with large scale and multi period.
     (4) The above theory and method were applied to a hypothetical groundwater system with typicality relation of mutual-feed joint-variation, the groundwater nonlinear programming management model with covariates and groundwater dynamic programming management model with covariates were built respectively. The theory and method which the paper presented was applied, and reasonability analysis of the model was taken.
     (5) On the basis of hypothetical instance analysis, the groundwater system of Songyuan area in western Jilin province was taken as the case study. Data was collected and sorted, through the analysis of interaction process and mechanism between covariates and groundwater level, groundwater simulation model with covariates was built, and then Visual MODFLOW was used to solve the problem.
     (6) To solve the main relation of mutual-feed joint-variation problem, on the basis of simulation model, Qianguo Xian and Fuyu Xian was taken as important study area, groundwater dynamic programming management model with covariates was built using the state transition equation method, and solved using differential dynamic programming method, then the optimal pumping amounts, the amounts of covariates and groundwater levels were obtained simultaneously.
     To sum up, this research expands the theory and method that dealing with relation of mutual-feed joint-variation in groundwater management model, so as to establish theoretical foundation and provide technical means for the solution of various practical problems.
引文
[1]陈梦熊.中国水文地质环境地质问题研究[M].北京:地震出版社,1998.
    [2]韩冬梅.忻州盆地第四系地下水流动系统分析与水化学场演化模拟[D].中国地质大学,2007.
    [3]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007.
    [4]薛禹群,叶淑君,谢春红,等.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,7:7-13.
    [5] Ye SJ,Xue YQ,Xie CH.Application of the multiscale finite element method to flow in heterogeneous porous media[J].Water Resource Research,2004,40:1-9.
    [6]于福荣.黄龙工业园水源地地下水数值模拟[D].长春:吉林大学,2007.
    [7] Waterloo Hydrogeologic Inc.User’s manual of Visual Modflow,1996.
    [8] Hans-Jorg GD.FEFLOW有限单元地下水流系统[M].孙祥光等译.徐州:中国矿业大学出版社,2000.
    [9]祝晓彬.地下水模拟系统GMS软件[J].水文地质工程地质,2003(5):53-55.
    [10]张永波.水工环研究的现状与趋势[M].北京:地质出版社,2001. [ 11 ] Maddock T III . Algebraic technological function from a simulation model[J].Water Resource Research,1972a,8(1):129-134.
    [12] Aguado E, Remson I.Groundwater hydralics in aquifer management[J].Journal of the Hydraulics Division,American Society of Civil Engineers,1974,100:103-118.
    [13] Gorelick SM.A review of distributed groundwater management modeling methods[J].Water Resources Research,1983,19(2):305-319.
    [14]林学钰,焦雨.石家庄市地下水资源的科学管理[J].长春地质学院院报(水文地质专辑),1987(4):478-480.
    [15]许涓铭,邵景力.地下水管理问题讲座[J].工程勘察,1988(1-6).
    [16] Gorelick SM,Remson I.Optimal dynamic management of groundwater pollutant sources[J].Water Resources Research,1982b,18(1):71-76.
    [17] Ratzlaff SA,Aral MM.Optimal design of groundwater capture systems using segmented velocity-direction constrainted[J].Ground Water,1992,30(4):607-612.
    [18] Aguado E,Remson I.Groundwater hyralics in aquifer management[J].Journal of the Hydraulics,1974,100(1):103-118. [ 19 ] Willis R , Newman B A . Management model for groundwater development[J].Journal of the Water Resources Planning and Management,1977,103(1):159-171.
    [20]王洪涛.非线性多含水层地下水越流系统水资源优化管理模型研究[J].长春地质学院学报,1995,25(2):183-189.
    [21] Lefkoff JL,Gorelick SM.Design and cost analysis of rapid aquifer restoration systems using flow simulation and quadratic programming[J].Ground Water,1986,24(6):777-790.
    [22] Misirli F,Yazicigil H.Optimal Groundwater pollution plume containment with fixed changes[J].Journal of the Water Resources Planning and Management,1997,123(1):2-14.
    [23]舒艳,王红旗.地下水管理模型研究进展[J].水文地质工程地质,2005(6):85-90.
    [24] Yakowitz SJ.Dynamic programming applications in water resources[J].Water Resources Research,1982,18:637-696.
    [25] Andricevic R.Coupled withdrawal and sampling designs for groundwater supply models[J].Water Resources Research,1993,29(1):5-16.
    [26] Jacobson DH,Mayne DQ.Differential Dynamic Programming[M].Elservier Scientific,New York,1970.
    [27]王红旗,舒艳.大庆市西部地区地下水资源多目标动态规划管理模型研究[C].第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(下册),2005:1157-1167.
    [28] Murry DM,Yakowitz SJ.Constrained differential dynamic programming and its application to multireservoir control[J].Water Resources Research,1979,15(5):1017-1028.
    [29] LaDon J,Willis R,William W-Gyeh.Optimal Conrtol of Nonlinear Groundwater Hydraulics Using Differential Dynamic Programming[J].Water Resource Research,1987,23(11):2097-2106.
    [30] Culver TB,Shoemaker CA.Optimal control for groundwater remediation by differential dynamic programming with quasi–newton approximations[J].Water Resources Research,1993,29(4): 823-831. [31 ] Chang LC, Shoemaker CA. Optimal time-varying pumping rates for groundwater remediation: application of a constrained optimal control algorithm[J].Water Resource Research,1992,28(12):3157-3173.
    [32] Chang LC,Hsiao CT.Dynamic optimal groundwater remediation including fixed and operation costs[J].Ground Water,2002,40(5):481-490.
    [33] Chu HJ,Chang LC.Optimal control algorithm and neural network for dynamic groundwater management[J].hydrological processes,2009,23:2765-2773.
    [34]李文渊,董兴国.微分动态规划在潜水含水层优化管理中的应用[J].水利学报,1993(7):28-33.
    [35]郝永红,马文正.阳泉市地下水最优控制模型及其微分动态规划-二次规划算法[J].水利学报,1997(6):10-18.
    [36]王浩然.地下水开采条件下的微分动态规划模型[D].南京:南京大学,2000.
    [37]周玉锋.地下水资源多目标管理模型的研究进展[J].水资源与水工程学报,2005,16(2):59-61.
    [38] Haimes YY,Hall WA.Multiobjectives in water resources systems analysis: the surrogate worth trade-off method[J].Water Resource Research,1974,10(4):615-624.
    [39] Cohon JL,Marks DH.A review and evaluation of multiobjective programming techiques[J].Water Resource Research,1975,11(2):208-220.
    [40] Wills R,Liu P.Optimization model for groundwater planning[J].Journal of theWater Resources Planning and Management,1984,110(3):333-347.
    [41] Bogardi JJ, Gupta AD,Jiang H Z.Search beam method. A promising way to define non-dominated solution in multiobjective groundwater development[J].Int. J. Water Resour. Dev., 1991,7(4):247-258.
    [42] Ritzel BJ,Eheart JW,Ranjithan S.Using genetic algorithms to solve a multiple objective groundwater pollution containment problem[J].Water Resources Research,1994,30(5):1589-1603.
    [43] Park CH, Aral MM. Multi–objective optimization of pumping rates and well placement in coastal aquifers [J].Journal of Hydrology,2004,290(1-2):80-99.
    [44] Kollat JB,Reed PM.Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design[J].Advances in Water Resources,2006,29:792-807.
    [45]邵景力,崔亚莉,李慈君.地下水多目标管理模型及其应用研究[J].现代地质,1998,12(2):235-242.
    [46]邵景力,崔亚莉,李慈君.包头市地下水-地表水联合调度多目标管理模型[J].资源科学,2003,25(4):49-55.
    [47]代振学,李竟生.济宁-充州矿区地下水多目标管理模型的研究[J].西安地质学院学报, 1991,13(2):49-59.
    [48]孟庆国,林明,韩晓君.论多目标规划在城市地下水资源管理中的应用[J].黑龙江水利科技,1997(4):5-8.
    [49]王来生,杨天行,徐红敏.多目标规划在哈尔滨市地下水资源管理中的应用[J].长春科技大学学报,2002,31(2):156-159.
    [50]贺北方,周丽,马细霞,等.基于遗传算法的区域水资源优化配置模型[J].水电能源科学,2002,20(3):10-12.
    [51]邵景力,崔亚莉,李慈君.地下水多目标管理模型及其应用[J].现代地质,1998,12(2):235-242.
    [52]邵景力,魏加华,崔亚莉,等.遗传算法在非线性地下水经济管理模型中的应用[J].长春科技大学学报,1999,29(3):259-262.
    [53]邵景力,崔亚莉,李慈君.水资源-经济管理模型及其应用[J].水文地质工程地质,1994(3):1-4.
    [54] Ritzel BJ,Eheart JW,Ranjithan S.Using genetic algorithms to solve a multiple objective groundwater pollution containment problem[J].Water Resources Research,1994,30(5):1589-1603.
    [55] McKinney DC,Lin MD.Genetic algorithm solution of groundwater management problems [J].Water Resources Research,1994,30(6):1897-1906.
    [56] Katsifarakis KL,Karpouzos DK,Theodossiou N.Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems [J].Engineering Analysis with Boundary Elements,1999,23(7):555-565.
    [57] Katsifarakis KL,Petala Z.Combining genetic algorithms and boundary elements to optimize coastal aquifers' management [J].Journal of Hydrology,2006,327(1–2):200-207.
    [58] Morshed J,Kaluarachchi JJ.Enhancements to genetic algorithm for optimal groundwater management [J].Journal of Hydrologic Engineering,2000,5(1):67-73.
    [59] Cai X,Mckinney DC,Lasdon LS.Solving nonlinear water management models using a combined genetic algorithm and linear programming approach[J].Advances in Water Resources,2001,24(6):667-676.
    [60] Zheng C,Wang PP.A field demonstration of the simulation–optimization approach for remediation system design[J].Ground Water,2002,40(3):258-265.
    [61] Ines AV,Honda K,Gupta AD,et al.Combining remote sensing–simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture[J].Agricultural Water Management,2006,83:221-232.
    [62]邵景力,魏加华,崔亚莉,等.用遗传算法求解地下水资源管理模型[J].地球科学-中国地质大学学报,1998,23(5):532-536.
    [63]崔亚莉,邵景力,魏加华.分布参数地下水管理模型的遗传算法研究[J].现代地质,1999,13(3):363–366.
    [64]王雪梅,王义和.模拟退火算法与遗传算法的结合[J].计算机学报,1997,20(4):381-384.
    [65] Wang M,Zheng C.Groundwater management optimization using genetic algorithms and simulated annealing: Formulation and comparison[J].Journal of the American Water Resources Association,1998,34(3):519-530.
    [66] Dougherty DE,Marryott RA.Optimal groundwater management. 1. Simulated annealing [J].Water Resources Research,1991,27(10):2493-2503.
    [67] Rizzo DM,Dougherty DE.Design optimization for multiple management period groundwater remediation [J].Water Resources Research,1996,32(8):2549-2561.
    [68] Cunha MD.On solving aquifer management problems with simulated annealing algorithms [J].Water Resources Management,1999,13:153-169.
    [69] Kuo SF,Liu CW,Merkley GP.Application of the simulated annealing method to agricultural water resource management [J] . Journal of Agricultural Engineering Research,2001,81(1):109-124.
    [70] Rao SVN,Sreenivasulu V,Bhallamudi SM,et al.Planning groundwater development in coastal aquifers [J].Hydrological Sciences Journal,2004,49(1):155-170.
    [71] Rao SVN,Bhallamudi SM,Thandaveswara BS,et al.Planning groundwater development in coastal deltas with paleo channels[J] . Water Resources Management,2005,19(5):625-639.
    [72]魏连伟.基于人工智能技术的地下水系统参数识别研究[D].天津:天津大学,2003.
    [73]丁志雄,陈南祥,苏万益.地下水资源系统人工神经网络模型的建立与应用[J].工程勘察,1999(2):42-45.
    [74] Ranjithan S,Eheart JW,Garrett Jr JH.Neural network–based screening for groundwater reclamation under uncertainty [J].Water Resources Research,1993,29(3):563-574.
    [75] Coppola Jr E,Poulton M,Charles E,et al.Application of artificial neuralnetworks to complex groundwater management problems [J].Natural Resources Research,2003,12(4):303-320.
    [76] Parida BP,Moalafhi DB,Kenabatho PK.Forecasting runoff coefficients using ANN for water resources management: The case of Notwane catchment in Eastern Botswana[J].Physics and Chemistry of the Earth,2006,31:928-934.
    [77] Glover F.Future paths for integer programming and links to aritificial intelligence[J].Computers and Operations Reaearch,1986,13:79-97.
    [78] Zheng C,Wang PP.An integrated global and local optimization approach for remediation system design [J].Water Resources Research,1999,35(1):137–148.
    [79] Zheng C,Wang PP.Parameter structure identification using tabu search and simulated annealing [J].Advances in Water Resources,1996,19(4):215-224.
    [80] Lee YM,Ellis JH.Comparison of algorithms for nonlinear integer optimization: Application to monitoring network design [J] . Journal of Environmental Engineering,1996,122(6):524-531.
    [81]杨蕴,吴剑锋,吴吉春.两种智能算法在求解地下水管理模型中的对比[J].吉林大学学报(地球科学版),2009,39(3):474-502.
    [82]李大卫,王莉,王梦光.遗传算法与禁忌搜索算法的混合策略[J].系统工程学报,1998,13(3):28-34.
    [87] Glover F,Kelly J,Laguna M.Genetic algorithms and tabu search:Hybrids for optimization[J].Computer & Operations Research,1995,22(1):111-134.
    [88] Sidiropoulos E,Tolikas P.Genetic algorithms and cellular automata in aquifer management[J].Applied Mathematical Modelling,2008,32:617-640.
    [89] Shieh HJ,Peralta RC.Optimal In Situ Bioremediation Design by Hybrid Genetic Algorithm-Simulated Annealing[J].Journal of Water Resources Planning and Management,2005,131(1):67-78.
    [86]韩万海,马牧兰,栾元利.石羊河流域水资源优化配置与可持续利用[J].水利规划与设计,2007(5):22-26.
    [87]潘林,肖新棉,雷永富.模拟退火遗传算法在灌溉水量最优分配中的应用[J].节水灌溉,2006 (6):45-47.
    [88]吴剑锋,朱学愚,刘建立.基于遗传算法的模拟退火罚函数方法求解地下水管理模型[J].中国科学(E辑),1999,29(5):474-480.
    [89] Rogers LL,Dowla FU.Optimisation of groundwater remediation using artificial neural networks with parallel solute transport modeling [J].Water Resources Research,1994,30:457–481.
    [90] Aly AH,Peralta RC.Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm [J].Water Resources Research,1999,35(8):2523–2532.
    [91] Brian JR,Wayland EJ.Using genetic algorithms to solve a multiple objective groundwater pollution containment problem[J].Water Resources Research,1994,30(5):1589-1603.
    [92] Tung CP,Chou CA.Pattern classification using tabu search to identify the spatial distribution of groundwater pumping [J].Hydrogeology Journal,2004,12:488-496.
    [93] Hsiao CT,Chang LC.Optimizing remediation of an unconfined aquifer using a hybrid algorithm [J].Ground Water,2005,43(6):904-915.
    [94] Mantawy AH,Abdel–Magid YL,Selim SZ.Integrating genetic algorithms, tabu search and simulated annealing for the unit commitment problem [J].IEEE Transaction on Power Systems,1998,14(3):829-836.
    [95]张恒堂.预报地下水位、泉水量和蒸发量的多输人多输出数值模型[J].地下水,1992,14(4): 206-210.
    [96] de Lange WJ.A Cauchy boundary condition for the lumped interaction between an arbitrary number of surface waters and a regional aquifer [J].Journal of Hydrology,1999,226:250–261.
    [97] Gharbi A, Peralta RC.Integrated embedding optimization applied to Salt Lake valley aquifers [J] .Water Resources Research,1994,30(3):817-832.
    [98] Takahashi S,Peralta RC.Optimal perennial yield planning for complex nonlinear aquifers: Methods and examples [J].Advances in Water Resources,1995,18(1):49-62.
    [99]卢文喜.中国北方岩溶水系统管理模型中处理大泉的一种方法[J].长春地质学院学报,1994,24(l):57-59.
    [100]李平.地下水管理模型中互馈协变关系理论和方法研究[D].长春:吉林大学,2008.
    [101]季月华,朱国荣,江思珉.地下水管理模型软件GWM简介及算例[J].2007(1):17–22.
    [102]章光新,邓伟,李取生,等.水资源优化管理专业系统软件(REMAX)应用研究[J].水文地质工程地质,2000(5):38–40.
    [103]高茂生,陈鸿汉,李桂荣,等.郑州市龙湖成湖方案研究[J].地学前缘,2005,12(9):107–111.
    [104]张人权.水文地质学发展的若干趋向[J].水文地质工程地质,1987(2):1-2.
    [105]王大纯,张人权,史毅虹,等.水文地质学基础[M].北京:地质出版社,1995.
    [106]陈梦熊.西北干旱区水资源的开发利用与生态环境.中国水文地质环境地质问题研究[M].北京:地震出版社,1998.
    [107]林学钰,廖资生.地下水管理[M].北京:地质出版社,1995.
    [108]许涓铭,邵景力.地下水管理问题讲座[J].工程勘察,1988(1):50-53.
    [109]李俊亭.地下水流数值模拟[M].北京:地质出版社,1989.
    [110]许涓铭,邵景力.地下水管理问题讲座[J].工程勘察,1988(4):50-54.
    [111]卢文喜.地下水系统的模拟预测和优化管理[M].北京:科学出版社,1999.
    [112]王文科,孔金玲,王钊,等.论水资源管理模型存在的问题与发展趋势[J].工程勘察,2001(6):15-18.
    [113]陈葆仁,吴吉春,刘淑芸.地下水管理模型在我国实践中存在问题的讨论[J].水文地质工程地质,1994(6):36-39.
    [114]杨悦所.石家庄市地下水资源管理模型[J].长春地质学院学报,1987,17(4):419-430.
    [115]张超.水资源系统动态规划[M].北京:水利电力出版社,1986.
    [116]罗荣桂,喻小军,张润红.运筹学习题详解与考研辅导[M].武汉:华中科技大学出版社,2008.
    [117]陈爱光,李慈君,曹剑锋.地下水资源管理[M].北京:地质出版社,1991.
    [118]方乐润,施鑫源,陈绍玉.地下水资源系统的动态规划模型[J].水利经济,1990 (2):36-41.
    [119]李树文,金瞰昆,孟文芳,等.水资源系统的动态管理模型与应用[J].河北建筑科技学院学报,2000,17(2):54-56.
    [120]唐德善.缺水地区水资源优化分配模型研究[J].河海大学学报,1992,20(2):35-43.
    [121]王柏明.动态规划在水资源优化配置中的应用[J].浙江水利水电专科学校学报,2002,14(2):3-4.
    [122]向速林,刘占孟,尤本胜.水资源调配的动态规划研究[J].新疆环境保护,2005,27(1):18-20.
    [123]方乐润.动态规划及其在水资源工程中的应用(一)[J].黑龙江水专学报,1997(3):1-6.
    [124] Howson HR,Saneho NGF.New algorithm for the solution of multi-state dynamic programming problems[J].Math programming,1975,8(1):104-116.
    [125] Ozden M.Binary state DP algorithm for operation problems of multireservoir systems[J].Water Resources Research,1984,20(1):9-14.
    [126]姚华明,张浦,钟琦等.水库群优化补偿调节模型及计算方法[J].水电能源科学,1990,8(l):76-84.
    [127]李文渊,董兴国.微分动态规划在潜水含水层优化管理中的应用[J].水利学报,1993(7):28-33.
    [128]郝永红,马文正.阳泉市地下水最优控制模型及其微分动态规划-二次规划算法[J].水利学报,1997(6):10-18.
    [129]李虎.吉林省松原-前郭区地下水资源评价[D].长春:吉林大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700