锂离子电池5V正极材料的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LiNi_(0.5)Mn_(1.5)O_4正极材料不仅具有高达4.7V的充放电平台,而且具有环境友好、成本低、安全性能好、能量密度高、功率密度高和循环性能好等优点,因此有望成为动力电池的候选正极材料之一。
     本论文主要围绕减少LiNi_(0.5)Mn_(1.5)O_4正极材料的4V放电平台,以研究制备电化学性能优异的高电位LiNi_(0.5)Mn_(1.5)O_4正极材料的方法为主要任务,主要采用了恒电流充放电、循环伏安和交流阻抗等测试手段,以及XRD、SEM等表征手段对LiNi_(0.5)Mn_(1.5)O_4正极材料进行了较详细的研究。主要内容包括:
     (1)采用溶胶凝胶-自蔓延燃烧法合成了LiNi_(0.5)Mn_(1.5)O_4正极材料,详细考察了原料的加入顺序、初始pH、原料的选择、柠檬酸的量、焙烧温度、退火时间、镍和锂的过量程度对合成最终样品性能的影响。最佳条件合成的正极材料LiNi_(0.5)Mn_(1.5)O_4首次放电比容量为121.7mAh/g,第20次循环的放电比容量为119.5mAh/g,放电比容量保持率为98.2%,循环性能较好,消除了4V放电平台。
     (2)为了进一步改进LiNi_(0.5)Mn_(1.5)O_4正极材料的电化学性能,对其进行了掺杂Ga和In二种元素。通过掺杂并没有提高正极材料在常温和0.2C充放电倍率下的放电比容量,但是掺杂Ga和In都提高了正极材料的充放电倍率性能。XRD测试结果表明,Ga~(3+)已经进入到尖晶石的晶格,并占据了Ni~(2+)位;SEM测试结果表明, Ga的掺杂没有改变最终合成样品的颗粒大小和形貌;充放电性能测试表明,LiGa_δNi_(0.5)_(-δ)Mn_(1.5)O_4(δ=0.02)具有最高的放电比容量和循环稳定性;循环伏安测试表明,LiGa_δNi_(0.5)_(-δ)Mn_(1.5)O_4(δ=0.02)的两次循环伏安曲线的氧化还原峰位基本重合,说明该样品的循环稳定性较为优异;交流阻抗测试表明,LiGa_δNi_(0.5)_(-δ)Mn_(1.5)O_4(δ=0.02)具有最小的电荷转移阻抗,也证实了该样品具有优异的循环稳定性。
     (3)对材料LiNi_(0.5)Mn_(1.5)O_4进行了包覆Li_4Ti_5O_(12)。从放电比容量和高电位平台相对容量来考虑,包覆后的前驱体的最适宜的热处理温度为600℃。包覆Li_4Ti_5O_(12)后,明显提高了正极材料的放电比容量保持率,其中,包覆2%的样品在倍率性能测试中的容量保持率为99.3%。循环伏安和交流阻抗测试也都表明,包覆Li_4Ti_5O_(12)后,正极材料的循环稳定性得到了提高,其中,包覆2%的样品的电荷转移阻抗最小,将最有利于锂离子的嵌入与脱出,极大改善了循环稳定性。
LiNi_(0.5)Mn_(1.5)O_4 cathode material, which has the advantage of a potential plateau at about 4.7V, as well as environmentally friendly, low cost, good safety performance, good cycle performance, high power and high energy density, is expected to be one of the best cathode materials for the power battery.
     In this paper, how to reduce the 4V plateau of LiNi_(0.5)Mn_(1.5)O_4 cathode material was concerned, in order to synthesize high voltage cathode material with high specific capacity and excellent cycle stability. Constant current charge-discharge test, Cycle Voltammagram(CV), AC impedance, X-ray Diffraction(XRD) and Scan electron microscope(SEM) were used to characterize the performance of the cathode material. The main contents include:
     (1) LiNi_(0.5)Mn_(1.5)O_4 cathode material was synthesized by Sol-Gel-SCR (Self-Combustion Reaction), and many influencing factors were considered, such as, the order of addition of raw materials, initial pH, selection of raw materials, the relative amounts of citric acid, sintering temperature, annealing time, the best level of nickel and lithium excess. LiNi_(0.5)Mn_(1.5)O_4 cathode material, synthesized with optimum conditions, showed excellent electrochemical performance. The initial discharge capacity was 121.7mAh/g, and the discharge capacity of 20th cycle was 119.5mAh/g, so the discharge capacity retention ratio rate was 98.2%, which showed well cycle performance. In the charge-discharge performance curve, the 4V discharge platform was disappeared.
     (2) To further improve the electrochemical properties of the cathode material, the Ga-doping and In-doping LiMδNi_(0.5)_(-δ)Mn_(1.5)O_4(M=Ga, In) were prepared.The discharge capacity of the cathode materials was not raised by doping at room temperature, charge and discharge rate of 0.2C, but greatly enhanced the rate property. XRD results showed that, Ga entered into the spinel lattice and occupied the nickel position. SEM results showed that Ga-doping did not change the grain size and morphology. Charge and discharge performance tests showed that LiGa_δNi_(0.5)_(-δ)Mn_(1.5)O_4(δ=0.02) showed the highest discharge capacity and cycle stability. The CV curves indicated thatδ=0.02 sample showed well cycling performance. The AC impedance curves also indicated thatδ=0.02 sample showed more excellent cycle stability, due to the lowest electrochemical impedance.
     (3) Li_4Ti_5O_(12)-coated LiNi_(0.5)Mn_(1.5)O_4 cathode material was prepared. Experimental results showed that the best heat treatment temperature of coating precursor is 600℃. The discharge capacity retention rate of Li_4Ti_5O_(12)-coated LiNi_(0.5)Mn_(1.5)O_4 cathode materials was much higher than that of the uncoating material, which of the 2wt.% Li_4Ti_5O_(12)-coated LiNi_(0.5)Mn_(1.5)O_4 samples was 99.3%. CV and AC impedance curves showed that the cycle performance of cathode materials was improved after Li_4Ti_5O_(12)-coating. The 2wt.% Li_4Ti_5O_(12)-coatig, due to the lowest electrochemical impedance, would be most beneficial to the Lithium-ion diffusion, and greatly improved the cycle stability.
引文
[1]郭炳坤,徐徽,王先友,等.锂离子畜电池[M].长沙:中南大学出版社. 2002
    [2]夏熙.电极活性材料的发展和趋势[J].电池,2008,38(5):288-292
    [3]陈宗海,秦燕.动力锂电池的研发现状[J].电池,2008,38(5):293-296
    [4]吴宇平,戴晓兵,马军旗,等.锂离子电池-应用与实践[M].北京:化学工业出版社, 2004
    [5] J. M. Paulsen, J. R. Muller-Nehaus, et al. Layered LiCoO_2 with a different oxygen stacking (O-2 structure) as a cathode material for rechargeable lithium batteries[J]. J.Electrochem Soc., 2000, 147(2): 508-516
    [6] D. Huang. Solid solution new cathodes for next generation lithium-ion batteries[J]. Adv Batt Tech, 1980, 11: 23-27
    [7] H. W. Ha, N. J. Yun, M. H. Kim, et al. Enhanced electrochemical and thermal stability of surface-modified LiCoO_2 cathode by CeO_2 coating[J]. Electrochimica Acta., 2006, 51(16): 3297-3302
    [8] S. Oh, J. K. Lee, D. Byun, et al. Effect of Al_2O_3 coating on electrochemical performance of LiCoO_2 as cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 2004, 132(1-2): 249-255
    [9] K. Y. Chung, W. S. Yoon, H. S. Lee, et al. In situ XRD studies of the structural changes of ZrO_2-coated LiCoO_2 during cycling and their effects on capacity retention in lithium batteries[J]. Journal of Power Sources, 2006, 163(1): 185-190
    [10] G. T. K. Fey, P. Muralidharan, C. Z. Lu, et al. Enhanced electrochemical performance and thermal stability of La_2O_3-coated LiCoO_2[J]. Electrochimica Acta., 2006, 51(23): 4850-4858
    [11] F. Nobili, S. Dsoke, F. Croce, et al. An ac impedance spectroscopic study of Mg-doped LiCoO_2 at different temperatures: electronic and ionic transport properties[J]. Electrochimica Acta., 2005, 50(11): 2307-2313
    [12] D. G. Tong, Y. Y. Luo, Y. He, et al. Effect of Ga doping on the structural, electrochemical and thermal properties of LiCo_(0.975)Ga_(0.025)O_2 as cathode materials for lithium ion batteries[J]. Materials Science and Engineering, 2006, B128(1-3): 220-228
    [13] H. Y. Xu, S. Xie, C. P. Zhang, et al. Improving the electrochemical behavior of LiCoO_2 electrode by mixed Zr-Mg doping[J]. Journal of Power Sources, 2005, 148: 90-94
    [14] P. Ghosh, S. Mahanty, R. N. Basu. Lanthanum-doped LiCoO_2 cathode with high rate capability[J]. Electrochimica Acta., 2009, 54(5): 1654-1661
    [15]高汝金,樊勇利.掺杂改性LiNiO_2的研究进展[J].电源技术,2008,32(4):271-242
    [16] G. X. Wang, S. Zhong, D. H. Bradhurst, et al. Synthesis and characterization of LiNiO_2 compounds as cathodes for rechargeable lithium batteries[J]. Journal of Power Sources, 1998, 76(2):141-146
    [17] J. Molenda, P. Wilk, J. Marzec. Structural, electrical and electrochemical properties of LiNiO_2[J]. Solid State Ionics, 2002, 146(1-2):73-79
    [18] Y. M. Choi, S. I. Pyun, S. I. Moon, et al. A study of the electrochemical lithium intercalation behavior of porous LiNiO_2 electrodes prepared by solid-state reaction and sol-gel methods[J]. Journal of Power Sources, 1998, 72(1): 83-90
    [19] M. Y. Song, R. Lee. Synthesis by sol-gel method and electrochemical properties of LiNiO_2 cathode material for lithium secondary battery[J]. Journal of Power Sources, 2002, 111(1):97-103
    [20]何见超,赖欣,史芳,等.LiNiO_2正极材料的制备技术及进展[J].材料导报,2005,19(F11): 256-257
    [21]臧健,张向东,王君,等.尖晶石型锂锰氧化物的研究进展[J].材料导报,2004,18(F04):267-269
    [22]齐义辉,郭建亭.热等静压对NiAl-Cr(Zr)金属间化合物合金显微组织和性能的影响[J].材料工程,2001,(7):15-18
    [23] A. K.Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J. Electrochem. Soc.,1997,144(4):1188-1194
    [24] Michael Thackeray. Lithium-ion batteries: An unexpected conductor [J]. Nature Mater.,2002,1:81-82
    [25] J. M. Tarascon, M. Armand.Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414:359-367
    [26]周邵云,李新海,王志兴,等.锂离子蓄电池铁基电极材料研究进展[J].电源技术,2008,32(7):481-484
    [27]吕正中,周震涛.磷酸铁锂锂离子电池正极材料[J].化学通报,2004,67(w025):1-6
    [28]李庆余,王红强,张安娜,等.纳米LiFePO_4/C复合正极材料的制备及其性能研究[J].化工新型材料,2007 , 39(5): 3-7
    [29]高飞,致远,薛建军,等.雾干燥-高温固相法制备纳米LiFePO_4与LiFePO_4/C材料及性能研究[J].无机化学学报,2007,23(9) :1603-1608
    [30]李冰,王殿龙.蜂窝结构球形LiFePO_4/C的制备及性能[J].电池,2007,37(6):422-424
    [31] J. K. Sang, W. K. Cheol, T. J. Woon, et al. Synthesis and electrochemical properties of olivine LiFePO_4 as cathode material prepared by mechanical alloying [J], Journal of Power Sources, 2004, 137(1):93-99
    [32] W. K. Cheol, H. L. Moon, T. J. Woon, et al. Synthesis of olivine LiFePO_4 cathode materialsby mechanical alloying using iron(III) raw materias[J]. Journal of Power Sources, 2005,146(1-2):534-538
    [33] L. N. Wang, Z. G. Zhang, K. L. Zhang. A sample,cheap soft synthesis routine for LiFePO_4 using iron(I11)raw material [J]. Journal of Power Sources, 2007, 167(1): 200-205
    [34] D. Y. Wang, H. Li, S. Q. Shi, et al. Improving the rate performance of LiFePO_4 by Fe-site doping[J]. Electrochimica Acta, 2005, 50 (14): 2955-2958
    [35] G. R. Hu, X. G. Gao, Z. D. Peng. Influence of Ti4+ doping on electrochemical properties of LiFePO_4/C cathode material for lithium-ion batteries[J]. Trans. Nonferrous Met. Soc. 2007, 17(2): 296-300
    [36] Y. R. Wang, Y. F. Yang, X. Hu, et al. Electrochemical performance of Ru-doped LiFePO_4/C cathode material for lithium-ion batteries[J]. J. Alloys Compd., 2009,481 (1-2): 590-594
    [37]张真,刘兴泉,张峥,等. 5 V锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4的进展[J].电池,2011,41(1):47-50
    [38] Y. Gao, K. Myrtle, M. Zhang, et al. Valence band of LiNixMn2-x04 and its effects on the voltage profile of LiNixMn2-x04/Li electrochemical cells[J].Phys Rev B Condens Matter.,1996,54(23):16670-16675
    [39]范未峰,刘兴泉.锂离子二次电池5V正极材料的研究进展[J].化工科技, 2007,15(6): 52-57
    [40] J. H. Kim, C. S. Yooh, S. T. Myung. Phase transitions in Li1-δNi_(0.5)Mn_(1.5)O_4 during cycling at 5V[J]. Electrochem Solid-State Lett. 2004, 7(7):A216-A220
    [41] K. Muharrem, F. A. Jafar, G. A. GLenn. High-power nanostructured LiMn12-xNixO_4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology[J]. Chem Mater,2006,18:3585—3592
    [42] Y. Y. Sun, Y. F. Yang, H. Zhan. Synthesis of high power type LiMn_(1.5)Ni_(0.5)O_4 by optimizing its preparation conditions[J]. Journal of Power Sources, 2010, 195(13): 4322-4326
    [43] J. H. Kim, S. T. Myung, Y. K. Sun. Molten salt synthesis of LiNi_(0.5)Mn_(1.5)O_4 spinel for 5 Vclass cathode material of Li-ion secondary battery[J]. Electrochimica Acta, 2004, 49(2): 219-227
    [44] M. Tsutomu, M. Tatsumisago, M. Wakihara, et al. Solid State Ionics for Batteries [M].Tokyo :Springer-Verlag ,2005:95-102
    [45] Q. Sun, X. H. Li, Z. X. Wang,et al. Synthesis and electrochemical performance of spinel LiNi_(0.5)Mn_(1.5)O_4 prepared by solid-state reaction[J]. Trans. Nonferrous Met . Soc.China, 2009, 19(1): 176-181
    [46] H. S. Fang, Z. X. Wang, X. H. Li, et al. Exploration of high capacity LiNi_(0.5)Mn_(1.5)O_4 synthesized by solid-state reaction[J]. Journal of Power Sources, 2006, 153(1): 174-176
    [47] U. Lafont, C. Locati, W. J. H. Borghols, et al. Nanosized high voltage cathode material LiMg0.05Ni0.45Mn_(1.5)O_4: Structural, electrochemical and in situ investigation[J]. Journal of Power Sources, 2009, 189(1): 179-184
    [48] Z. Y. Chen, H. L. Zhu, S. Ji,et al. Performance of LiNi_(0.5)Mn_(1.5)O_4 prepared by solid-state reaction[J]. Journal of Power Sources, 2009, 189(1): 507-510
    [49] X. Fang, N. Ding, X. Y. Feng, et al. Study of LiNi_(0.5)Mn_(1.5)O_4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanism[J]. Electrochimica Acta, 2009, 54(28): 7471-7475
    [50] D. Q. Liu, J. T. Han, J. B. Goodenough. Structure, morphology, and cathode performance of Li1?x[Ni_(0.5)Mn_(1.5)]O_4 prepared by coprecipitation with oxalic acid[J]. Journal of Power Sources, 2010, 195(9): 2918-2923
    [51] T. F. Yi, Y. R. Zhu, R. S. Zhu. Density functional theory study of lithium intercalation for 5 V LiNi_(0.5)Mn_(1.5)O_4 athode materials[J]. Solid State Ionics, 2008, 179(38): 2132-2136
    [52] B. J. Hwang, Y. W. Wu, M. Venkateswarlu,et al. Influence of synthesis conditions on electrochemical properties of high-voltage Li1.02Ni_(0.5)Mn_(1.5)O_4 spinel cathode material[J]. Journal of Power Sources, 2009, 193(2): 828-833
    [53] D. Li, A. Ito, K. Kobayakawa, et al. Electrochemical characteristics of LiNi_(0.5)Mn_(1.5)O_4 prepared by spray drying and post-annealing[J]. Electrochimica Acta, 2007, 52(5):1919-1924
    [54] S. H. Park, S. W. Oh, S. T. Myung,et al. Effects of synthesis condition on LiNi1/2Mn3/2O_4 cathode material for prepared by ultrasonic spray pyrolysis method[J]. Solid State Ionics, 2005, 176(5-6): 481-486
    [55] L. Wen, Q. Lu, G. X. Xu. Molten salt synthesis of spherical LiNi_(0.5)Mn_(1.5)O_4 cathode materials[J]. Electrochimica Acta, 2006, 51(21): 4388-4392
    [56] S. W. Oh, S. H. Park, J. H. Kim, et al. Improvement of electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 spinel material by fluorine substitution[J]. Journal of Power Sources, 2006, 157(1): 464-470
    [57] A. Ito, D. C. Li, Y. S. Lee, et al. Influence of Co substitution for Ni and Mn on the structural and electrochemical characteristics of LiNi_(0.5)Mn_(1.5)O_4[J]. Journal of Power Sources, 2008, 185(2): 1429-1433
    [58] M. Aklalouch, J. M. Amarilla, R. M. Rojas, et al. Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi_(0.5)Mn_(1.5)O_4-based positive electrode[J]. Journal of Power Sources, 2008, 185(1): 501-511
    [59] S. B. Park, W. S. Eom, W. I. Cho, et al. Electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode after Cr doping[J]. Journal of Power Sources, 2006, 159(1): 679-684
    [60] C. Locati, U. Lafont, L. Simonin, et al. Mg-doped LiNi_(0.5)Mn_(1.5)O_4 spinel for cathode materials[J]. Journal of Power Sources, 2007, 174(12): 847-851
    [61] R. Alcantara, M. Jaraba, P. Lavela, et al. X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi_(0.5)Mn_(1.5)O_4 electrodes[J]. Journal of Electroanalytical Chemistry, 2004, 566(1): 187-192
    [62] H. M. Wu, I. Belharouak, A. Abouimrane, et at. Surface modification of LiNi_(0.5)Mn_(1.5)O_4 by ZrP2O7 and ZrO_2 for lithium-ion Batteries[J]. Journal of Power Sources, 2010, 195(9): 2909-2913
    [63] Y. K. Fan, J. M. Wang, Z. Tang, et al. Effects of the nanostructured SiO_2 coating on the performance of LiNi_(0.5)Mn_(1.5)O_4 cathode materials for high-voltage Li-ion batteries[J]. Electrochimica Acta, 2007, 52(11): 3870-3875
    [64] T. Noguchi, I. Yamazaki, T. Numata, et al. Effect of Bi oxide surface treatment on 5V spinel LiNi_(0.5)Mn_(1.5)?xTixO_4[J]. Journal of Power Sources, 2007, 174(2): 359-365
    [65] H. B. Kang, S. T. Myung, K. Amine, et al. Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni_(0.5)Mn_(1.5)]O_4 for rechargeable lithium batteries[J]. Journal of Power Sources, 2010, 195(7): 2023-2028
    [66]李岳,米晓云,季洪雷,等.低温燃烧合成无机化合物的研究进展[J].长春理工大学学报,2007,30(2):90-93
    [67] Q. Zhang, A. Bonakdarpour, M. Zhang, et al. Synthesis and Electrochemistry of LiNixMn2–xO_4[J]. J. Electrochem. Soc., 144 (1997): 205-213
    [68] S. Bach, J. P. Pereira-Ramos, N. Baffier. Electrochemical properties of sol-gel Li4/3Ti5/3O_4[J].J.Power Sources, 1999, 81-82:273-276
    [69] T. Ohzuku, A. Ueda, A. Yamamoto. Zero-Strain Insertion Material of Li[Li_(1/3)Ti_(5/3)]O_4 for Rechargeable Lithium Cells[J]. J. Electrochem. Soc., 1995, 142: 1431-1435
    [70]刘东强,吁霁,孙玉恒,等.LiMn_2O_4表面包覆Li_4Ti_5O_(12)的制备及倍率特性(英文)[J].无机化学学报,2007,23(01):41-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700