大鳍鳠(Mystus macropterus Bleeker)静止代谢率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
于2001年3月至2002年1月,以由嘉陵江采集到的大鳍鳠(Mystus macropterus Bleeker)作为实验材料,采用封闭式呼吸室,分别在12.5℃,17.5℃,22.5℃,27.5℃和32.5℃水温条件下,测定了114尾鱼体(体重范围13.0—400.4g)的静止代谢率。
     主要研究结果如下:
     (1) 各水温条件下,雌、雄鱼特定代谢率之间无显著差异;在27.5℃条件下性腺为Ⅳ期的雌鱼的标准体重代谢率稍高于性腺为Ⅱ期和Ⅲ期的鱼体,但二者间的差异不显著。这表明性别和性腺发育程度对静止代谢率无显著影响。
     (2) 特定体重代谢率随温度的上升而上升,各体重组的代谢率与温度之间均呈显著的双对数直线相关;温度指数(B)随体重的增加呈现上升的趋势,协方差分析表明,回归方程的温度指数(B)间差异显著。
     (3) 大鳍鳠特定体重代谢率随体重的增加而呈降低的趋势,各水温条件下其代谢率与体重均呈双对数直线相关。协方差分析表明,各回归方程的斜率(体重指数b)之间差异不显著,截距a值差异极显著。
     (4) 回归分析表明,体重(W:kg)和温度(T:℃)对大鳍鳠的静止代谢率(Ms:mgO_2/kg/h)交互作用不显著,其相关关系为:Ms=1.320T~(1.334). W~(-0.184)。
     5) 以本研究中的大鳍鲮的平均体重值(94.5g)为标准体重,采用文献报道的南方鲇(Silurus meridionalis)和鲇鱼(Silurus asotus)的静止代谢率模型,计算了两种鱼在本实验各温度下的静止代谢率,比较分析发现大鳍鳠的代谢率分别为南方鲇和鲇鱼的1.82和1.49倍,表明大鳍鳠的代谢率高于前两种鱼。
    
     通过讨论认为:
    门)性腺发育程度和体重可能共同影响了大鳍鳍的代谢水平,因此性腺不同发育阶段
     的大鳍鳝雌鱼的代谢率差异不显著。
    p) 大鳍鳍的代谢率高于南方贴和稣鱼的代谢率是因其生态习性不同:一)大鳍鳍的
     自发活动的行为比其他两种鱼更为频繁,因而所测其静止代谢水平较高。o)本
     实验采用的是大型封闭式呼吸室,对实验鱼的日常活动的限制作用较小,而其它
     两种鱼采用的是小型流水式呼吸室,限制了鱼体在测定过程中的活动性。
From March, 2001 to January, 2002 the resting metabolic rates for 114 fish of Mystus macropterus, which were collected from Jialing River with weight ranging from 13.0g to 400.4g, were measured by a closed respirometer at the temperatures of 12.5, 17.5, 22.5 ,27.5 and 32.5, respectively.
    The results were as follows:
    (1) There was no difference the specific metabolic rates between the female and the male at each of the same temperature. Standard-weight metabolic rate in the female of IV gonad phase was slightly higher than those in the female of II and III gonad phase at 27.5, but the statistical analysis indicated that the difference was not significant. The result suggested that the effect of sex and the gonad developmental condition on the resting metabolism was no significant.
    (2) The specific weight metabolic rates increased with temperature increasing. There was double-logarithmic linear correlation significantly between specific weight metabolic rate and temperature in each of weight groups. Temperature exponent (B) in the regression equation increased with weight increasing. The covariance analysis showed that the difference between the every two temperature exponents in the equations was significant.
    (3) Specific metabolic rates decreased with weight increasing. There was double -
    
    
    logarithmic linear correlation between metabolic rate and weight at each of tested temperatures. The covariance analysis indicated that the difference was significant between the intercepts in the regression equations, but not between the slopes.
    (4) Regression analysis showed that interaction of weight (W: kg) and temperature (T:) on the resting metabolic rate (Ms: mg (O2/kg/h) was not significant. The correlation was developed as Ms= 1.320 T0.334) W0.184).
    (5) Based on the models reported the standard - weight metabolic rates of S. meridionalis and S. asotus were estimated. The metabolic rate in M. macropterus was 1.82 and 1.49 times of those in S. meridionalis and S. asotus, respectively.
    The discussions suggested:
    (1) Due to the effect of body weight on the metabolism might be brought into antagonism with that of developmental condition of the gonad, the difference between the metabolic rates in the tested fish at the different condition was insignificant.
    (2) The metabolic rate in M. macropterus was higher than that in either S. meridionalis or S. asotus could be understood on the different ecological habits among them. For example, the level of spontaneous activity in M. macropterus was higher. And the level of routine activity of the tested fish in large-scale closed respirometer in this study was higher than those of the either, which was restricted by the smaller room of respiratory chamber in the continuous-flow respirometer used in the two reported studies..
引文
王德寿,罗泉笙,1992。大鳍蠖的繁殖生物学研究,水产学报,16(1):50-59。
    王德寿,罗泉笙,1993。嘉陵江大鳍鳠的年龄和生长的研究,水生生物学报,17(2):157-165。
    王德寿,杨松林,1992。大鳍鳠的可量性状,长重关系和肥满度,西南师范大学学报,17(4):510-515。
    谢小军,孙儒泳,1991。鱼类的特殊动力作用的研究进展,水生生物学报,15(1):85-90。
    谢小军,孙儒泳,1992。南方鲇的日总代谢和特殊动力作用的能量消耗,水生生物学报。16(3):200-207。
    杨振才,谢小军,孙儒泳。1993。鱼类的活动代谢的研究进展,河北师范大学学报(3):77-80。
    杨振才,谢小军,孙儒泳。1995。鲇鱼的静止代谢及其与体重、温度和性别的关系,水生生物学报,19(4):368-372。
    周剑光,杨德国,吴国犀,王志玲,1997。大鳍鳠池塘驯化及养殖技术试验,淡水渔业,27(1):7-10。
    周仰璟,1983。大鳍鳠的生物学资料,动物学杂志,(2):39-42。
    Adams S. R. & Parsons G. R. 1998. Laboratory based measurements of swimming performance and related metabolic rates of field sampler small mouth buffalo (Ictiobus bubalus):a study of seasonal changes. Physiological Zoolog, y, 71: 350-358.
    Alexander R. M. 1967. Functional Design in fishes., Hunhinson. London.
    Alexander R. M. 1972. The energetics of vertical migration by fishes. Symp Soc Exp Bio, 26: 276-294
    Beamish F. W. H & Mookherjii P. S. 1964. Respiration of fishes with special emphasis on standard oxygen consumption. Ⅰ.Influence of weight and temperature on respiration of goldfish, Carassius auratus L. Can. J. Zool. 42:161-175.
    Beamish F. W. H., Trippel E. A., 1990. Heart increment:a static or dynamic dimension bioenergetic models.Trans. Am. Fish. Soc. 119, 649-661.
    
    
    Beamish F. W. H., 1964. Respiration of fishes with special emphasis on standard oxygen consumption.Ⅱ. Influence of weight and temperature on respiration of several species. Can. J. Zool. 42: 177-194.
    Beitz D. C., 1985. Physiological and metabolic systems important to animal growth-An overview. J. Anim. Sci, 61, 1-20.
    Benetti D. D., Brill R. W. and Kraul Jr S. A. 1995. The standard metabolic rate of dolphin fish. Journal of Fish Biology. 46, 987-996.
    Blaxter K., 1989. Energy metabolism in Animals and man, Cambridge University Press, Cambridge.
    Brafield A. E. & Llewellyn M. J., 1982. Animal Energetics, Blackie, Glasgow.
    Brafield A. E., 1985. Laboratory studies of energy budgets. In:Fish energetics, New Perspective(Tytler,P.&Calow,P.eds) pp, 257-281. Croom Helm, London.
    Brett J. R. 1971. Energetic response of salmon to temperature: a study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhychus nerka). American Zool, 11: 99-113.
    Brett J. R. 1972. The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates, Physiolo, 14, 151.
    Brett J. R. 1983. In: Aspey & Lustick eds. Behavioural Energetics, the cost of survival in Vertebrates. Colubus: Ohlo Stae Press, 29-63.
    Brett J. R.& Groves, T. D. D., 1979, Physiological energetics. In; Fish Physiology (Hoar W.S., Randall, D.J. & Brett, J. R. eds) Vol 8, pp. 279-352. Academic press, New York.
    Brill R. W. 1979. The effect of body size on the standard metabolic rate of skipjack tuna Katsuwonus pelamis. Fishery Bulletin, U. S. 79,494-498.
    Brill R. W. 1987. On the standard metabolic rates of tropical tunas, including the effect of body size and acute ttemperature change. Fishery Bulletin, U. S. 85, 25-35.
    Burggren W. & Roberts J. 1991. Respiration and metabolism. In Environmental and Metabolic Animal Physiology (Prosser, C. L., ed. ), pp, 353-435. New York: wiley-Liss.
    Calow P., 1985. Adaptive aspects of energy allocation. In Fish Energetics: New Pespective, pp: 13-31. Croom. Helm, London.
    
    
    Carter C. G. & Brafield A. E. 1992. The bioenergetics of grass carp, Ctenopharygodon idella (val): the influence on nitrogenous excretion. J. Fish. Biol, 41: 533-543.
    Chipps S. R., Clapp D. F. and Wahl, D. H., 2000. Variation in routine metabolism of juvenile muskellunge: evidence for seasonal metabolic compensation in fishes. J. Fish Biol. 56,311-318.
    Cui Y. & Wootton R. T, 1988. Pattern of energy allocation in the minnow, phoxinus phoxinus (L) Func.Ecol. 2; 57-62.
    Cui Y. 1987. Bioenergetics and growth of a teleost phoxinus phoxinus (Cyprinidae) ph.D thesis, Univ. College of Wales.Aberystwyth.
    Cui, Y. & Liu, J.,1990. Comparation of energy budget among six teleosts-Ⅱ. Metabolic rate. Comp Biochm Physiol 97A, 169-174.
    Cutts C. J., Metcalfe N. B. & Taylor A. C.,1998. Aggression and growth depression in juvenile Atlantic Salmon: the consequences of individual variation in SMR. Journal of Fish Biology, 52, 1026-1037
    De Boeck G., Borger R.,Van der Linden A. & Blust R. 1997. Effect of sublether copper exposure on musle energy metabolism of common carp, measured by 31P-NMRs. Envirrronmental Toxicology and Chemistry 16, 676-684.
    De boeck G., De Smet H. & Blust R. 1995 The effect of sublethal levels of copper on oxygen consumption and ammonia excretion in the common carp, Cyprinus carpio. Aquatic Toxicology. 32, 127-141.
    De Boeck G.,Vlaeminck A., Van Der linder .A. and Blust R., 2000. Salt stress and resistance to hypoxic chanllenges in the common carp (Cyprinus carpio L.) J. Fish. Biol, 57, 761-776.
    Degani G., Lee-Gallagher M.1985. The relationship between growth ,food conversion and oxygen consumption in developed and undeveloped American eels, Anguilla rostrata Le Seueur. Journal of fish Biology. 27:635-641
    Dickson I.W. Kramer R. H.,1971. Factors influencing scope of rainbow trout (Salmo gairdneri) J Fish Biol. 28:587-596
    Du Preez H. H.,Mclachlan A.& Maris J. F. K. 1986. Oxygen consumption of a shallow water teleost, the spotted granter, Pomadasys commersonni(Lacepede, 1982) Comp
    
    Biochem physiol. 84A: 61-70
    Du Prezz H. H. A, Mclachlan A. and Marais J. F. K., 1988. Oxygen consumption of two nearshore marine elasmobranches, Rbinobatos annulatus (Muller & Henle, 1841) and Myliobatos aguila (Linnaeus) Comp. Biochem. Physiol. 89A: 283-294.
    Duthie G. G. & Houlihan D. F., 1982. The effect of single step and fluctuating temperature changes on oxygen consumption of flounders, Platichthys flesus (L.):lack of temperature adaption. J Fish Biol, 21: 215-226.
    Eccles D. H. 1985. The effect of temperature and mass on routine oxygen consumption in the South African cyprinid fish Barbus aeneus Burchell. J. Fish. Biol. 27: 155-165.
    Elliott J. M. 1976. The energetics of feeding ,metabolism and growth of brown trout (Salmo trutta L) in relation to body weight, water temperature and ration size. J. Annim. Ecol. 45: 923-948.
    Elliott J. M. 1979. Energetics of freshwater teleosts. Symp. Zool. Lond. 44: 29-61.
    Enders E. C. 1998. Vergleichende untersuchungen zum energiestoff wechsel der Holzmakrele, Tracharus tracharus. Diploma Thesis. University of Hamberg.
    Evans D. O. 1984. Temperature independence of the annual cycle of standard metabolism in the pumpkinseed. Transactions of the American Fisheries Socoetv. 113, 494-512.
    Evans D. O., 1990. Metabolic thermal compensation by rainbow trout effect on standard metabolic rate and potential usable power. Trans. Am. Fish. Soc. 119: 585-600.
    Fry F. E. J, 1957, In: Hoar & Randall eds, Fish Physiology, New York: Academic Press, 6: 1-98
    Fry F. E. J., 1971. The effect of environmental factors on the physiology of fish. In fish Physiology, Vol. 6, Hoar. W. S and Randall D. J., eds. Academic press, pp, 1-98.
    Gorden M. S., 1977. Animal Physiology: Principie and Adaptions, New York:Macmillan PubI,Coinc, 3rd edition, 436-438
    Grieshaber M. K., Kreutzer U. & Portner H. O., 1988. Critical Po2 of euryoxic animals. In Oxygen Sensing in Tissues (Acker, H, ed.), pp, 38-48. Germany Springer-Verlag.
    Jobling M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, pleuronectes platessa L. J. Fish Biol, 20:501-516.
    Jobling M. 1985. Growth. In: Fish energetics: new perspectives (Tytler & Calow eds), Press,
    
    Baltimore, Maryland: Johns Hopkins Univ, 213-230.
    Marais J. F. K. 1978. Routine oxygen consumption of Mugil cephalus.Liza dumerili and L.richardsoni at different and salinities. Mar Biol, 50: 9-16.
    Metcalfe N. B., 1998. The interaction between behaviour and physiology in determining life history patterns in Atlantic salmon(Salmo salar) Canadian Journal of Fisheries & Aquatic Sciences, 55(Supple), 93-103.
    Metcalfe N. B.,Taylor A. C. & Thorpe J. E 1995. Metabolic rate, social status and life-history strategies in Atlantic Salmon. Animal Behaviour. 49, 431-436.
    Metcalfe N. B.,Wright P.T. & Thorpe J. E. 1992. Relationships between social status otolith size at first feeding and subsequent growth in Atlantic Salmon(Salmo salar L.). Journal of Animal Ecology. 61, 585-589.
    Moser M. L. & Miller J. M., 1994. Effect of salinity fluctuation on routine metabolism of juvenile spot, Leiostomus Xanthurus. J. Fish. Biol. 45, 335-340
    Ott M. E., Heisler N. & Ultsch G. R., 1980. A reevaluation of the relationship between tempreture and the critical oxygen tension in freshwater fishes. Comparative Biochemistry and Physiology. 67A, 337-340.
    Pierce R. J., Wissing T. E. & Megrey B. A, 1981. Respiratory metabolism of gizzard shad. Trans. Am. Fish. Soc. 110: 51-55.
    Priede I. G., 1985. Metabolic scope in fishes. In Fish Energetics: New Perspectives (Tytler, P. & Calow P. eds). pp, 33-64. London: Croom Helm.
    Ross B. & L. G. Ross. 1983. The oxygen requirements of Oreocbromis niloticus under adverse conditions. In: C. M. Fishelson, ed. Proceedings of the International Symposium on Tilapia Aquaculture. Tel Aviv.
    Schmidt-Nielsen K. 1983. Animal Physiology. Cambridge Univer Press. 3rd. Edition: 598.
    Smith R. R., Rumsey G.L. & Scott M. L. 1978. Heart increment associated with dietary protein, fat, carbohydrate and complete diets in Salmonids: comparative energetic efficiency. J. Nutr., 108: 1025-1062.
    Soofiani N. M. & Hawkins A. D., 1985. Field studies of energy budgets. In Fish Energetcs: New Perspectives, pp: 283-307. London: Croom Helm.
    Ultsch G. R., Ott M. E. & Heisler N.,1980, Standard metabolic rate, critical oxygen tension,
    
    and aerobic scope for spontaneous activity for trout (salmo gairdneri) and carp (Cyprinus carpio) in acidified water. Comparative Biochemistry and Physiology. 67A, 329-335.
    Wang D S., Zhang Y. G. and Luo Q. S. 1992. Observation on the Larval development of Mystus macropterus (Bleeker): Bagridae[J].Journal of Fish Biology, 40: 371-379.
    Warren C. E. & Davis G. E., 1967. Laboratory studies on the feeding bioenergetics ad growth of fish. In: The biological basis of fresh water fish production (Gerking S.D.ed). pp, 175-214. Blackwell Sci Publ., Oxford.
    Weatherley A. H., 1972. Growth and Ecology of Fish Populations. New York. Academic Press.
    Winberg G. G.,1956. Rate of metabolism and food requirement of fishes. Fish. Res. Bd Can. Transl.Series. 194: 1960.
    Xie X. & Sun R. 1993. Pattern of energy allocation in the southern catfish Silurus meridionalis. J. Fish. Biol. 42: 197-207.
    Xie X.& Sun R.,1990. The bioenergetics of the southern catfish (Silurus meridinalis Chen). I. Resting matabolic rate as a function of body weight and temperature . Physiol.Zool. 63:1181-1195.
    Yamamoto T., Ueda H. & Higashi S.,1998. Correlation among dominance status, metabolic rate and otolith size in masu salmon. Journal of Fish Biology. 52, 281-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700