锂离子电池正极材料Li_2FeSiO_4的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文详细综述了锂离子电池及其正极材料的发展和研究现状。Li_2FeSiO_4具有高安全性、无毒、价格低廉、资源丰富等优点,被认为是铁基正极材料中极具发展潜力的锂离子电池正极材料。然而材料本身极低的电子电导率和离子扩散能力是制约其发展的主要因素。本文选取Li_2FeSiO_4作为研究对象,对其材料改性、合成工艺、结构表征、电化学性能及电极动力学性能进行了详细研究。
     采用体相掺杂的方法对Li_2FeSiO_4进行了改性研究,通过高温固相反应制备了铁位掺镍的Li_2Fe_(1-x)Ni_xSiO_4材料。利用TG/DTA技术对Li_2Fe_(1-x)Ni_xSiO_4的前驱体进行了表征,并通过XRD、SEM、电化学测试方法研究了掺杂量对Li_2FeSiO_4晶体结构、微观形貌和电化学性能的影响。结果表明:适当的镍掺杂不会改变Li_2FeSiO_4材料基本晶体结构,材料的充放电容量和循环性能都得到了一定的提高,其中Li_2Fe_(0.7)Ni_(0.3)SiO_4样品具有最佳的放电容量和容量保持率。
     在前驱体中加入适量蔗糖作为碳源和还原剂,通过铁位掺锰和表面碳包覆的复合改性方式制备了Li_2Fe_(1-x)Mn_xSiO_4/C复合材料,并系统研究了掺锰量、焙烧温度、焙烧时间、Li/Si配比对Li_2Fe_(1-x)Mn_xSiO_4/C物理性能及电化学性能影响。在Li/Si比2.04、600℃下反应16h合成的Li_2Fe_(1-x)Mn_xSiO_4/C材料具有较好的电化学性能,在1.5-4.8V电压区间、以C/16倍率充放电,其首次放电比容量达149.8mAh·g~(-1),循环30次此后的容量保持率为90.1%。
     进一步研究了优化合成条件下制备的Li_2Fe_(1-x)Mn_xSiO_4/C材料的倍率性能以及高温条件下的循环性能。随着充放电电流倍率的提高,Li_2Fe_(1-x)Mn_xSiO_4/C材料的循环性能变差;在高温下Li_2Fe_(1-x)Mn_xSiO_4/C材料的电化学性能得到明显改善,在C/16倍率下,样品的放电平台平稳,循环30次后的容量保持率为94.2%。
     分别往前驱体中掺入不同量的蔗糖和葡萄糖,制备了不同碳源的Li_2Fe_(1-x)Mn_xSiO_4/C复合材料。结果表明:随着碳含量的增加,Li_2Fe_(1-x)Mn_xSiO_4/C颗粒逐渐减小,振实密度也逐渐减小。与蔗糖相比,葡萄糖作为碳源合成的材料的粒径分布更均匀,颗粒的表面形貌更规则,掺碳量为15%的样品具有较好的电化学性能,在C/16倍率下的首次放电比容量为154.7mAh·g~(-1),循环30次后的容量保持率为92.2%。
     采用循环伏安、交流阻抗、恒电位阶跃等不同的电化学测试方法对改性前后的Li_2FeSiO_4的锂离子脱嵌动力学过程进行了研究,并提出了与之匹配的等效电路图。从动力学角度进一步阐明了材料改性前后的性能差异。
The development of rechargeable lithium-ion batteries and cathode materials are reviewed in detail. With the advantages of high safety, non-toxicity, low cost and abundant recource, Li_2FeSiO_4 has been considered as a promising cathode material on lithium-ion batteries. Synthesis of materials, modification process, structure characterization, electrochemical behaviors of Li_2FeSiO_4 has been involved in this study.
     Li_2FeSiO_4 doped with Ni was synthesized via a solid-state reaction. The precursor was characterized by TG/DTA, and the effort of Ni content on physical structure and electrochemical performance of Li_2FeSiO_4 has been investigated by XRD, SEM and electrochemical methods. The results suggested that Ni doping has increased the charge-discharge capacity, improved the cycle performance. Li_2Fe_(0.7)Ni_(0.3)SiO_4 shows the highest discharge capacity and the best cyclying stability.
     Li_2Fe_(1-x)Mn_xSiO_4/C was synthesized using sucrose as carbon source and reductant, and the effort of doping amount, sintering temperature, sintering time and Li/Si ratio on Li_2Fe_(1-x)Mn_xSiO_4/C's performance were systematically researched. The optimized Li_2Fe_(0.9)Mn_(0.1)SiO_4/C sample was synthesized at 600℃for 16h and a Li/Si moral ratio of 2.04. It delivered an initial capacity of 149.8mAh·g~(-1) between 1.5V and 4.8V at C/16 rate and a capacity retention ratio of 90.1% after 30 cycles. Rate capability and cycle performance at high temperature of Li_2Fe_(0.9)Mn_(0.1)SiO_4/C synthesized at the optimum conditions were also studied. Cycle performance become worse with increasing the discharge rate, electrochemical performance of Li_2Fe_(0.9)Mn_(0.1)SiO_4/C at high temperature were markedly improved. It showed a flat potential plateau and the discharge capacity retention ratio remained 94.2% after 30 cycles.
     Li_2Fe_(0.9)Mn_(0.1)SiO_4/C with different content of sucrose and glucose were prepared. The grain size and tap density of Li_2Fe_(0.9)Mn_(0.1)SiO_4/C decreased with the increasing carbon content. Compared with Li_2Fe_(0.9)Mn_(0.1)SiO_4/C using sucrose as carbon source, that using glucose displayed smaller particles and more homogeneous distribution, the sample with 15% carbon exhibited excellent performance, with an initial discharge capacity of 154.7mAh·g~(-1) and a capacity retention rate of 92.2% after 30 cycles.
     The lithium deintercalation-intercalation kinetics of pure Li_2FeSiO_4 and modified materials were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and potential step chronoamperometry methods, and a fitting equivalent circuit diagram was built. The results further proved the modified Li_2FeSiO_4 had better electrochemical performance than the pristine one.
引文
[1]吴宇平,万春荣,姜长印.锂离子二次电池[M].北京:化学工业出版社,2002:1-240
    [2]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2002:1-143
    [3]郭炳昆,徐徽,王先友.锂离子电池[M].第一版长沙:中南大学出版社,2002:1-300
    [4]A Yamada, M Hosoya, S C Chung, et al. Olive-type cathodes achievements and problems[J]. J.Power Sources, 2003, 119(3): 232-238
    [5]郭炳昆,李新海,杨松青.化学电源-电池原理及制造技术[M].长沙:中南工业大学出版社,2000:1-260
    [6]B Scrosati. Lithium Rocking Chair Batteries: An old Concept[J]. J. Electrochem.Soc, 1992, 139(10): 2776-2781
    [7]张文.锂离子电池用负极材料[J].电池,1997,27(3):132-135
    [8]杨健,杨维芝,赵佳明.锂离子电池的应用开发[J].电池工业,2000,5(1):31-36
    [9]D W Murphy, J Broodhead, B C Steel, et al. Materials for advanced batteries[M]. Newyork: Plenum Press, 1980: 145-150
    [10]徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性[J].电源技术,2000,14(5):295-297
    [11]M Wakihara. Recent developments in lithium ion batteries[J]. Materials Science,2001, 33(4): 109-134
    [12]M C Smart, B V Ratnakumar, S Surampili, et al. Irreversible capacities of graphite in low temperature electrolytes for lithium-ion battery [J]. J. Electrochem. Soc, 1999,146(11): 3963-3969
    [13]J L Sudwoth. The solid/nickel chloride battery[J]. J. Power Sources, 2001,100(1-2): 149-163
    [14]任学佑.锂离子电池及其发展全景[J].电池,2000,30(1):36-38
    [15]M Eudo, C Kim, K Nishimura. Recent development of carbon materials for Li-ion batteries[J]. Carbon, 2000, 138(2): 183-197
    [16]D Huang. Solid solution: New cathodes for next generation lithium ion batteries[J].Advanced Battery Technology, 1998, 11(2): 23-27
    [17]张胜利,余仲宝,韩周群.锂离子电池的研究与进展[J].化学进展,1998,10(1):85-94
    [18]廖春发,郭守玉,陈辉煌,等.锂离子电池正极材料的制备研究现状[J].江西有色金属,2003,17(2):34-38
    [19]郑雪萍,刘胜林,曲选辉.锂离子电池正极材料的研究现状[J].稀有金属与硬质合金,2005,33(3):42-46
    [20]Y X Li, C Y Jiang, C RWan, et al. Research and development status lithium-ion battery[J]. China international battery fair, 1999, 99(6): 202-226
    [21]K Mizushima, P C Jones, P J Wiseman. Li_xCoO_2(0    [22]J A kimoto, Y Gotoh, Y Oosawa, et al. Synthesis an structure refinement of LiCoO_2 single crystals[J]. J.Solid Stat Chemistry, 1998, 4(1): 298-302
    [23]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94
    [24]A Lundblad, B Bergman. Synthesis of LiCoO_2 starting from carbonate precursors:Ⅰ The reaction mechanisms[J]. Solid State Ionics, 1997, 96(3): 173-181
    [25]A Lundblad, B Bergman. Synthesis of LiCoO_2 starting from carbonate precursors:Ⅱ Influence of calcinations conditions and leaching[J]. Solid State Ionics, 1997,96(5): 183-193
    [26]夏熙,努燕娜,郭再萍.低热固相反应法制备LiCoO_2的研究[J].高等学校化学学报,1999,20(12):1847-1849
    [27]H Tukaoto, A R West. Electronic conductivity of LiCoO_2 and its enhancement by magnesium doping[J]. J. Electrochemical Society, 2002, 144(9): 3164-3168
    [28]C H Han, Y S Hong, C M Park, et al. Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten salt synthesis using the eutectic mixture of LiCl-LiCO_3[J]. J. Power Sources, 2001, 92(4): 95-101
    [29]S G Kang, K Y S Ryu. Electrochemical and structural properties of HT-LiCoO_2 and HT-LiCoO_2 prepared by citrate sol-gel method[J]. Solid State Ionics, 1999, 120(5):155-161
    [30]Z S Peng, C R Wan, C Y Jiang. Synthesis by sol-gel process and characterization of LiCoO_2 cathode materials[J]. J. Power Sources, 1998, 72(4): 215-220
    [31]E D Jeong, M S Won, Y B Shim. Cathodic properties of lithium-ion secondary battery using LiCoO_2 prepared by a complex formation reaction[J]. J. Power Sources, 1998, 70(2): 70-77
    [32]M YOshio, H Tanaka, K Tomlnga. Synthesis of LiCoO_2 from cobalt-organic acid complex and its electrode behavior in a lithium secondary [J]. J. Power Sources, 1992, 40(3):347-353
    [33]B Garcia, J Farcy, J P Perelar. Low temperature cobalt oxide as rechargeable cathode material of lithium batteries [J]. J. Power Sources, 1995, 54(2): 373-377
    [34]B Garcia, J Farcy, J P Perelar, et al. Preparation and electrochemical properties of low temperature crystallized LiCoO_2 [J]. J. Electrochemical Society, 1998, 145(7):1179-1184
    [35]S T Myung, N Kumagai, S Komba, et al. Preparation and electrochemical characterization of LiCoO_2 by the emulsion drying method[J]. Journal of Applied Electrochemistry, 2000, 30(2): 1081-1085
    [36]H W Yan, X J Huang, H L Li, et al. Electrochemical study on LiCoO_2 synthesized by microwave energy [J]. Solid State Ionics, 1998: 113(5): 11-15
    [37]杨书延,贾俊华,陈红军.微波-高分子网络法合成微米级LiCoO_2[J].电源技术,2001,25(6):410-412
    [38]H D Seong, M Chun. Synthesis of lithium-cobalt oxide nanparticles by flame spray pyrolysis[J]. Aerosol Sci. Tech., 2004, 38(10): 1027-1032
    [39]J Y Ah, N K Soo, Y Y Soo, et al. Fabrication and electrochemical characterization of LiCoO_2 cathode power by mechanochemical process[J]. J. Electrochemical Society., 2004, 151(11): A1870-A1873
    [40]G G Amatuucci, J M Tarascon, M R Palacin, et al. Synthesis of electrochemically active LiCoO_2 and LiNiO_2 at 100℃[J]. Solid State Ionics, 1996, 84(4): 169-180
    [41]盐时建,田文怀,其鲁.锂离子电池正极材料钴酸锂近期研制进展[J].兵器材料科学与工程,2005,28(1):56-61
    [42]魏晓,韩高荣.锂离子电池正极材料研究进展以及水热法制备LiCoO_2超细粉体[J].材料科学与工程学报,2006,24(1):118-123
    [43]李普良,徐舜,习小明.锂离子电池正极材料LiCoO_2合成方法及其掺杂研究进展[J].矿冶工程,2004,24(1):84-88
    [44]刘立君.锂离子电池正极材料研究:[博士学位论文].北京:中国科学院物理研究所,2003:48-50
    [45]吴宇平,方世壁,刘世炎.锂离子正极材料氧化钴锂的进展[J].电池,1997,21(5):208-209
    [46]M E Spahr, P Novak, B Schnyder, et al. Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials [J]. J.Electrochem.Soc, 1998, 145(4): 1113-1121
    [47]T Ohzuku, A Vede, M Nagayama. Electrochemistry and structural chemistry of LiNiO_2 for 4 Volt Secondary lithium cells [J]. J. Electrochem. Soc., 1996, 140(7):1862-1869
    [48]K Kubo, M Fujiwara, S Yanana, et al. Synthesis and electrochemical properties for LiNiO_2 substituted by other elements [J]. J. Power Sources, 1997,68(6): 553-557
    [49] M Broussely, F Perton, J Labat. Li/Li_xNiO_2 and rechargeable system: comparative study and performance of practical cells[J]. J. Power Sources, 1993, 43(3): 209-216
    [50]Z H Lu, X J Huang, H Huang, et al. The phase transition and the optical synthesis temperature of LiNiO_2[J]. Solid State Ionics, 1993, 120(7): 103-107
    [51]S J Yamada, M Fujiwara, M Kanda. Synthesis and properties of LiNiO_2 as cathode material for secondary batteries [J]. J. Power Sources, 1995, 54(2): 209-213
    [52]D Larcher, M R Palacin. Low temperature synthesis of LiNiO_2 reaction mechanism,stability, and electrochemical properties[J]. J. Electrochem. Soc., 1997, 114(12):4226-4236
    [53]G X Wang, S Zhong, D H Bradhrust, et al. LiAl_δNi_(1-δ)O_2 solid solutions cathodic material for rechargeable lithium batteries[J]. Solid State Ionics, 1999, 116(1):271-277
    [54]T Ohuzuku, A Ueda, M Kouguchi. Synthesis and characterization of LiAl_(1/4)Ni_(3/4)O_2 for lithium ion batteries [J]. J. Electrochem. Soc, 1995, 142(12): 4033-4039
    [55]J Kim, K Amine. A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi_(1-x)M_xO_2 (M=Cu~(2+), Al~(3+) and Ti~(4+))[J]. J. Electrochem.Soc., 2002, 104(3): 33-39
    [56]曹辉,陈为亮,张传福.锂离子电池正极材料锂镍氧的研究进展[J].电池工业,2003,8(1):31-35
    [57]高原,顾大明,史鹏飞.锂离子电池正极材料LiNiO_2的研究进展[J].电池,2005,35(6):471-473
    [58]J Cho, T Kim, Y J Kim, et al. High-performance ZrO_2 coated LiNiO_2 cathode material[J]. Electrochem Solid State Lett, 2001, 4(10): 159-161
    [59]C C Chang, P N kumta. Particulate sol-gel synthesis and electrochemical characterization of LiMO_2 (M=Ni, Ni_(0.75)Co_(0.25)) powders[J]. J. Power Sources, 1998, 75(1):44-45
    [60]刘兴泉,刘培送,陈召勇.锂离子电池正极材料LiMn_2O_4的合成及电化学性能研究[J].功能材料,2001,32(2):178-180
    [61]Y Xia, M Yoshio. Optimization of spinel Li_(1+x)Mn_(2-Y)O_4 as 4V Li-cell cathode in terms of Li-Mn-O phase diagram[J]. J. Electrochemical Society, 1997, 114(2):4186-4197
    [62]Y S Lee, M Yoshio. Unique aluminum effect of LiAl_xMn_(2-x)O_4 material in the 3V region[J]. J. Electrochemical and Solid-state letters, 2001, 4(5): A49-A51
    [63]刘韩星,周振平,赵世玺.Li-Mn-O系电极材料的微波合成[J].物理化学学报,2001,17(8):702-707
    [64]W Liu, G C Fareington, F Chaput, et al. Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode materials prepared by the Pechini process[J]. J.Electrochem. Soc, 1996, 143(4): 879-884
    [65]赵铭妹,张国范,瞿玉春.锂离子蓄电池正极材料尖晶石型锰酸锂的制备[J].电源技术,2001,25(3):246-250
    [66]X Qiu, X Sun, W Shen, et al. Spinel Li_(1+x)Mn_(2-Y)O_4 synthesized by co-precipitation as cathodes for lithium ion batteries[J]. Solid State Ionics, 1997, 93(1): 335-339
    [67]G G Amatucci, N Pereira, T Zheng, et al. Enhancement of electrochemical properties of LiMn_2O_4 through chemical substitution [J]. J. Power Sources, 1999,39(5): 81-82
    [68]郑鸿鹤,徐仲榆.影响LiMn_2O_4正极材料的容量衰退的主要因素[J].电池,2001,31(3):119-122
    [69]R J Gummow, A D Kock, M M Thackeray. Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide(spinel) cells[J]. Solid State Ionics, 1994, 69(1): 59-67
    [70]A D Robertson, S H Lu, W F Aerill, et al. M~(3+) modified LiMn_2O_4 spinel intercalation cathodes. I. Admetal effects on morphology and electrochemical performance[J]. J. Electrochem. Soc., 1997, 144(10): 3500-3505
    [71]G G Amatucci, A Blyra, C Sigala, et al. Surface treatment of Li_(1+x)Mn_(2-x)O_4 spinels for improved elevated temperature performance[J]. Solid State Ionics, 1997, 104(3):13-25
    [72]Park S C, Han Y S, Kang Y S, et al. Electrochemical properties of LiCoO_2-coated LiMn_2O_4 prepared by solution-based chemical process[J]. J. Electrochem. Soc.,2001, 148(6): A680-A686
    [73]卢雷,吕东生,周豪杰,等.层状LiMnO_2的结构与改性研究进展[J].电池,2006,36(1):69-70
    
    [74] A R Armstrong, P G Bruce. Synthesis of layer LiMnO_2 as electrode for rechargeable lithium batteries[J]. Nature, 1996, 381(4): 499-500
    [75]郭云霞,梅天庆.层状锰酸锂正极材料的掺杂改性及性能[J].功能材料,2007,38(4):1398-1400
    [76]A R Armstrong, R Gitzendanner, P G Bruce, et al. The intercalation compound Li(Mn_(0.9)Co_(0.1))O_2 as a positive electrode for rechargeable lithium batteries[J]. J.Electrochemical Society, 1998, 3(1): 1833-1834
    [77]Y S Lee, S Sato, Y K Sun, et al. A new type of orthorhombic LiFeO_2 with advanced battery performance and its structural change during cycling[J]. Nature Materials, 2003, 119(1): 251-259
    [78]A K Padhi, K S Najunda. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochemical Society, 1997, 144(2):1188-1194
    [79]SY Chung, B Jasont, Y M Chiang. Electronical conductive phospho-olivines as lithium storage electrodes[J]. Nature materials, 2002, 10(1): 123-128
    [80]A S Anderson, B Kalska, L Haggstrom, et al. Lithium extraction/insertion in LiFePO_4: an X-ray diffraction and Mossbauser spectroscopy study[J]. Solid State Ionics, 2002, 5(5): A95-A98
    [81]AS Anderson, J O Thomas. The source of first-cycle capacity loss in LiFePO_4[J]. J.Electrochemical Society, 2001, 97(5): 498-502
    [82]施志聪,李晨,杨勇.LiFePO_4新型正极材料电化学性能的研究[J].电化学,2003,9(1):9-14
    [83]J Tarascon, M Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature Materials, 2001, 414(5): 359-367
    [84]M Takahashi, S Tobishima, K Sakurai. Reaction behavior of LiFePO_4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2002, 148(6):289-289
    [85]Z H Chen, J R Dahn. Reducing carbon in LiFePO_4/C composite electrodes to maximize specific energy, volumetric energy and tap density[J]. J. Electrochem.Soc., 2002, 149(9): A1184-A1189
    [86]胡环宇,仇卫华,李发喜,等.正极材料LiFePO_4的电化学性能的改进[J].北京科技大学学报,2003,25(6):499-552
    [87]P S Herle, B Ellis, N Coombs, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Materials, 2004, (3): 1517-1521
    [88]K S Park, J T Son, H T Chung, etal. Surface modification by silver coating for improving electrochemical properties of LiFePO_4[J]. Solid State Communications, 2004,129(5):311-314
    [89]王晓琼,李新海,王志兴,等.LiFePO_4掺镍的改性研究[J].电池,2005,35(5):371-373
    [90]倪江锋,周恒辉,陈继涛,等.铬离子掺杂对LiFePO_4电化学性能的影响[J].物理化学学报,2004,20(6):582-586
    [91]张新龙,胡国荣,童汇,等.正极材料锂铁(锰)硅氧化物的研究进展[J].电源技术,2008,32(2):128-131
    [92]ANyten, AAbouimrane, MAramd. Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material [J]. Electrochemistry Communications, 2005,7(2): 156-160
    [93]K Zaghib, A Salah, N Ravet, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate[J]. J. Power Sources, 2006, 160(2):1381-1386
    [94]AKPadhi, K S Nanjundaswa, CMasqyelier, et al. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates[J]. J. Electrochem. Soc, 1997, 144(5):1609-1702
    [95]P Larsson, A Rajeen, A Nyten, etal. An ab initio study of the Li-battery cathode material Li_2FeSiO_4 [J]. Electrochemistry Communications, 2006, 8(5): 797-800
    [96]R Domink, D E Conte, D Hanzel. Impact of synthesis conditions on the structure and performance of Li_2FeSiO_4 [J]. J. Power Sources, 2008, 178(2): 842-847
    [97]Z L Gong, Y X Li, Y Yang. Synthesis and characterization of Li_2MnxFe_(1-x)SiO_4 as a cathode material for Lithium-ion batteries[J]. Electrochemical and Solid-state Letters, 2006, 9(12): A542-A544
    [98]Z L Gong, Y X Li, Y Yang. Nanostructured Li_2FeSiO_4 electrode material synthesized through hydrothermal-assisted sol-gel process[J]. Electrochemical and Solid-state Letters, 2008, 11(5): A60-A63
    [100]R Domink, M bele, M Gaberscek. Structure and electrochemical performance of Li_2MnSiO_4 and Li_2FeSiO_4 as potential Li-battery cathode materials[J]. Electrochemistry Communications, 2006, 8(2): 217-222
    [101]Deyu Wang, X D Wu, Z X Wang, et al. Cracking causing cycliclnstability of LiFePO_4 cathode material[J]. J. Power Sources, 2005, 140(1): 125-128
    [102]S Y Chung, J T Blocking, Y M Chiang. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat. Mater, 2002, 1(2): 123-128
    [103]王德宇,王兆翔,李泓,等.LiFePO_4铁位掺杂的改性研究[C].苏州:第十二 届中国固态离子学学术会议论文集,2004:113-114
    [104]闵新民,张文芹,许德华.LiFePO_4系列电池材料的电子结构与性能研究[J].化学与生物工程,2005,22(4):38-39
    [105]张宝.锂离子电池正极材料LiFePO_4[博士学位论文].长沙:中南大学,2007:35-55
    [106]胡辉,高艳阳.低热固相法制备纳米氧化镍[J].应用化工,2003,32(5):30-32
    [107]A Kokal, R Dominko, G Mali. Beyond one-electron reaction in Li cathode materials: designing Li_2Mn_xFe_(1-x)SiO_4[J]. Chem Mater, 2007, 19(15): 3633-3638
    [108]M E Dompablo, M Armand, J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li_2MSiO_4 system (M = Fe, Mn, Co, Ni)[J]. Electrochemistry Communications, 2006, 8(8): 1292-1298
    [109]A Nyten, S Kamali, L Haggstrom, et al. The lithium extraction/insertion mechanism in Li_2FeSiO_4[J]. J. Material Chemistry, 2006, 16(3): 2266-2272
    [110]A S Andersson, J O Thomas. The source of first-cycle capacity loss in LiFePO_4[J]. J. Power Sources, 2001, 97(5): 498-502
    [111]W Xing, J S Xue, J R Dahn. Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries [J]. J. Electrochemical Society, 1996,143(10): 3046-3052
    [112]田昭武.电化学研究方法[M].北京:科学出版社,1986:4-29
    [113]谷林瑛,吕鸣祥,宋诗哲.电化学原理及应用[M].北京:化学工业出版社,1986:168-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700