新型纤维素、甲壳素水凝胶的构建、结构和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水凝胶作为一类独特的“软”材料,具有高度溶胀性、力学强度、光学透明性、生物可降解性、生物相容性等优点,在农业、工业、生物医疗和生理卫生等领域有广泛的应用。聚合物水凝胶研究涉及到高分子物理、聚集态物理、材料科学、生命科学和医学等多学科交叉领域。纤维素和甲壳素是地球上最丰富的两种可再生资源,是未来的主要化工原料之一。本工作利用我们实验室研发的新溶剂(氢氧化钠/尿素水溶液)分别溶解纤维素和甲壳素,构建各种纤维素及甲壳素水凝胶,并通过液体/固体核磁共振碳谱(13CNMR)、红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)、示差扫描量热(DSC)、动态力学分析(DMA)、流变仪、紫外-可见光谱仪(UV)、荧光光谱仪(FL)和力学性能试验等表征水凝胶的结构和性能,并研究它们之间的构效关系,由此构建生物质基功能性水凝胶并评价它们的应用前景。
     本工作的主要创新点包括:在NaOH/尿素水体系中成功构筑优良性能的纤维素水凝胶及复合水凝胶并找出结构对功能影响的科学规律;通过引入亲水性大分子,制备出超吸水性纤维素基水凝胶,并阐明纤维素刚性链对大孔形成的作用;在纤维素网络结构中引入硒化镉/硫化锌纳米粒子构筑出纤维素/量子点荧光水凝胶;通过互穿聚合物网络技术以及两性生物大分子复合分别构建温度、pH和盐敏感型智能水凝胶;通过水体系低温溶解甲壳素,成功创建甲壳素及其杂化水凝胶。
     本论文的主要研究内容和结论包括以下十部分。
     首先,纤维素溶解在预冷的氢氧化钠/尿素水溶液中形成透明的溶液,以环氧氯丙烷为交联剂,得到一系列纤维素水凝胶。水凝胶的光学透明性和溶胀率随纤维素浓度增加而降低,但再溶胀和储能模量则增加。通过加热交联的纤维素水凝胶具有更好的光学透明性,高平衡溶胀率和再溶胀率。然而,经过冷冻处理的纤维素水凝胶则具有较快的再溶胀速度和较高的力学性能。因为冷冻能增加分子间氢键作用力,导致力学性能增加。
     基于聚乙烯醇在冷冻/解冻过程中氢键增强的特性,制备出纤维素/聚乙烯醇物理水凝胶。通过冷冻/解冻循环法构建的纤维素/聚乙二醇物理水凝胶具有紧密的结构,并表现很强的分子间相互作用导致其力学强度很高。然而,在化学水凝胶中,纤维素和聚乙烯醇原有的紧密堆积链结构明显减少,由此表现出高溶胀和高吸水率。
     首次将低分子量的聚乙二醇引入纤维素网络结构,制备出高强度纤维素/聚乙二醇复合水凝胶。与纯纤维素水凝胶的力学性能相比,纤维素/聚乙二醇复合水凝胶的力学强度可以提高上百倍。DMA和DSC的实验结果证明聚乙二醇有力地破坏水凝胶中纤维素的分子间氢键,同时它与纤维素分子形成新的氢键配体,明显改善材料的相容性和力学性能。SEM和TEM的结果示出了复合水凝胶内部的多孔形貌,且孔的尺寸为纳米级。这类排列紧密的小孔结构使复合水凝胶的拉伸强度和压缩强度都高达几兆帕。
     在氢氧化钠/尿素水体系中,通过环氧氯丙烷交联,成功制备纤维素-海藻酸大孔水凝胶。SEM、DMA和溶胀测试结果显示这类水凝胶具有均匀的大孔结构、良好的力学强度和很高的溶胀率。这种复合水凝胶中,海藻酸大分子贡献于吸收大量的水导致水凝胶孔尺寸和溶胀率明显上升。半刚性链的纤维素主要起支撑大孔孔壁的作用。本工作通过将刚性和高亲水性天然高分子结合在一起,为构建大孔径水凝胶提供了简便而有效的新途径。
     利用纤维素为水凝胶网络的支撑骨架,通过非共价键力引入高亲水性羧甲基纤维素制备出新型纤维素水凝胶。其平衡溶胀率可达到1000g/g,是一种超吸水性凝胶。纤维素-羧甲基纤维素水凝胶具有智能行为,它们在无机盐水溶液、生理盐水、合成尿中表现出敏感的溶胀和收缩行为。该类水凝胶具有智能溶胀、超吸水性、以及对蛋白质控制释放的能力。
     基于水溶性量子点的亲水性将其均匀分散在纤维素溶液中,然后交联纤维素大分子得到无机/有机杂化水凝胶。在交联过程,水溶性量子点表面配体(酰胺键)水解断裂导致聚丙烯酸和辛胺脱离量子点,从而量子点由亲水性转变为疏水性。由于疏水性量子点与纤维素骨架之间相互作用明显大于它与水之间的作用力,从而固定在纤维素基质中。纤维素骨架结构不仅固定量子点,而且保护它的结构,在紫外光下呈现出从绿到红各种荧光色彩。这种杂化水凝胶具有良好的光学和力学性能,并且在荧光免疫分析和生物标记技术等领域具有应用前景。
     由纤维素和聚(N-异丙基丙烯酰胺)通过互穿聚合物网络技术(IPN)成功构筑出新型温敏性双网络水凝胶。纤维素作为第一层网络结构,聚(N-异丙基丙烯酰胺)作为第二层网络结构,它们在IPN水凝胶中表现出很好的相容性以及均匀的结构和形貌。FTIR和固体13CNMR的结果证明第一层网络和第二层网络的形成是相互独立的,它们之间不存在任何化学键,但两者之间存在很强的氢键相互作用。这类IPN水凝胶表现出均匀的多孔结构、高力学强度和温度敏感性。互穿聚合物网络水凝胶中纤维素对提高水凝胶的力学强度起重要作用,而PNIPAAm的主要贡献于温度敏感性。
     在NaOH/尿素水介质中成功合成纤维素季铵盐,并利用它和羧甲基纤维素分别作为聚阳离子和聚阴离子通过化学交联成功制备出两性水凝胶。纤维素季铵盐/羧甲基纤维素水凝胶的平衡溶胀率依赖于纤维素季铵盐和羧甲基纤维素的化学组成,可以从8.6g/g急剧增加到498g/g。因此调节纤维素季铵盐和羧甲基纤维素的质量比可以得到不同平衡溶胀率的水凝胶。这些水凝胶展现出多重响应行为,包括pH和盐敏感性。其中,纤维素季铵盐主要贡献于水凝胶的pH敏感性,而羧甲基纤维素则主要贡献于水凝胶网络的伸展和溶胀率。此外,纤维素季铵盐/羧甲基纤维素水凝胶在氯化钠、氯化钙和氯化铁水溶液中的溶胀表现出智能行为,它们在生物材料领域很有应用前景。
     甲壳素通过冷冻/解冻法成功溶解在8 wt%NaOH/4 wt%尿素水溶液中,得到透明的甲壳素浓溶液。证明甲壳素在NaOH/尿素水体系低温溶解是物理过程,而且由甲壳素溶液首次制备出甲壳素水凝胶。尤其,甲壳素溶液可以迅速交联得到甲壳素化学水凝胶。这种水凝胶表现出均匀的多孔结构,可调节的溶胀率和良好力学性能。细胞试验的结果证明甲壳素水凝胶无毒、具有很好的生物相容性,这主要是由于甲壳素是节肢类动物骨骼和真菌细胞壁之中的活性成分,其本性有利于细胞生长。
     利用纳米羟基磷灰石分散在甲壳素水凝胶中成功的制备出甲壳素/纳米羟基磷灰石水凝胶。纳米羟基磷灰石的尺寸为10-30纳米,它们与甲壳素网络结构具有很好的相容性,并且保持羟基磷灰石的原有结构和性质。同时,甲壳素/纳米羟基磷灰石水凝胶具有均匀结构和良好的力学性能。尤其,COS-7细胞可以在甲壳素/纳米羟基磷灰石水凝胶材料上很好的黏附和生长,而且不显示毒性。纳米羟基磷灰石具有良好的骨诱导和骨传导性,该材料将在骨组织工程领域有应用前景。
     本论文利用我们具有自主知识产权的纤维素“绿色”新溶剂成功创建出纤维素和甲壳素水凝胶,并阐明水凝胶的结构与性能之间的关系。由此,设计出高强度水凝胶、超吸收性水凝胶、环境敏感水凝胶、发光水凝胶、甲壳素水凝胶以及无机/有机杂化水凝胶等一系列功能材料。这些基础研究结果可为环境友好的生物质水凝胶的设计、制备及应用提供重要科学依据和理论,而且可推进绿色化学进程。因此本论文具有重要的学术价值和应用前景。
Hydrogels, unique "soft" materials with high swelling ratio, mechanical strength, transparency, biodegradability, and biocompatibility, have been applied widely in agriculture, industry, biomedical materials, and physical hygiene. The research on polymer hydrogels have covered large interdisciplinary area crossing polymer physics, condensed matter, material science, life science, and medicine. Cellulose and chitin are the most abundant bioresouce on the earth, and will be the main chemical resource of the future. This work focused on construction of cellulose and chitin hydrogels by using NaOH/urea aqueous solution developed in our group. The structure, properties, and structure-activity relationship of hydrogels were characterized by liquid/solid state 13CNMR,、Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), rheological measurements, dynamic mechanical analysis (DMA) thermogravimetric analysis (TGA), UV-vis spectroscopy(UV), photoluminescence spectra (PL) and mechanical testing. The correlation of structure to properties was studied, and biobased functional hydrogels were constructed to evaluate their potential applications.
     The innovation of this work was as follows:cellulose hydrogels and composite hydrogel with excellent properties were fabricated successfully in NaOH/urea aqueous solution. Superabsorbent hydrogels were constructed by introducing high hydrophilic polymers into hydrogel networks, and the effect of cellulose stiff chains were clarified. Cellulose/quantum dots (QDs) hydrogels were prepared by embedding CdSe/ZnS nanoparticles in cellulose matrices. By using IPN technique or cross-linking amphoteric cellulose derivatives, a series of stimuli-responsive hydrogels were fabricated. Chitin was dissolved in NaOH/urea aqueous solution, and chitin hydrogels (hybrid hydrogels) were prepared.
     The primary content and conclusion of this work can be divided into ten parts.
     Firstly, transparent hydrogels have been synthesized from cellulose in NaOH/urea aqueous solutions by using ECH as crosslinker. With the increase of the cellulose concentration, the transparency and equilibrium swelling ratio of the hydrogels decreased, while the reswelling water uptake and the storage modulus increased. Cellulose hydrogels prepared by heating displayed better light transmittance, higher equilibrium swelling ratios, higher water uptakes and relatively weaker mechanical strength. However, Cellulose hydrogels prepared by freezing method had faster swelling rate and higher mechanical strength.
     The cellulose/PVA hydrogels prepared by freezing/throwing method had dense structure and exhibited strong interaction between cellulose and PVA, high strength and storage modulus. However, cellulose/PVA hydrogels prepared by chemical cross-linking with ECH had good swelling ratio and high water uptake, due to cross-linking reaction destroyed the crystallization of polymer chains.
     Cellulose/poly(ethyl glycol) (PEG) hydrogels were fabricated by introducing low molecular weight PEG into cellulose hydrogel network. These hydrogels showed excellent mechanical properties, which was hundredfold of cellulose hydrogels. DMA and DSC results indicated that the hydrogen bonds of cellulose were destroyed by PEG and new hydrogen bonds formed between cellulose and PEG. SEM and TEM results revealed that cellulose/PEG hydrogels had nanoporous morphology, leading to the high strength of hydrogels.
     Macroporous hydrogels fabricated from cellulose and sodium alginate (SA) in NaOH/urea aqueous system by chemical crosslinking had high swelling ratio. SEM and DMA results indicated that hydrogels had macroporous structure and high strength. In the hydrogels, SA played an important role on increasing pore size and swelling ratio, whereas cellulose contributed to support the pore wall. This work provided a simple way to construct macroporous hydrogels by combining of natural polymers with semi-stiff chain and high hydrophilic properties.
     Furthermore, novel superabsorbent hydrogels were fabricated by using cellulose as support and CMC as high hydrophilic polymer, which had superabsorbent capability and high swelling ratio (more than 1000). The hydrogels were sensitive to inorganic aqueous solution, physical saline water and synthetic urine, showing smart swelling and shrinking behaviors, as well as controlled release of BSA.
     Cellulose/quantum dots (QDs) hydrogels were created by cross-linking cellulose chains with epichlorohydrin containing water-soluble QDs (CdSe/ZnS) when the hydrophilic-hydrophobic transition of QDs occurred by hydrolyzing ligand. The relatively hydrophobic CdSe/ZnS core-shell nanoparticles were dispersed well and embedded firmly in the cellulose matrices through electrostatic attraction and hydrophobic interactions. The cellulose-QDs hydrogels emitted strong fluorescence with different colors of green, greenish-yellow, yellow and red, depending on the size of the CdSe/ZnS nanoparticles, and exhibited relatively high fluorescence (PL) quantum yields as well as good transparence and mechanical strength, leading to great promises in applications in the fields of fluoroimmunoassay and biological labeling.
     Novel hydrogels composed of cellulose and poly(N-isopropylacrylamide) (PNIPAAm) were created with IPN strategy. Cellulose hydrogel was employed as the first network, and PNIPAAm was polymerized/cross-kinked in presence of cellulose hydrogel as the second network, leading to the double networks structure. The two different networks exhibited good compatibility and homogeneous morphology in the IPN hydrogels. Analyses of FT-IR and solid 13CNMR supported that the first network and the second network were formed independently, and there was no chemical reaction between them. These IPN hydrogels displayed uniform porous network, good mechanical strength and temperature-sensitive properties.
     A series of ampholytic hydrogels through chemical cross-linking were constructed successfully from two cellulose-based polyelectrolytes (QC and CMC). The swelling ratios of these QC/CMC hydrogels changed dramatically from 8.6 to 498 g/g, depending on the chemical composition of QC and CMC. Therefore, ampholytic hydrogels with required swelling ratio could be obtained by fine-tuning the mass ratio of QC and CMC. These hydrogels exhibited multiple responsive behaviors, including pH and salt. CMC in the hydrogels with high CMC content contributed to the expansion of the hydrogel network, and the swelling ratio changed slightly in different pH solutions.
     Chitin power was dissolved successfully in 8 wt% NaOH/4 wt% urea aqueous solution via a freezing/thawing method to produce a transparent solution. For the first time, it has been demonstrated that the chitin dissolution was. a physical process without showing an occurrence of any derivatives and a new class of hydrogels from chitin solution was created successfully. The gelation of the chitin solution occurred rapidly in the presence of ECH, leading to the perfect formation of hydrogels. The chitin hydrogels exhibited a uniform microporous structure, smart swelling ratio, and excellent mechanical strength. In particular, the results from 293 T cell culture indicated that chitin hydrogels had non-toxicity and good biocompatibility, due to the fact of chitin is one of the active ingredients in the exoskeleton of arthropods or in the cell walls of fungi and yeasts, and its native properties benefited the growing of cells.
     Chitin/nano-hydroxyapatite (nano-HA) hydrogels were prepared by introducing hydroxyapatite nanoparticles in chitin hydrogels. Nano-HA with particle size of 10-30 nm was well dispersed in the chitin hydrogel matrix. Hybrid hydrogels exhibited uniform structure and good compressive strength. Moreover, COS-7 cells were well adhered, proliferated, and grown on the hydrogel surface, showing good biocompatibility. Due to the excellent osteoinduction effect and osteoconductivity of hydroxyapatite, these hybrid hydrogels may be promising for bone tissue engineering applications.
     This work developed a series of cellulose and chitin based hydrogels by using our "green" solvent system, and clarified the relationships between their structure and properties of hydrogel. Moreover, a series of functional materials including high strength hydrogels, superabsorbent hydrogels, stimuli-responsive hydrogels, photoluminescent hydrogel, chitin hydrogels, and inorganic/organic hybrid hydrogels were constructed and evaluated. These basic researches provided valuable information for construction, and development of biobased hydrogels with different properties from renewable resource, and are accordance with national sustainable strategy. Therefore, this thesis is highly valuable for academic study and great potential.
引文
[1]Malyshkina, N.; Niemeier, D. Future sustainability forecasting by exchange markets:basic theory and an application. Environ. Sci. Technol.2010,44, 9134-9142.
    [2]Gross, R.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297,803-807.
    [3]张俐娜,天然高分子改性材料及应用,化学工业出版社,北京,2006。
    [4]张俐娜,天然高分子科学与材料,科学出版社,北京,2007。
    [5]翁丽惠,聚合物水凝胶的表征及其智能行为研究,博士论文,武汉:武汉大学,2004。
    [6]Flory, P. J. "Principles of Polymer Chemistry", Cornell University Press, Ithaca, New York,1953.
    [7]梁松苗,高分子凝胶材料的结构、性能与仿生功能研究。博士论文,武汉:武汉大学,2007。
    [8]Lee, K. Y.; Mooney, D. J. Hydrogels for Tissue Engineering. Chem. Rev.2001, 101,1869-1879.
    [9]Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002,54,3-12.
    [10]Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine:from molecular principles to bionanotechnology. Adv. Mater.2006, 18,1345-1360.
    [11]Jeong, B.; Kim, S. W.; Bae, Y. H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev.2002,54,37-51.
    [12]Liao, X.; Chen, G.; Liu, X.; Chen, W.; Chen, F.; Jiang, M. Photoresponsive pseudopolyrotaxane hydrogels baed on competition of host-guest interactions. Angew. Chem. Int. Ed.2010,49,4409-4413.
    [13]Kopecek, J. Hyrogels:from soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. Part A:Polym. Chem.2009,47,5929-5946.
    [14]Calvert, P. Hydrogels for soft machines. Adv. Mater.2009,21,743-756.
    [15]Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev.2001,53,321-339.
    [16]Yoon, J. A.; Bencherif, S. A.; Aksak, B.; Kim, E. K.; Kowalewski, T.; Oh, J. K. Matyjaszewski, K. Thermoresponsive hydrogel scaffolds with tailored hydrophilic pores. Chem. Asian J.2011,6,128-136.
    [17]Meid, J.; Friedrich, T.; Tieke, B.; Lindner, P.; Richtering, W. Composite hydrogels with temperature sensitive heterogeneities:influence of gel matrix on the volume phase transition of embedded poly(N-isopropylacrylamide) microgels. Phys. Chem. Chem. Phys.2011,13,3039-3047.
    [18]Chen, Y.; Pang, X. H.; Dong, C. M. Dual stimuli-responsive supramolecular polypeptide based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv. Funct. Mater.2010,20,579-586.
    [19]Dadsetan, M.; Liu, Z.; Pumberger, M.; Giraldo, C. V.; Ruesink, T.; Lu, L. Yaszemski, M. J. A stimuli-responsive hydrogel for docorubicin delivery. Biomaterials 2010,31,8051-8062.
    [20]Arizaga, A.; Ibarz, G.; Pinol, R. Stimuli-responsive poly(4-vinyl pyridine) hydrogel nanoparticles:synthesis by nanoprecipitation and swelling behaviour. J. Colloid Interface Sci.2010,348,668-672.
    [21]Kozlovskaya, V.; Kharlampieva, E.; Chang, S.; Muhlbauer, R.; Tsukruk, V. V. pH-responsive layered hydrogel microcapsules as gold nanoreactors. Chem. Mater.2009,21,2158-2167.
    [22]Kwon, I. C.; Bae, Y. H.; Kim, S. W. Electrically erodible polymer gel for controlled release of drugs. Nature 1991,354,291-293.
    [23]Osada, Y.; Okuzaki, H.; Hori, H. A polymer gel with electrically driven motility. Nature 1992,355,242-244.
    [24]赵骞,多孔智能水凝胶的合成与性能,博士论文,杭州:浙江大学,2009.
    [25]1Hoare, T. R.; Kohane, D. S. Hydrogels in drug delivery:Progress and challenges. Polymer 2008,49,1993-2007.
    [26]Farris, S.; Schaich, K. M.; Liu, L.; Piergovanni, L.; Yam, K. L. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging application:a review. Trends Food Sci. Tech.2009,20,316-332.
    [27]Matsuda, A.; Sato, J.; Yasunaga, H.; Osada, Y Order-disorder transition of a hydrogel containing an n-alkyl acrylate. Macromolecules 1994,27,7695-7698.
    [28]Chen, C.; Zhu, Y.; Bao, H.; Zhao, P.; Jiang, H.; Peng, L.; Yang X.; Li, C. Solvent-assisted poly(vinyl alcohol) gelated crystalline colloidal array photonic crystals. Soft Matter 2011,7,915-921.
    [29]Mekhloufi, G.; Sanchez, C.; Renard, D.; Guillemin, S.; Hardy, J. pH-induced structural transitions during complexation and coacervation of-lactoglobulin and Acacia gum. Langmuir 2005,21,386-394.
    [30]Jo, C.; Kang, H.; Lee, N. Y.; Kwon, J. H.; Byun, M. W. Pectinand gelatin-based film:effect of gamma irradiation on the mechanical properties and biodegradation. Radiat. Phys. Chem.2005,72,745-750.
    [31]Terao, K.; Nagasawa, N.; Nishida, H.; Furusawa, K.; Mori, Y.; Yoshii, F. Reagent-free crosslinking of aqueous gelatin:manufacture and characteristics of gelatin gels irradiated with gammaray and electron beam. J. Biomater. Sci. Polym. E.2003,14,1197-1208.
    [32]李贤真,李彦锋,朱晓夏,李柏年,刘刚,高分子水凝胶材料研究进展,功能材料 2003,4,382-385.
    [33]Singh, B.; Pal, L. Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. Int. J. Biol. Macromol 2011,48,501-510.
    [34]Makuuchi, K. Critical review of radiation processing of hydrogel and polysaccharide. Radiat. Phys. Chem.2010,267-271.
    [35]Cheng, G.; Castelletto, V.; Moulton, C. M.; Newby, G. E.; Hamley, I. W. Hydrogelation and self-assembly of fmoc-tripeptides:unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy. Langmuir 2010,26,4990-4998.
    [36]Chan, A. W.; Whitney, R. A.; Neufeld, R. J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 2009,10,609-616.
    [37]Zhao, Y. L.; Fraser Stoddart, J. Azobenzene-based light-responsive hydrogel system. Langmiur 2009,25,8442-8446.
    [38]Shepherd, J.; Parker, S. T.; Shepherd, R. F.; Gillette, M. U.; Lewis, J. A.; Nuzzo, R. G.3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv. Funct. Mater.2011,21,47-54.
    [39]Fu, S. Z.; Gou, G.; Gong, C. Y.; Zeng, S.; Liang, H.; Luo, F.; Zhang, X. N.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering.1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-Poly(ε-caprolactone)-poly (ethylene glycol) hydrogel nanocomposites. J. Phys. Chem. B 2009,113, 16518-16525.
    [40]Wiedemair, J.; Serpe, M. J.; Kim, J.; Masson, J. F.; Lyon, L. A.; Mizaikoff, Bo.; Kranz, C. In-situ AFM studies of the phase-transition behavior of single thermoresponsive hydrogel particles. Langmuir 2007,23,130-137
    [41]Yan, H.; Saiani, A.; Gough, J. E.; Miller, A. F. Thermoreversible protein hydrogel as cell scaffold. Biomacromolecules 2006,7,2776-2782.
    [42]Ma, D.; Tu, K.; Zhang, L. M. Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Biomacromolecules 2010,11,2204-2212.
    [43]Xia, Y.; Guo, T.; Song, M.; Zhang, B.; Zhang, B. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules 2005,6,2601-2606.
    [44]Dai, H.; Chen, Q.; Qin, H.; Guan, Y.; Shen, D.; Hua, Y.; Tang, Y.; X. A temperature compolymer hydrogel in controlled drug delivery. Macromolecules 2006,39,6584-6589.
    [45]Wang, J.; Satoh, M. Water properties in a novel thermoswelling poly(vinyl alcohol) derivative hydrogel as studied by nuclear magnetic resonance and fourier transform infrared spectroscopy. Langmuir 2010,26,13607-13613.
    [46]Ma, Z.; Nelson, D. M.; Hong, Y.; Wangner, W. R. Thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability. Biomacromolecules 2010,11,1873-1881.
    [47]Johnson, E. K.; Adams, D. J.; Cameron, P. J. Directed elf-asembly of dipeptides to form ultrathin hydrogel membranes. J. Am. Chem. Soc.2010,132,5130-5136
    [48]Hule, R. A.; Nagarkar, R. P.; Hammouda, B.; Schneider, J. P.; Pochan, D. J. Dependence of self-assembled petide hydrogel network structure on local fibril nanostructure. Macromolecules 2009,42,7137-7145.
    [49]Junk, M. J.; Berger, R.; Jonas, U. Atomic force spectroscopy of thermoresponsive photo-cross-linked hydrogel films. Langmuir 2010,26,7262-7269.
    [50]Hemingway, M. G.; Gupta, R. B.; Elton, D. J. Hydrogel nanopowder production by inverse-miniemulsion polymerization and supercritical drying. Ind. Eng. Chem. Res.2010,49,10094-10099.
    [51]Hong, J. S.; Stavis, S. M.; DePaoli Lacerda, S. H.; Locascio, L. E.; Raghavan, S. R.; Gaitan, M. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir 2010,26,11581-11588.
    [52]Sun, S.; Hu, J.; Tang, H.; Wu, P. Chain collapse and revival thermodynamics of poly(N-isopropylacrylamide) hydrogel. J. Phys. Chem. B 2010,114,9761-9770.
    [53]Clapper, J. D.; Pearce, M. E.; Guymon, C. A.; Salem, A. K. Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications. Biomacromolecules 2008,9,1188-1194.
    [54]Winter, H. H.; Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at gel point. J. Rheol.1986,30,367-383.
    [55]Liu, X.; Qian, L.; Shu, T.; Tong, Z. Rheology characterization of sol-gel transition in aqueous alginate solution induced by calcium cations through in situ release. Polymer 2003,44,407-412.
    [56]Kjoniksen, A. L.; Nytrom, B.; Lindman, B. Dynamic viscoelasticity of gelling and nonggelling aqueous mixtures of ethyl(hydroxyethyl)cellulose and an ionic surfactant. Macromolecules 1998,31,1852-1858.
    [57]Yan, D.; Pochan, D. J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev.2010,39,3528-3540.
    [58]Xiong, X.; Zhang, L.; Wang, Y. Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane. J. Chromatogr. A 2005,1063,71-77.
    [59]Marci, G.; Mele, G.; Palmardo, L.; Pulito, P.; Sannino, A. Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem. 2006,8,439-444.
    [60]Vinatier, C.; Gauthier, O.; Fatimi, A.; Merceron, C.; Masson, M.; Moreau, A. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytesin articular cartilage defects. Biotechnol. Bioeng.2009,102, 1259-1267.
    [61]Luo, X.; Zhang, L. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J. Hazard. Mater.2009,1-3,340-347.
    [62]Li, S.; Toprak, M. S.; Jo, Y. S.; Dobson, J.; Kim, D. K.; Muhammed, M. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO Quantum Dots and PMMA. Adv. Mater.2007,19,4347-4352.
    [63]王洪学,金春梅,王继锋,张淑华,吕殿贵,赵优臣,应用高分子吸水剂处理苗木提高干旱地造林成活率。林业科技1999,24,10-12.
    [64]赵青春,聚合物水凝胶研究进展。高分子材料科学与工程2005,21,28-32.
    [65]Kabiri, K.; Omidian, H.; Zohuriaan-Mehr, M. J.; Doroudiani, S. Superabsorbent hydrogel composites and nanocomposites:A review. Polym. Compos.2011, 277-289.
    [66]Wang, Q.; Zhang, J.; Wang, A. Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium Carbohydr. Polym.2009,78,731-737.
    [67]Balakrishnan, B.; Banerjee, R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev.2011, doi:10.1021/cr100123h
    [68]Grande, D.; Halberstadt, C.; Naughton, G.; Schwartz, R.; Manji, R., Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater. Res.1997,34,211-220.
    [69]Klein, T. J.; Rizzi, S. C.; Schrobback, K.; Reichert, J. C.; Jeon, J. E.; Crawford, R. W.; Hutmacher, D. W., Long-term effects of hydrogel properties on human chondrocyte behavior. Soft Matter 2010,6,5175-5183.
    [70]Nishimoto, S.; Takagi, M.; Wakitani, S.; Nihira, T.; Yoshida, T., Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes. J. Biosci. Bioeng.2005,100, 123-126.
    [71]Jeon, Y. H.; Choi, J. H.; Sung, J. K.; Kim, T. K.; Cho, B. C.; Chung, H. Y., Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering. J. Craniofac. Surg.2007,18,1249-1258.
    [72]Malafaya, P. B.; Silva, G. A.; Reis, R. L., Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliver. Rev.2007,59,207-233.
    [73]Kim, B. S.; Mooney, D. J., Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol.1998,16,224-230.
    [74]Chung, C.; Burdick, J. A., Engineering cartilage tissue. Adv. Drug Deliver. Rev. 2008,60,243-262.
    [75]Barbero, A.; Grogan, S.; Schafer, D.; Heberer, M.; Mainil-Varlet, P.; Martin, I., Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartilage 2004,12,476-484.
    [76]Williams, G. M.; Klein, T. J.; Sah, R. L., Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate-chondrocyte constructs. Acta Biomater.2005,1,625-633.
    [77]Ateshian GA, Hung CT. Functional properties of native articular cartilage. In: Guilak F, Butler DL, Goldstein SA, Mooney DJ, Eds. Functional tissue engineering. New York:Springer-Verlag 2003,46-68.
    [78]Steinmeyer, J.; Ackermann, B.; Raiss, R. X., Intermittent cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthr. Cartilage 1997, 5,331-341.
    [79]Parkkinen, J.; Ikonen, J.; Lammi, M.; Laakkonen, J.; Tammi, M.; Helminen, H., Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch. Biochem. Biophys.1993,300, 458-465.
    [80]Sah, R. L. Y.; Kim, Y. J.; Doong, J. Y. H.; Grodzinsky, A. J.; Plass, A. H. K.; Sandy, J. D., Biosynthetic response of cartilage explants to dynamic compression. J. Orthopaed. Res.1989,7,619-636.
    [81]Hunter, C. J.; Mouw, J. K.; Levenston, M. E., Dynamic compression of chondrocyte-seeded fibrin gels:effects on matrix accumulation and mechanical stiffness. Osteoarthr. Cartilage 2004,12,117-130.
    [82]Mauck, R. L.; Soltz, M. A.; Wang, C. C. B.; Wong, D. D.; Chao, P. H. G.; Valhmu, W. B.; Hung, C. T.; Ateshian, G. A., Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng.2000,122,252-260.
    [83]Wiseman, M.; Bader, D. L.; Reisler, T.; Lee, D. A., Passage in monolayer influences the response of chondrocytes to dynamic compression. Biorheology 2004,41,283-298.
    [84]Lee, D. A.; Noguchi, T.; Knight, M. M.; O'donnell, L.; Bentley, G.; Bader, D. L. Response of chondrocyte subpopulations cultured within unloaded and loaded agarose. J. Orthopaed. Res.1998,16,726-733.
    [85]Demarteau, O.; Wendt, D.; Braccini, A.; Jakob, M.; Sch fer, D.; Heberer, M.; Martin, I., Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem. Biophys. Res. Co.2003,310, 580-588.
    [86]Hall, A. C., Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes. J. Cell. Physiol.1999,178,197-204.
    [87]Wu, M. H.; Urban, J. P. G.; Cui, Z. F.; Cui, Z.; Xu, X., Effect of extracellular pH on matrix synthesis by chondrocytes in 3D agarose gel. Biotechnol. Progr.2007 23,430-434.
    [88]Lien, S. M.; Ko, L. Y.; Huang, T. J., Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater.2009,5,670-679.
    [89]Francis Suh, J. K.; Matthew, H. W. T., Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering:a review. Biomaterials 2000,21,2589-2598.
    [90]Homandberg, G. A.; Hui, F.; Wen, C.; Kuettner, K. E.; Williams, J. M., Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: I. In vitro. Osteoarthr. Cartilage 1997,5,309-319.
    [91]Hakansson, L.; Hallgren, R.; Venge, P., Regulation of granulocyte function by hyaluronic acid. In vitro and in vivo effects on phagocytosis, locomotion, and metabolism. J. Clin. Invest.1980,66,298-305.
    [92]Pisko, E.; Turner, R.; Soderstrom, L.; Panetti, M.; Foster, S.; Treadway, W., Inhibition of neutrophil phagocytosis and enzyme release by hyaluronic acid. Clin. Exp. Rheumatol.1983,1,41-44.
    [93]Forrester, J.; Balazs, E., Inhibition of phagocytosis by high molecular weight hyaluronate. Immunology 1980,40,435-446.
    [94]Punzi, L.; Schiavon, F.; Cavasin, F.; Ramonda, R.; Gambari, P.; Todesco, S., The influence of intra-articular hyaluronic acid on PGE2 and cAMP of synovial fluid. Clin. Exper. Rheumatol.1989,7,247-250.
    [95]Sahoo, S.; Chung, C.; Khetan, S.; Burdick, J. A. Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules 2008,9,1088-1092.
    [96]Shimazu, A.; Jikko, A.; Iwamoto, M.; Koike, T.; Yan, W.; Okada, Y.; Shinmei, M.; Nakamura, S.; Kato, Y. Effects of hyaluronic acid on the release of proteoglycan from the cell matrix in rabbit chondrocyte cultures in the presence and absence of cytokines. Arthritis Rheum.1993,36,247-253.
    [97]Morris, E. A.; Wilcon, S.; Treadwell, B. V. Inhibition of interleukin 1-mediated proteoglycan degradation in bovine articular cartilage explants by addition of sodium hyaluronate. Am. J. Vet. Res.1992,53,1977-1982.
    [98]Burdick, J. A.; Chung, C.; Jia, X.; Randolph, M. A.; Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005,6,386-391.
    [99]Na, K.; Kim, S.; Woo, D. G.; Sun, B. K.; Yang, H. N.; Chung. H. M.; Park, K. H. Synergistic effect of TGFbeta-3 on chondrogenic differentiation of rabbit chondrocytes in thermo-reversible hydrogel constructs blended with hyaluronic acid by in vivo test. J. Biotechnol.2007,128,412-422.
    [100]Bulpitt, P.; Aeschlimann, D. New strategy for chemical modification of hyaluronic acid:Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J. Biomed. Mater. Res.1999,47, 152-169.
    [101]Kubota, N.; Tatsumoto, N.; Sano, T.; Toya, K. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr. Res.2000,324,268-274.
    [102]Sashiwa, H.; Shigemasa, Y. Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr. Polym.1999,39,127-138.
    [103]Amsden, B. G.; Sukarto, A.; Knight, D. K.; Shapka, S. N. Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules 2007,8, 3758-3766.
    [104]Muzzarelli, R. A. A.; Tanfani, F.; Emanuell, M.; Mariotti, S. N-(carboxymethylidene) chitosans and N-(carboxymethyl) chitosans:Novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr. Res. 1982,107,199-214.
    [105]Murata, J.; Ohya, Y.; Ouchi, T. Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool. Carbohydr. Polym.1996, 29,69-74.
    [106]Hong, Y.; Song, H.; Gong, Y.; Mao, Z.; Gao, C.; Shen, J. Covalently crosslinked chitosan hydrogel:properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater.2007,3,23-31.
    [107]Di Martino, A.; Sittinger, M.; Risbud, M. V. Chitosan:a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005,26,5983-5990.
    [108]Lu, J. X.; Prudhommeaux, F.; Meunier, A.; Sedel, L.; Guillemin, G. Effects of chitosan on rat knee cartilages. Biomaterials 1999,20,1937-1944.
    [109]Mattioli-Belmonte, M.; Gigante, A.; Muzzarelli, R. A.; Politano, R.; De Benedittis, A.; Specchia, N.; Buffa, A.; Biagini, G.; Greco, F. N, N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med. Biol. Eng. Comput.1999,37,130-134.
    [110]Denuziere, A.; Ferrier, D.; Damour, O.; Domard, A. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes:biological properties. Biomaterials 1998,19,1275-1285.
    [111]Montembault, A.; Tahiri, K.; Korwin-Zmijowska, C.; Chevalier, X.; Corvol, M. T.; Domard, A. A material decoy of biological media based on chitosan physical hydrogels:application to cartilage tissue engineering. Biochimie 2006,88, 551-564.
    [112]Medrado, G. C. B.; Machado, C. B.; Valerio, P.; Sanches, M. D.; Goes, A. M. The effect of a chitosan"Cgelatin matrix and dexamethasone on the behavior of rabbit mesenchymal stem cells. Biomed. Mater.2006,1,155-161.
    [113]Bosnakovski, D.; Mizuno, M.; Kim, G.; Takagi, S.; Okumura, M. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels:influence of collagen type Ⅱ extracellular matrix on MSC chondrogenesis. Biotechnol. Bioeng.2006,93,1152-1163.
    [114]Ma, H. L.; Hung, S. C.; Lin, S. Y.; Chen, Y. L.; Lo, W. H. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads J. Biomed. Mater. Res., Part A 2003,64,273-281.
    [115]Mehlhorn, A. T.; Schmal, H.; Kaiser, S.; Lepski, G.; Finkenzeller, G.; Stark, G. B.; Sudkamp, N. P. Mesenchymal stem cells maintain TGF-mediated chondrogenic phenotype in alginate bead culture. Tissue Eng.2006,12, 1393-1403.
    [116]Awad, H. A.; Wickham, M. Q.; Leddy, H. A.; Gimble, J. M.; Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004,25,3211-3222.
    [117]Hannouche, D.; Terai, H.; Fuchs, J. R.; Terada, S.; Zand, S.; Nasseri, B. A.; Petite, H.; Sedel, L.; Vacanti, J. P. Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells. Tissue Eng. 2007,13,87-99.
    [118]Genes, N. G.; Rowley, J. A.; Mooney, D. J.; Bonassar, L. J. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch. Biochem. Biophys.2004,422,161-167.
    [119]Cai, X.; Lin, Y.; Ou, G.; Luo, E.; Man, Y.; Yuan, Q.; Gong, P. Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system. Cell Biol. Int.2007,31,776-783.
    [120]Bouhadir, K. H.; Lee, K. Y.; Alsberg, E.; Damm, K. L.; Anderson, K. W.; Mooney, D. J. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog.2001,17,945-950.
    [121]Normand, V.; Lootens, D. L.; Amici, E.; Plucknett, K. P.; Aymard, P. New insight into agarose gel mechanical properties. Biomacromolecules 2000,1, 730-738.
    [122]Finger, A. R.; Sargent, C. Y.; Dulaney, K. O.; Bernacki, S. H.; Loboa, E. G. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng. 2007,13,1151-1158.
    [123]Huang, C. Y.; Reuben, P. M.; D'Ippolito, G.; Schiller, P. C.; Cheung, H. S. Chondrogenesis of human bone marrow derived mesenchymal stem cells in agarose culture. Anat. Rec., Part A 2004,278,428-436.
    [124]Lee, D. A.; Salih, V.; Stockton, E. F.; Stanton, J. S.; Bentley, G. Effect of normal synovial fluid on the metabolism of articular chondrocytes in vitro. Clin. Orthop. Relat. Res.1997,342,228-238.
    [125]Mouw, J. K.; Case, N. D.; Guldberg, R. E.; Plaas, A. H.; Levenston, M. E. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr. Cartilage 2005,13,828-836.
    [126]Holmes, T. C. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol.2002,20,16-21.
    [127]Bereczky, Z.; Katona, E.; Muszbek, L. Fibrin stabilization (factor XIII), fibrin structure and thrombosis. Pathophysiol. Haemost. Thromb.2003,33,430-437.
    [128]Peretti, G M.; Xu, J. W.; Bonassar, L. J.; Kirchhoff, C. H.; Yaremchuk, M. J.; Randolph, M. A. Review of injectable cartilage engineering using fibrin gel in mice and swine models. Tissue Eng.2006,12,1151-1168.
    [129]Sidelmann, J. J.; Gram, J.; Jespersen, J.; Kluft, C. Fibrin clot formation and lysis:basic mechanisms. Semin. Thromb. Hemost.2000,26,605-618.
    [130]Kjaergard, H. K.;Weis-Fogh,U. S. Important factors influencing the strength of autologous fibrin glue; the fibrin concentration and reaction time-comparison of strength with commercial fibrin glue. Eur. Surg. Res.1994,26,273-276.
    [131]Helgerson, S. L.; Seelich, T.; DiOrio, J.; Tawil, B.; Bittner, K. M.; Spaethe, R. Encyclopedia of Biomaterials and Biomedicine Engineering; Marcel Dekker: New York,2004, p 603.
    [132]van Susante, J. L. C.; Buma, P.; Homminga, G. N.; van den Berg, W. B.; Veth, R. P. H. Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials 1998,19,2367-2374.
    [133]Fussenegger, M.; Meinhart, J.; Hobling, W.; Kullich, W.; Funk, S.; Bernatzky, G. Stabilized autologous fibrin-chondrocyte constructs for cartilage repair in vivo. Ann. Plast. Surg.2003,51,493-498.
    [134]Meinhart, J.; Fussenegger, M.; Hobling, W. Stabilization of fibrin-chondrocyte constructs for cartilage reconstruction. Ann. Plast. Surg.1999,42,673-678.
    [135]Ting, V.; Sims, C. D.; Brecht, L. E.; McCarthy, J. G.; Kasabian, A. K.; Connelly, P. R.; Elisseeff, J. H.; Gittes, G. K.; Longaker, M. T. In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann. Plast. Surg.1998,40,413-420.
    [136]Nimni, M. E.; Cheung, D.; Strates, B.; Kodama, M.; Sheikh, K. Chemically modified collagen:a natural biomaterial for tissue replacement. J. Biomed. Mater. Res.1987,21,741-771.
    [137]Hu, X.; Ma, L.; Wang, C.; Gao, C. Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF for cartilage tissue engineering. Macromol. Biosci.2009,9,1194-1201.
    [138]Freyria, A. M.; Ronziere, M. C.; Cortial, D.; Galois, L.; Hartmann, D.; Herbage, D.; Mallein-Gerin, F. Comparative phenotypic analysis of articular chondrocytes cultured within type I or type Ⅱ collagen scaffolds. Tissue Eng. Part A 2008,15, 1233-1245.
    [139]Nehrer, S.; Breinan, H. A.; Ramappa, A.; Hsu, H. P.; Minas, T.; Shortkro, S.; Sledge, C. B.; Yannas, I. V.; Spector, M. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 1998,19, 2313-2328.
    [140]Lien, S. M.; Li, W. T.; Hung, T. J. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Mater. Sci. Eng, C 2008,28,36-43.
    [141]Galois, L.; Hutasse, S.; Cortial, D.; Rousseau, C. F.; Grossin, L.; Ronziere, M. C.; Herbage, D.; Freyria, A. M. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials 2006,27,79-90.
    [142]Heymer, A.; Haddad, D.; Weber, M.; Gbureck, U; Jakob, P. M.; Eulert, J.; Noth, U. Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials 2008,29,1473-1483.
    [143]Wang, Y.; Rudym, D. D.; Walsh, A.; Abrahamsen, L.; Kim, H. J.; Kim, H. S.; Kirker-Head, C.; Kaplan, D. L. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008,29,3415-3428.
    [144]Chao, P. H.; Yodmuang, S.; Wang, X.; Sun, L.; Kaplan, D. L.; Vunjak-Novakovic, G. Silk hydrogel for cartilage tissue engineering. J. Biomed. Mater. Res., B:Appl. Biomater.2010,95,84-90.
    [145]Ayub, Z. H.; Arai, M.; Hirabayashi, K. Mechanism of the gelation of fibroin solution. Biosci. Biotechnol. Biochem.1993,57,1910-1912.
    [146]Yoo, M. K.; Kweon, H. Y.; Lee, K. G.; Lee, H. C.; Cho, C. S. Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. Int. J. Biol. Macromol.2004,34,263-270
    [147]Hanawa, T.; Watanabe, A.; Tsuchiya, T.; Ikoma, R.; Hidaka, M.; Sugihara, M. Chem. Pharm. Bull. (Tokyo) 1995,43,284.
    [148]Kim, U. J.; Park, J.; Li, C.; Jin, H. J.; Valluzzi, R.; Kaplan, D. L. Structure and properties of silk hydrogels. Biomacromolecules 2004,5,786-792.
    [149]Aoki, H.; Tomita, N.; Morita, Y.; Hattori, K.; Harada, Y.; Sonobe, M.; Wakitani, S.; Tamada, Y. Culture of chondrocytes in fibroin-hydrogel sponge. Biomed. Mater. Eng.2003,13,309-316.
    [150]Morita, Y.; Tomita, N.; Aoki, H.; Sonobe, M.; Wakitani, S.; Tamada, Y.; Suguro, T.; Ikeuchi, K. Frictional properties of regenerated cartilage in vitro. J. Biomech.2006,39,103-109.
    [151]Morita, Y.; Tomita, N.; Aoki, H.; Wakitani, S.; Tamada, Y.; Suguro, T.; Ikeuchi, K. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge. Biomed. Mater. Eng.2002,12,291-298.
    [152]Meinel, L.; Karageorgiou, V.; Fajardo, R.; Snyder, B.; Shinde-Patil, V.; Zichner, L.; Kaplan, D.; Langer, R.; Vunjak-Novakovic, G. Bone tissue engineering using human mesenchymal stem cells:effects of scaffold material and medium flow. Ann. Biomed. Eng.2004,32,112-122.
    [153]Wang, Y.; Kim, U. J.; Blasioli, D. J.; Kim, H. J.; Kaplan, D. L. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 2005,26,7082-7094.
    [154]Chen, G.; Ushida, T.; Tateishi, T. Hybrid biomaterials for tissue engineering:A preparative method for PLA or PLGA collagen hybrid sponges. Adv. Mater. 2000,12,455-457.
    [155]Chen, G.; Sato, T.; Ushida, T.; Ochiai, N.; Tateishi, T. Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng. 2004,10,323-330.
    [156]Fan, H.; Hu, Y.; Zhang, C.; Li, X.; Lv, R.; Qin, L.; Zhu, R. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 2006,27, 4573-4580.
    [157]Risbud, M.; Ringe, J.; Bhonde, R.; Sittinger, M. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue. Cell Transplant.2001,10,755-763.
    [158]Cui, Y L.; Qi, A. D.; Liu, W. G.; Wang, X. H.; Ma, D. M.; Yao, K. D. Biomimetic surface modification of poly (-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 2003,24,3859-3868.
    [159]Bryant, S. J.; Arthur, J. A.; Anseth, K. S. Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomater.2005,1,243-252.
    [160]Cho, S. H.; Oh, S. H.; Lee, J. H. Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture. J. Biomater. Sci. Polym. Ed.2005,16,933-947.
    [161]Jin, X.; Sun, Y.; Zhang, K.; Wang, J.; Shi, T.; Ju, X.; Lou, S. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 2007,28, 2994-3003.
    [162]Jha, A. K.; Malik, M. S.; Farach-Carson, M. C.; Duncan, R. L.; Jia, X. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 2010, 6,5045-5055.
    [163]Chou, C. H.; Cheng, W T.; Kuo, T. F.; Sun, J. S.; Lin, F. H.; Tsai, J. C. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-sulfate tricopolymer for articular cartilage tissue engineering:The results of real time polymerase chain reaction. J. Biomed. Mater. Res. Part A 2007,82A,757-767.
    [164]Chang, C. H.; Liu, H. C.; Lina, C. C.; Choua, C. H.; Lina, F. H. Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 2003,24,4853-4858.
    [165]Lee, J. E.; Kimb, K. E.; Kwonb, I. C.; Ahna, H. J.; Lee, S. H.; Cho, H.; Kim, H. J.; Seong, S. C.; Lee, M. C. Effects of the controlled-released TGF-[beta] 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/ glycosaminoglycan scaffold. Biomaterials 2004,25,4163-4173.
    [166]Temenoff, J. S.; Mikos, A. G. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 2000,21,2405-2412.
    [167]Hou, Q. P.; De Bank, P. A.; Shakeshe, K. M. Injectable scaffolds for tissue regeneration. J. Mater. Chem.2004,14,1915-1923
    [168]Nettles, D. L.; Vail, T. P.; Morgan, M. T.; Grinstaff, M. W.; Setton, L. A. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann. Biomed. Eng 2004,32,391-397.
    [169]Erickson, I. E.; Huang, A. H.; Sengupta, S.; Kestle, S.; Burdick, J. A.; Mauck, R. L. Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthr. Cartilage 2009,17,1639-1648.
    [170]Shu, X. Z.; Liu, Y.; Palumbo, F. S.; Luo, Y.; Prestwich, G. D. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 2004, 25,1339-1348.
    [171]Sharma, B.; Williams, C. G.; Khan, M.; Manson, P.; Elisseeff, J. H. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast. Reconstr. Surg.2007,119,112-120.
    [172]Bae, K. H.; Yoon, J. J.; Park, T. G. Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnol. Prog.2006,22,297-302.
    [173]Li, Q.; Williams, C. G.; Sun, D. D. N.; Wang, J.; Leong, K.; Elisseeff, J. H. Photocrosslinkable polysaccharides based on chondroitin sulfate. J. Biomed. Mater. Res.2004,68A,28-33.
    [174]Jeon, O.; Bouhadir, K. H.; Mansour, J. M.; Alsberg, E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009,30,2724-2734.
    [175]Lukaszczyk, J.; Smiga, M.; Jaszcz, K.; Adler, H.-J. P.; Jahne, E.; Kaczmarek, M. Evaluation of oligo(ethylene glycol) dimethacrylates effects on the properties of new biodegradable bone cement compositions. Macromol. Biosci.2005,5, 64-69.
    [176]Balakrishnan, B.; Jayakrishnan, A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 2005,26,3941-3951.
    [177]Tan, H.; Chu, C. R.; Payne, K. A.; Marra, K. G. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009,30,2499-2506.
    [178]Dausse, Y.; Grossin, L.; Miralles, G.; Pelletier, S.; Mainard, D.; Hubert, P.; Baptiste, D.; Gillet, P.; Dellacherie, E.; Netter, P.; Payan, E. Cartilage repair using new polysaccharidic biomaterials:macroscopic, histological and biochemical approaches in a rat model of cartilage defect. Osteoarthr. Cartilage 2003,11,16-28.
    [179]Kurisawa, M.; Chung, J.E.; Yang, Y. Y; Gao, S. J.; Uyama, H. Injectable biodegradable hydrogels composed of hyaluronic acid Ctyramine conjugates for drug delivery and tissue engineering. Chem. Commun.2005,34,4312-4314.
    [180]Kobayashi, S.; Uyama, H.; Kimura, S. Enzymatic polymerization. Chem. Rev. 2001,101,3793-3818.
    [181]Jin, R.; Moreira Teixeira, L. S.;Dijkstra, P. J.; Karperien, M.; van Blitterswijk, C. A.; Zhong, Z. Y.; Feijen, J. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 2009,30,2544-2551.
    [182]Ogushi, Y.; Sakai, S.; Kawakami, K. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng.2007,104,34-41.
    [183]Edgar, K. J.; Buchanan, C. M.; Debenham, J. S.; Rundquist, P. A.; Seiler, B. D.; Shelton, M. C. Advances in cellulose ester performance and application. Prog. Polym. Sci.2001,26,1605-1688.
    [184]Turbak, A. F., El-Kafrawy, A., Snyder, F. W., Auerbach, A. P. (1981). U.S. Pat. 4303252.
    [185]De Oliveira, W.; Glasser, W. G. Hydrogels from polysaccharides. I. cellulose beads for chromatographic support. J. Appl. Polym. Sci.1996,60,63-73.
    [186]Heinze, T., Dicke, R., Koschella, A., Klohr, E. A., & Koch, W. Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys.2000,201,627-631.
    [187]Otlund, A.; Lundberg, D.; Nordstierna, L.; Holmberg, K.; Nyden, M. Dissolution and gelation of cellulose in TBAF/DMSO solutions:The roles of fluoride ions and water. Biomacromolecules 2009,10,2401-2407.
    [188]Saito, H.; Sakurai, A.; Sakakibara, M.; Saga, H. Preparation and properties of transparent hydrogels. J. Appl. Polym. Sci.2003,90,3020-3025.
    [189]Fink, H. P.; Weigel, P.; Purz, H. J.; Ganster, J. Structure formation of regenerated cellulose materials from NMMO-solution. Prog. Polym. Sci.2001, 26,1473-1524.
    [190]Zhao, H.; Kwak, J.; Wang, Y.; Franz, J.; Withte, J.; Holladay, J. Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydr. Polym.2007, 67,97-103.
    [191]Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Roger, R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [192]Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-allyl-3-methylimidazolium c hloride room temperature ionic liquid:a new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005,38,8272-8277.
    [193]Zhu, S. D.; Wu, Y X.; Chen, Q. M.; Yu, Z. N.; Wang, C. W.; Jin, S. W.; Ding, Y G.; Wu, G, Dissolution of cellulose with ionic liquids and its application:a mini-review. Green Chem.2006,8,325-327.
    [194]Li, L.; Lin, Z. B.; Yang, X.; Wan, Z. Z.; Cui, S. X., A novel cellulose hydrogel prepared from its ionic liquid solution. Chinese Sci. Bull.2009,54,1622-1625.
    [195]Kadokawa, J. I.; Murakami, M. A.; Kaneko, Y., A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohyd. Res.2008,343, 769-772.
    [196]Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.; Cheng, H., Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 2008,41,9345-9351.
    [197]Cai, J.; Zhang, L., Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 2006,7,183-189.
    [198]Lue, A.; Zhang, L.; Ruan, D., Inclusion complex formation of cellulose in NaOH-thiourea aqueous system at low temperature. Macromol. Chem. Physic. 2007,208,2359-2366.
    [199]Liang, S. M.; Zhang, L. N.; Li, Y. F.; Xu, J., Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol. Chem. Physic. 2007,208,594-602.
    [200]Weng, L. H.; Zhang, L. N.; Ruan, D.; Shi, L. H.; Xu, J., Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 2004,20,2086-2093.
    [201]Kakugo, A.; Gong, J.; Osada, Y, Bacterial Cellulose Based Hydrogel for Articular Soft Tissues. Cellulose Comm.2007,14,50-54.
    [202]Bodin, A.; Concaro, S.; Brittberg, M.; Gatenholm, P., Bacterial cellulose as a potential meniscus implant. J. Tissue. Eng. Regen. M2007,1,406-408.
    [203]Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S., Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog. Polym. Sci.2001,26, 1561-1603.
    [204]Gelin, K.; Bodin, A.; Gatenholm, P.; Mihranyan, A.; Edwards, K.; Stromme, M., Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 2007,48,7623-7631.
    [205]Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J. P.; Osada, Y, Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 2008,49, 1885-1891.
    [206]Deng, J.; He, Q.; Wu, Z.; Yang, W., Using glycidyl methacrylate as cross\linking agent to prepare thermosensitive hydrogels by a novel one\step method. J. Polym. Sci. Part A:Polym. Chem.2008,46,2193-2201.
    [207]Guo, K.; Chu, C., Synthesis and characterization of novel biodegradable unsaturated poly (ester amide)/poly (ethylene glycol) diacrylate hydrogels. J. Polyme. Sci. Part A:Polym. Chem.2005,43,3932-3944.
    [208]Li, L.; Thangamathesvaran, P. M.; Yue, C. Y.; Tarn, K. C.; Hu, X.; Lam, Y C., Gel network structure of methylcellulose in water. Langmuir 2001,17, 8062-8068.
    [209]Sammon, C.; Bajwa, G.; Timmins, P.; Melia, C. D., The application of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the concentration and state of water in solutions of a thermally responsive cellulose ether during gelation. Polymer 2006,47,577-584.
    [210]Sekiguchi, Y.; Sawatari, C.; Kondo, T., A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohyd. Polym.2003,53,145-153.
    [211]Joshi, S. C.; Liang, C.; Lam, Y., Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J. Biomater. Sci. Polym. Edit.2008,19,1611-1623.
    [212]Yang, M. J.; Chen, C. H.; Lin, P. J.; Huang, C. H.; Chen, W.; Sung, H. W., Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel. Biomacromolecules 2007,8,2746-2752.
    [213]Lu, X.; Hu, Z.; Gao, J., Synthesis and light scattering study of hydroxypropyl cellulose microgels. Macromolecules 2000,33,8698-8702.
    [214]Xia, X.; Tang, S.; Lu, X.; Hu, Z., Formation and volume phase transition of hydroxypropyl cellulose microgels in salt solution. Macromolecules 2003,36, 3695-3698.
    [215]Weiss, P.; Gauthier, O.; Bouler, J. M.; Grimandi, G.; Daculsi, G, Injectable bone substitute using a hydrophilic polymer. Bone 1999,25,67S-70S.
    [216]Silva, S.; Pinto, F. V.; Antunes, F. E.; Miguel, M. G.; Sousa, J. J. S.; Pais, A. A. C. C, Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J. Colloid. Interf. Sci.2008,327,333-340.
    [217]Bourges, X.; Weiss, P.; Daculsi, G.; Legeay, G, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv. Colloid Interf. Sci.2002,99,215-228.
    [218]Trojani, C.; Weiss, P.; Michiels, J. F.; Vinatier, C.; Guicheux, J.; Daculsi, G.; Gaudray, P.; Carle, G. F.; Rochet, N., Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropyl methylcellulose hydrogel. Biomaterials 2005,26,5509-5517.
    [219]Marci, G.; Mele, G.; Palmisano, L.; Pulito, P.; Sannino, A., Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem. 2006,8,439-444.
    [220]Sannino, A.; Madaghiele, M.; Lionetto, M.; Schettino, T.; Maffezzoli, A., A cellulose based hydrogel as a potential bulking agent for hypocaloric diets:An in vitro biocompatibility study on rat intestine. J. Appl. Polym. Sci.2006,102, 1524-1530.
    [221]Sannino, A.; Esposito, A.; Rosa, A. D.; Cozzolino, A.; Ambrosio, L.; Nicolais, L., Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed. Mater. Res. A 2003,67, 1016-1024.
    [222]Kabra, B. G.; Gehrke, S. H.; Spontak, R. J., Microporous, responsive hydroxypropyl cellulose gels.1. Synthesis and microstructure. Macromolecules 1998,31,2166-2173.
    [223]Hirsch, S. G.; Spontak, R. J., Temperature-dependent property development in hydrogels derived from hydroxypropylcellulose. Polymer 2002,43,123-129.
    [224]Marsano, E.; Bianchi, E.; Sciutto, L., Microporous thermally sensitive hydrogels based on hydroxypropyl cellulose crosslinked with poly-ethyleneglicol diglycidyl ether. Polymer 2003,44,6835-6841.
    [225]Yan, L.; Shuai, Q.; Gong, X.; Gu, Q.; Yu, H., Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. Soil, Air, Water 2009,37,392-398.
    [226]Demitri, C.; Del Sole, R.; Scalera, F.; Sannino, A.; Vasapollo, G.; Maffezzoli, A.; Ambrosio, L.; Nicolais, L., Novel superabsorbent cellulose\based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci.2008,110,2453-2460.
    [227]Rosiak, J.; Ulaski, P., Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat. Phys. Chem.1999,55,139-151.
    [228]Fei, B.; Wach, R. A.; Mitomo, H.; Yoshii, F.; Kume, T., Hydrogel of biodegradable cellulose derivatives. I. Radiation\induced crosslinking of CMC. J. Appl. Polym. Sci.2000,78,278-283.
    [229]Liu, P.; Peng, J.; Li, J.; Wu, J., Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiat. Phys. Chem.2005,72, 635-638.
    [230]Wach, R. A.; Mitomo, H.; Yoshii, F.; Kume, T., Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation\induced crosslinking of CMC. JAppl. Polym. Sci.2001,81,3030-3037.
    [231]Liu, P.; Zhai, M.; Li, J.; Peng, J.; Wu, J., Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat. Phys. Chem. 2002,63,525-528.
    [232]Wach, R. A.; Mitomo, H.; Yoshii, F.; Kume, T., Hydrogel of radiation induced cross-linked hydroxypropylcellulose. Macromol. Mater. Eng.2002,287, 285-295.
    [233]Petrov, P.; Petrova, E.; Tchorbanov, B.; Tsvetanov, C. B., Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation. Polymer 2007, 48,4943-4949.
    [234]Ibrahim, S. M.; El Salmawi, K. M.; Zahran, A., Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J. Appl. Polym. Sci.2007,104,2003-2008.
    [235]Nizam, E. D.; Horia, M.; Abd AlIa, S. G.; El-Naggar, A. W. M., Swelling and drug release properties of acrylamide/carboxymethyl cellulose networks formed by gamma irradiation. Radiat. Phys. Chem.2010,79,725-730.
    [236]Trombino, S.; Cassano, R.; Bloise, E.; Muzzalupo, R.; Tavano, L.; Picci, N., Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containing trans-ferulic acid. Carbohyd. Polym.2009,75,184-188.
    [237]Bajpai, A.; Shukla, S. K.; Bhanu, S.; Kankane, S., Responsive polymers in controlled drug delivery. Prog. Polym. Sci.2008,33,1088-1118.
    [238]Long, D. D.; Van Luyen, D., Chitosan-carboxymethylcellulose hydrogels as supports for cell immobilization. J. Macromol. Sci. Part A 1996,33,1875-1884.
    [239]Faroongsarng, D.; Sukonrat, P., Thermal behavior of water in the selected starch-and cellulose-based polymeric hydrogels. Inter. J. Pharm.2008,352, 152-158.
    [240]Hebeish, A.; Higazy, A.; El-Shafei, A.; Sharaf, S., Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohyd. Polym.2010,79,60-69.
    [241]Iiklan, N., Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J. Appl. Polym. Sci.2006,99, 1310-1319.
    [242]Liang, H. F.; Hong, M. H.; Ho, R. M.; Chung, C. K.; Lin, Y. H.; Chen, C. H.; Sung, H. W., Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules 2004,5,1917-1925.
    [243]Sannino, A.; Madaghiele, M.; Conversano, F.; Mele, G.; Maffezzoli, A.; Netti, P.; Ambrosio, L.; Nicolais, L., Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 2004,5, 92-96.
    [244]Zhou, D.; Zhang, L.; Zhou, J.; Guo, S., Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res.2004,38,2643-2650.
    [245]Zhou, D.; Zhang, L.; Guo, S., Mechanisms of lead biosorption on cellulose/chitin beads. Water Res.2005,39,3755-3762.
    [246]Li, N.; Bai, R., Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Sep.Purif. Technol.2005,42,237-247.
    [247]Zhao, L.; Mitomo, H., Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM\cellulose hydrogels synthesized by irradiation. J. Appl. Polym. Sci.2008,110,1388-1395.
    [248]Shih, C. M.; Shieh, Y. T.; Twu, Y. K., Preparation and characterization of cellulose/chitosan blend films. Carbohyd. Polym.2009,78,169-174.
    [249]Kadokawa, J.; Murakami, M.; Takegawa, A.; Kaneko, Y., Preparation of cellulose-starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohyd. Polym.2009,75,180-183.
    [250]Takegawa, A.; Murakami, M.; Kaneko, Y.; Kadokawa, J., Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohyd. Polym. 2010,79,85-90.
    [251]Tang, Y.; Wang, X.; Li, Y.; Lei, M.; Du, Y.; Kennedy, J. F.; Knill, C. J., Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohyd. Polym.2010,82,833-841.
    [252]Baumann, M. D.; Kang, C. E.; Stanwick, J. C.; Wang, Y.; Kim, H., An injectable drug delivery platform for sustained combination therapy. J. Control. Release 2009,138,205-213.
    [253]Krishna Rao, K.; Subha, M.; Vijaya Kumar Naidu, B.; Sairam, M.; Mallikarjuna, N.; Aminabhavi, T., Controlled release of diclofenac sodium and ibuprofen through beads of sodium alginate and hydroxy ethyl cellulose blends. J. Appl. Polym. Sci.2006,102,5708-5718.
    [254]Saha, A.; Manna, S.; Nandi, A. K., Temperature and pH sensitive photoluminescence of riboflavin-methyl cellulose hydro gel:towards and molecular logic gate behaviour. Soft Matter 2009,5,3992-3996.
    [255]Ivanov, C.; Popa, M.; Ivanov, M.; Popa, A., Synthesis of poly (vinyl alcohol): methyl cellulose hydrogel as possible scaffolds in tissue engineering. J. Optoelectron. Adv. Mater.2007,9,3440-3444.
    [256]Millon, L.; Wan, W., The polyvinyl alcohol"Cbacterial cellulose system as a new nanocomposite for biomedical applications. J. Biomed. Mater. Res.Part B: Appl. Biomater.2006,79,245-253.
    [257]Taleb, M. F. A.; El-Mohdy, H.; El-Rehim, H., Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J. Hazard. Mater.2009,168,68-75.
    [258]S hang, J.; Shao, Z.; Chen, X., Electrical behavior of a natural polyelectrolyte hydrogel:chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 2008, 9,1208-1213.
    [259]Zhao, Q.; Qian, J.; An, Q.; Gao, C.; Gui, Z.; Jin, H., Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J. Membrane Sci.2009,333,68-78.
    [260]Feng, X.; Pelton, R.; Leduc, M., Mechanical properties of polyelectrolyte complex films based on polyvinylamine and carboxymethyl cellulose. Ind. Eng. Chem. Res.2006,45,6665-6671.
    [261]Feng, X.; Pelton, R., Carboxymethyl cellulose:polyvinylamine complex hydrogel swelling. Macromolecules 2007,40,1624-1630.
    [262]Sperling, L., Interpenetrating polymer networks:an overview. ACS Adv. Chem. Ser.1994,239,3-38.
    [263]Nakayama, A.; Kakugo, A.; Gong, J. P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S., High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater.2004,14,1124-1128.
    [264]Buyanov, A.; Gofman, I.; Revel'skaya, L.; Khripunov, A.; Tkachenko, A., Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly (acrylamide or acrylamide-sodium acrylate) hydrogels. J. Mech. Behav. Biomed. Mater.2010,3,102-111.
    [265]Williamson, S. L.; Armentrout, R. S.; Porter, R. S.; McCormick, C. L. Microstructural examination of semi-interpenetrating networks of poly (N, N-dimethylacrylamide) with cellulose or chitin synthesized in lithium chloride/N, N-dimethylacetamide. Macromolecules 1998,31,8134-8141.
    [266]Liang, S.; Zhang, L.; Li, Y.; Xu, J., Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol. Chem. Phys.2007,208, 594-602.
    [267]Liang, S.; Wu, J.; Tian, H.; Zhang, L.; Xu, J., High strength cellulose/poly (ethylene glycol) gels. ChemSusChem 2008,1,558-563.
    [268]aykara, T.; eng"'l, G.; Birlik, G, Preparation and swelling properties of temperature-sensitive semi-interpenetrating polymer networks composed of poly [(N-tert-butylacrylamide)-co-acrylamide] and hydroxypropyl cellulose. Macromol. Mater. Eng. 2006,291,1044-1051.
    [269]Bajpai, A.; Mishra, A., Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacine:an in-vitro dynamic study. J. Mater. Sci.:Mater. Med.2008,19,2121-2130.
    [270]Nie, K.; Pang, W.; Wang, Y.; Lu, F.; Zhu, Q., Effects of specific bonding interactions in poly (-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Mater. Lett.2005,59,1325-1328.
    [271]Fellah, B. H.; Weiss, P.; Gauthier, O.; Rouillon, T.; Pilet, P.; Daculsi, G.; Layrolle, P., Bone repair using a new injectable self\crosslinkable bone substitute. J. Orthopaed. Res.2006,24,628-635.
    [272]Hutchens, S. A.; Benson, R. S.; Evans, B. R.; O'Neill, H. M.; Rawn, C. J., Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 2006,27,4661-4670.
    [273]Grande, C. J.; Torres, F. G.; Gomez, C. M.; Carmen Ba, M., Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta. Biomater. 2009,5,1605-1615.
    [274]Park, T. J.; Lee, S. H.; Simmons, T. J.; Martin, J. G.; Mousa, S. A.; Snezhkova, E. A.; Sarnatskaya, V. V.; Nikolaev, V. G.; Linhardt, R. J., Heparin'Ccellulose'Ccharcoal composites for drug detoxification prepared using room temperature ionic liquids. Chem. Comm.2008,5022-5024.
    [275]Li, L.; Meng, L.; Zhang, X.; Fu, C.; Lu, Q., The ionic liquid-associated synthesis of a cellulose/SWCNT complex and its remarkable biocompatibility. J. Mater. Chem.2009,19,3612-3617.
    [276]Xia, H. F.; Lin, D. Q.; Yao, S. J., Preparation and characterization of macroporous cellulose-tungsten carbide composite beads for expanded bed applications. J. Chromatogr. A 2007,1175,55-62.
    [277]Xia, H. F.; Lin, D. Q.; Yao, S. J., Chromatographic performance of macroporous cellulose-tungsten carbide composite beads as anion-exchanger for expanded bed adsorption at high fluid velocity. J. Chromatogr. A 2008,1195,60-66.
    [278]Dou, H.; Yang, W.; Tao, K.; Li, W.; Sun, K., Thermal sensitive microgels with stable and reversible photoluminescence based on covalently bonded quantum dots. Langmuir 2010,26,5022-5027.
    [1]Denizli, B. K.; Can, H. K.; Rzaev, Z. M. O.; Guner A. Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinking agents. Polymer 2004,45,6431-6435.
    [2]Kiritoshi, Y.; Ishihara, K. Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties. Polymer 2004,45,7499-7504.
    [3]Molina, M. J.; Gomez-Anton, M. R.; Pierola, I. F. Determination of the Parameters controlling swelling of chemically cross-Linked pH-sensitive poly(N-vinylimidazole) hydrogels. J. Phys. Chem.B 2007,111,12066-12074.
    [4]Zhao, D.; Liao, G.; Gao, G.; Liu, F. Influences of intramolecular cyclization on structure and cross-Linking reaction processes of PVA hydrogels. Macromolecules 2006,39,1160-1164.
    [5]Saito, H.; Sakurai, A.; Sakakibara, M.; Saga, H.; Preparation and properties of transparent cellulose hydrogels. J. Appl. Polym. Sci.2003,90,3020-3025.
    [6]de la Torre, P.; Torrado, S.; Torrado, S. Interpolymer complexes of poly(acrylic acid) and chitosan:influence of the ionic hydrogel-forming medium. Biomaterials 2003,24,1459-1468.
    [7]Kang, H.-S.; Park, S.-H.; Lee, Y.-G.; Son, T.-I. Polyelectrolyte complex hydrogel composed of chitosan and poly(γ-glutamic acid) for biological application: Preparation, physical properties, and cytocompatibility. J. Appl. Polym. Sci. 2007,103,386-394.
    [8]Masci, G.; Husu, I.; Murtas, S.; Piozzi, A.; Crescenzi, V. Physical hydrogels of poly(vinyl alcohol) with different syndiotacticity prepared in the presence of lactosilated chitosan derivatives. Macromol. Biosci.2003,3,455-461.
    [9]Jin, S.; Liu, M.; Zhang, F.; Chen, S.; Niu, A. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer 2006,47,1526-1532.
    [10]Kaneko, Y.; Sakai, K.; Okano, M. Sustained release (water absorption)-drug delivery system, in:Osada, Y. & Kajiwara K. (Eds.), Gels Handbook,2001,2, Academic Press, San Diego, pp.46-79.
    [11]Liu, Y.-Y.; Fan, X.-D. Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups. Biomaterials,2005,26, 6367-6374.
    [12]Nitin, P. S.; Jonathan, D. S.; David, R. G Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules. Biomaterials 1996,17, 2343-2350.
    [13]Yamamoto, M.; Takahashi, Y.; Tabata, Y Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 2003,24,4375-4383.
    [14]Cavalieri, F.; Chiessi, E.; Finelli, I.; Natali, F.; Paradossi, G.; Telling, M. F. Water, solute, and segmental dynamics in polysaccharide hydrogels. Macromol. Biosci.2006,6,579-589.
    [15]Prabaharan, M.; Mano, J. F. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci.2006,6,991-1008.
    [16]Yu, H.; Lu, J.; Xiao, C. Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-linked chitosan for in vitro drug delivery. Macromol. Biosci.2007,7,1100-1111.
    [17]Zhai, M.; Yoshii, F.; Kume, T.; Hashim, K. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr. Polym.2002,50,295-303.
    [18]Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose:Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Edit.200544, 3358-3393.
    [19]Rodriguez, R.; Alvarez-Lorenzo, C.; Concheiro, A. Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J. Controlled Release 2003,86,253-265.
    [20]Sannino, A.; Madaghiele, M.; Conversano, F.; Mele, G.; Maffezzoli, A.; Netti, P. A.; Ambrosio, L.; Nicolais, L. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network Stability. Biomacromolecules 2004 5, 92-96.
    [21]Yan, L.; Qian, F.; Zhu, Q. Interpolymer complex polyampholytic hydrogel of chitosan and carboxymethyl cellulose (CMC):synthesis and ion effect. Polym. Int. 2001,50,1370-1374.
    [22]Chauhan, G. S.; Lal, H.; Mahajan, S. Synthesis, characterization, and swelling responses of poly(N-isopropylacrylamide)-and hydroxypropyl cellulose-based environmentally sensitive biphasic hydrogels. J. Appl. Polym. Sci.2004,91, 479-488.
    [23]Ibrahim, S. M.; El Salmawi, K. M.; Zahran, A. H. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J. Appl. Polym. Sci.2007,104,2003-2008.
    [24]Liu, J.; Zhai, M.; Ha, H. Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric. Radiat. Phys. Chem.1999,55,55-59.
    [25]Soderqvist Lindblad, M.; Albertsson, A.-C.; Ranucci, E.; Laus, M.; Giani, E. Biodegradable Polymers from Renewable Sources:Rheological characterization of hemicellulose-based hydrogels. Biomacromolecules 2005,6,684-690.
    [26]Marsano, E.; Bianchi, E.; Viscardi, A. Stimuli responsive gels based on interpenetrating network of hydroxy propylcellulose and poly(N-isopropyl-acrylamide). Polymer 2004,45,157-163.
    [27]Xie, J.; Hsieh, Y.-L. Thermosensitive poly(n-isopropylacrylamide) hydrogels bonded on cellulose supports. J. Appl. Polym. Sci.2003,89,999-1006.
    [28]Yoshimura, T.; Matsuo, K.; Fujioka, R. Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride:Synthesis and characterization. J. Appl. Polym. Sci.2006,99,3251-3256.
    [29]Liu, W.; Zhang, B.; Lu, W. W.; Li, X.; Zhu, D.; Yao, K. D.; Wang, Q.; Zhao, C.; Wang, C. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 2004,25,3005-3012.
    [30]Zhou J.; Zhang L. Solubility of cellulose in NaOH/Urea aqueous solution. Polym. J.2000,32,866-870.
    [31]Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.;. Xu, J.; Cheng, H.; Han, C. C.; Kuga, S. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 2008,41, 9345-9351.
    [32]Qi, H.; Chang, C.; Zhang, L. Properties and applications of biodegradable transparent and photo luminescent cellulose films prepared via a green process Green Chem.2009,11,177-184.
    [33]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B. Multifilament fibers based on dissolution of cellulose in NaOH/Urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [34]Luo, X.; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of FeO4/cellulose micropheres with magnetic-induced protein delivery. J. Mater. Chem.2009,19, 3538-3545.
    [35]Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 2006,7,183-189.
    [36]Hassan, C. M.; Peppas, N. A. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 2000,33,2472-2479.
    [37]Hassan, C. M.; Ward, J. H.; Peppas, N. A. Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes. Polymer 2000, 41,6729-6739.
    [38]Stauffer, S. R.; Peppast, N. A. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 1992,33,3932-3936.
    [39]Capitani, D.; Del Nobile, M. A.; Mensitieri, G.; Sannino, A.; Segre, A. L.13C Solid-state NMR determination of cross-linking degree in superabsorbing cellulose-based networks. Macromolecules 2000,33,430-437.
    [40]Delval, F.; Crini, G.; Bertini, S.; Filiatre, C.; Torri, G Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydr. Polym.2005,60,67-75.
    [1]Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960,185, 117-118.
    [2]Park, J. S.; Park, J. W.; Ruckenstein, E. Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 2001,42,4271-4280.
    [3]Liu, W.; Zhang, B.; Lu, W.; Li, X.; Zhu, D.; Yao, K.; Wang, Q.; Zhao, C.; Wang, C. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 2004,25,3005-3012.
    [4]Sawatari, C.; Kondo, T. Interchain Hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules 1999,32, 1949-1955.
    [5]Iio, K.; Minoura, N.; Nagura, M. Swelling characteristics of a blend hydrogel made of poly(allylbiguanido-co-allylamine) and poly(vinyl alcohol). Polymer 1995,36,2579-2583.
    [6]Zhai, M.; Yoshii, F.; Kume, T.; Hashim, K. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr. Polym.2002,50,295-303.
    [7]Cavalieri, F.; Chiessi, E.; Finelli, I.; Natali, F.; Paradossi, G.; Telling, M. F. Water, Solute, and segmental dynamics in polysaccharide hydrogels. Macromol. Biosci. 2006,6,579-589.
    [8]Prabaharan, M.; Mano, J. F. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials Macromol. Biosci.2006,6,991-1008.
    [9]Yu, H.; Lu, J.; Xiao, C. Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-linked chitosan for in vitro drug delivery. Macromol. Biosci.2007,7,1100-1111.
    [10]Hassan, C. M.; Ward, J. H.; Peppas, N. A. Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes. Polymer 2000, 41,6729-6739.
    [11]Stauffer, S. R.; Peppast, N. A. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 1992,33,3932-3936.1.
    [12]Yang, J.; Su, W.; Leu, T.; Yang, M. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci.2004,236,39-51.
    [13]Sudhamani, S. R.; Prasad, M. S.; Sankar, K. U. DSC and FTIR studies on Gellan and Polyvinyl alcohol (PVA) blend films. Food Hydrocolloids 2003,17, 245-250.
    [14]Nishio, Y.; Manley, R. Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules 1988,21, 1270.
    [15]Kondo, T.; Sawatari, C.; Manley, R.; Gray, D. G. Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 1994,27,210-215.
    [16]Shantarovich, V. P.; Suzuki, T.; He, C.; Davankov, V. A.; Patukhov, A. V.; Tsyuruoa, M. P.; Kondo, K.; Ito, Y. Positron annihilation study of hyper-cross-Linked polystyrene networks. Macromolecules 2002,35,9723-9729.
    [17]Liu, J.; Zhai, M.; Ha, H. Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric. Radiat. Phys. Chem.1999,55,55-59.
    [18]Chauhan, G. S.; Lal, H.; Mahajan, S. J. Appl. Polym. Sci.1999,55,55-59.
    [19]Yoshimura, T.; Matsuo, K.; Fujioka, R. Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride:Synthesis and characterization. J. Appl. Polym. Sci.2006,99,3251-3256.
    [20]Lindblad, M. S.; Albertsson, A. C.; Ranucci, E.; Laus, M.; Giani, E. Biodegradable polymers from renewable sources:rheological characterization of hemicellulose-based hydrogels. Biomacromolecules 2005,6,684-690.
    [21]Xie, J.; Hsieh, Y. L. Thermosensitive poly(N-isopropylacrylamide) hydrogels bonded on cellulose supports. J. Appl. Polym. Sci.2003,89,999-1006.
    [22]Sannino, A.; Madaghiele, M.; Conversano, F.; Mele, G.; Maffezzoli, A.; Netti, P. A.; Ambrosio, L.; Nicolais, L. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-Linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 2004,5, 92-96.
    [23]Feng, X.; Pelton, R. Carboxymethyl cellulose:polyvinylamine complex hydrogel swelling. Macromolecules 2007,40,1624-1630.
    [24]Zhou, J.; Zhang, L. Solubility of Cellulose in NaOH/Urea Aqueous Solution. Polym. J.2000,32,866-870.
    [25]Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 2006,7,183-189.
    [26]Zhang, L.; Cai, J.; Zhou, J.; Li, C.; Qi, H.; Mao; Y. PCT/CN2006000757.
    [27]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [28]Luo, X.; Zhang, L. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J. Hazard. Mater.2009,171, 340-347.
    [29]Zhang, L.; Zhou, J. CN 00114486.32003.
    [30]Miguel, I. D.; Rieumajou, D.; Betbeder, D. New methods to determine the extent of reaction of epichlorohydrin with maltodextrins. Carbohydr. Res.1999,319, 17-23.
    [28]Isogai, A.; Usuda, M.; Koto, T.; Uryu, T.; Atalla, R. H. Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 1989,22, 3168-3172.
    [31]Saito, H.; Sakurai, A.; Sakakibara, M.; Saga, H. Preparation and properties of transparent cellulose hydrogels. J. Appl. Polym. Sci.2003,90,3020-3025.
    [32]Ku, D. N.; Braddon, L. G.; Wootton, D. M. Poly(vinyl alcohol) cryogel. US patent no.5981826,1999.
    [33]Rodriguez, R.; Alvarez-Lorenzo, C.; Concheiro, A. Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J. Controlled Release 2003,86,253-265.
    [34]Park, H.; Park, K.; Kim, D. Swelling and mechanical properties of glycol chitosan/poly(vinyl alcohol) IPN-type superporous hydrogels. J. Biomed. Mater. Res. A 2006,78,662-667.
    [1]Denizli, B. K.; Can, H. K.; Rzaev, Z. M. O.; Guner A. Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinking agents. Polymer 2004,45,6431-6435.
    [2]Kiritoshi, Y.; Ishihara, K.. Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties. Polymer 2004,45,7499-7504.
    [3]Molina, M. J.; Gomez-Anton, M. R.; Pierola, I. F. Determination of the Parameters controlling swelling of chemically cross-Linked pH-sensitive poly(N-vinylimidazole) hydrogels. J. Phys. Chem. B 2007,111,12066-12074.
    [4]Zhao, D.; Liao, G.; Gao, G.; Liu, F. Influences of intramolecular cyclization on structure and cross-Linking reaction processes of PVA hydrogels. Macromolecules 2006,39,1160-1164.
    [5]Saito, H.; Sakurai, A.; Sakakibara, M.; Saga, H.; Preparation and properties of transparent cellulose hydrogels. J. Appl. Polym. Sci.2003,90,3020-3025.
    [6]de la Torre, P.; Torrado, S.; Torrado, S. Interpolymer complexes of poly(acrylic acid) and chitosan:influence of the ionic hydrogel-forming medium. Biomaterials 2003,24,1459-1468.
    [7]Kang, H.-S.; Park, S.-H.; Lee, Y.-G.; Son, T.-I. Polyelectrolyte complex hydrogel composed of chitosan and poly(y-glutamic acid) for biological application: Preparation, physical properties, and cytocompatibility. J. Appl. Polym. Sci. 2007,103,386-394.
    [8]Masci, G.; Husu, I.; Murtas, S.; Piozzi, A.; Crescenzi, V. Physical hydrogels of poly(vinyl alcohol) with different syndiotacticity prepared in the presence of lactosilated chitosan derivatives. Macromol. Biosci.2003,3,455-461.
    [9]Yamamoto, M.; Takahashi, Y.; Tabata, Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 2003,24,4375-4383.
    [10]Cavalieri, F.; Chiessi, E.; Finelli, I.; Natali, F.; Paradossi, G.; Telling, M. F. Water, solute, and segmental dynamics in polysaccharide hydrogels. Macromol. Biosci.2006,6,579-589.
    [11]Prabaharan, M.; Mano, J. F. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol. Biosci.2006,6,991-1008.
    [12]Yu, H.; Lu, J.; Xiao, C. Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-linked chitosan for in vitro drug delivery. Macromol. Biosci.2007,7,1100-1111.
    [13]Zhai, M.; Yoshii, F.; Kume, T.; Hashim, K. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr. Polym.2002,50,295-303.
    [14]Jin, S.; Liu, M.; Zhang, F.; Chen, S.; Niu, A. Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer 2006,47,1526-1532.
    [15]Kaneko, Y.; Sakai, K.; Okano, M. Sustained release (water absorption)-drug delivery system, in:Osada, Y. & Kajiwara K. (Eds.), Gels Handbook,2001,2, Academic Press, San Diego, pp.46-79.
    [16]Liu, Y.-Y.; Fan, X.-D. Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups. Biomaterials,2005,26, 6367-6374.
    [17]Nitin, P. S.; Jonathan, D. S.; David, R. G. Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules. Biomaterials 1996,17, 2343-2350.
    [18]Tananka, Y.; Gong, J.; Osada, Y. Novel hydrogels with excellent mechanical performance. Prog. Polym. Sci.2005,30,1-9.
    [19]Zhou, C.; Wu, Q. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf. B:Biointerf.2011,84,155-162.
    [20]Bai, T.; Zhang, P.; Han, Y.; Liu, Y.; Liu, W.; Zhao, X.; Lu, W. Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole-dipole interaction. Soft Matter 2011,7,2825-2831.
    [21]Tan, Y.; Xu, K.; Wang, P.; Li, W.; Sun, S.; Dong, L. High mechanical strength and rapid response rate of poly(N-isopropyl acrylamide) hydrogel crosslinked by starch-based nanospheres. Soft Matter 2010,6,1467-1471.
    [22]Cai, J.; Liu, Y.; Zhang, L.Dilute solution properties of cellulose in LiOH/urea aqueous system. J. Polym.Sci. Part B:Polym.Phys.2006,44,3093-3101,
    [23]Seves, A.; Testa, G.; Bonfatti, A. M.; Paglia, E. D.; Selli, E.; Marcandalli, B. Characterization of Native Cellulose/Poly(ethylene glycol) Films. Macromol. Mater. Eng.2001,286,524-528.
    [24]Crepya, L.; Miria, V.; Joly, N.; Martina, P.; c Lefebvrea, J. M. Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters. Carbohydr. Polym.2011,83,1812-1820.
    [25]Sehaqui, H.; Allais, M.; Zhou, Q.; Berglund, L. A. Wood cellulose biocomposites with fibrous structures at micro-and nanoscale. Composit. Sci. Technol.2011,1,382-387.
    [1]Bingol, B.; Strandberg, C.; Szabo, A.; Wegner, G. Copolymers and hydrogels based on vinylphosphonic acid. Macromolecules 2008,41,2785-2790.
    [2]Kurisawa, M.; Yui, N. Gelatin/dextran intelligent hydrogels for drug delivery: Dual-stimuli-responsive degradation in relation to miscibility in interpenetrating polymer networks. Macromol. Chem. Phys.1998,199,1547-1554.
    [3]Zhang, X.; Wu, D.; Chu, C. C. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials 2004,25,4719-4730.
    [4]Huh, K. M.; Bae, Y. H. Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid) alternating multiblock copolymers. Polymer 1999,40, 6147-6155.
    [5]Mawad, D.; Poole-Warren, L.; Martens, P.; Koole, L.; Slots, T.; van Hooy-Corstjens, C. Polyurethane interpenetrating polymer networks. II. density and glass transition behavior of polyurethane-poly(methyl methacrylate) and polyurethane-polystyrene IPN's. Biomacromolecules 2008,9,263-268.
    [6]Kraehenbuehl, T.; Zammaretti, P.; Van der Vlies, A.; Schoenmakers, R.; Lutolf, M.; Jaconi, M.; Hubbell, J. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation:Systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 2008,29,2757-2766.
    [7]Moura, M.; Figueiredo, M.; Gil, M. Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 2007,8,3823-3829.
    [8]Qu, X.; Wirsen, A.; Albertsson, A. C. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 2000,41,4589-4598.
    [9]Zhao, S.; Ma, D.; Zhang, L. New semi-interpenetrating network hydrogels: synthesis, characterization and properties. Macromol. Biosci.2006,6,445-451.
    [10]Kumashiro, Y.; Lee, W.; Ooya, T.; Yui, N. Enzymatic degradation of semi-IPN hydrogels based on N-Isopropylacrylamide and dextran at a specific temperature range. Macromol. Rapid Commun.2002,23,407-410.
    [11]Chen, J.; Liu, M.; Jin, S.; Liu. H. Synthesis and characterization of K-carrageenan/poly(N,N-diethylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature Polym. Adv. Technol. 2008,19,1656-1663.
    [12]Kumar, R.; Liu, D.; Zhang, L. Advances in proteinous biomaterials. J. Biobased Mater. Bioenergy 2008,2,1-24.
    [13]Bardajee, G. R.; Pourjavadi, A.; Soleyman, R.; Sheikn, N. Irradiation mediated synthesis of a superabsorbent hydrogel network based on polyacrylamide grafted onto salep. Nucl. Instrum. Methods. Phys. Res. Sect.B 2008,266,3932-3938.
    [14]Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. Bacterial synthesized cellulose — artificial blood vessels for microsurgery. Prog. Polym. Sci.2001,26, 1561-1603.
    [15]Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Cellulose:fascinating biopolymer and sustainable raw Material. Angew. Chem. Int. Ed.2005,44, 3358-3393.
    [16]Klemm, D.; Schumann, D. New start-up company in cellulose field created at the university of Jena. Cellulose 2008,15,359-360.
    [17]Koschella, A.; Heinze, T.; Klemm, D. First synthesis of 3-O-Functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose. Macromol. Biosci.2001,1, 49-54.
    [18]Zhou, J.; Zhang, L. Solubility of cellulose in NaOH/Urea aqueous solution. Polym. J.2000,32,866-870.
    [19]Cai, J.; Zhang, L.; Chang, C.; Cheng, G; Chen, X.; Chu, B. Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 2007,8,1572-1579.
    [20]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [21]Luo, X.; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J. Mater. Chem.2009,19, 3538-3545.
    [22]Song, Y.; Zhou, J.; Li, Q.; Guo, Y.; Zhang, L. Preparation and characterization of novel quaternized cellulose nanoparticles as protein carriers. Macromol. Biosci. 2007; 7:804-809.
    [23]Cai, J.; Kimura, S.; Wada, M.; Kuga, S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 2009,10,87-94.
    [24]Li, Q.; Zhou, J.; Zhang, L. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J. Polym. Sci. B:Polym. Phys.2001, 39,451-458.
    [25]Kim, S. J.; Yoon, S. G.; Lee, S. M.; Lee, J. H.; Kim, S. I. Characteristics of electrical responsive alginate/poly(diallyldimethylammonium chloride) IPN hydrogel in HCl solutions. Sens. Actuator, B 2003,96,1-5.
    [26]Sakai, S.; Yamaguchi, S.; Takei, T.; Kawakami, K. Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels. Biomacromolecules 2008,9,2036-2041.
    [27]Pourjavadi, A.; Ghasemzadeh, H.; Soleyman, R. Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J. Appl. Polym. Sci.2007,105,2631-2639.
    [28]Kalyani, S.; Smitha, B.; Sridhar, S.; Krishnaiah, A. Separation of ethanol-water mixtures by pervaporation using sodium alginate/poly(vinyl pyrrolidone) blend membrane crosslinked with phosphoric acid. Ind. Eng. Chem. Res.2006,45, 9088-9095.
    [29]Zhang, L.; Ruan, D.; Zhou, J. Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Ind. Eng. Chem. Res.2001,40,5923-5928
    [30]Miguel, I. D.; Rieumajou, D.; Betbeder, D. New methods to determine the extent of reaction of epichlorohydrin with maltodextrins. Carbohydr. Res.1999, 319,17-23.
    [31]Zhou, J.; Zhang, L.; Deng, Q.; Wu, X. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. J. Polym. Sci. Part A: Polym. Chem.2004,42,5911-5920.
    [32]Yang, G.; Zhang, L.; Peng, T.; Zhong, W. Effects of Ca2+bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes J. Membr. Sci.2000,175,53-60.
    [33]Liang, C. X.; Hirabayashi, K. Improvements of the physical properties of fibroin membranes with sodium alginate. J. Appl. Polym. Sci.1992,45,1937-1943.
    [34]Zhou, J.; Zhang, L. Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution. J. Polym. Sci. B:Polym. Phys.2001,39,451-458.
    [35]Zhang, X. Z.; Chu, C. C.; Zhuo, R. X. Using hydrophobic additive as pore-forming agent to prepare macroporous PNIPAAm hydrogels. J. Polym. Sci. A:Polym. Chem.2005,43,5490-5497.
    [36]Zhao, Q.; Sun, J.; Ren, H.; Zhou, Q.; Lin, Q. Horseradish peroxidase immobilized in macroporous hydrogel for acrylamide polymerization. J. Polym. Sci. A:Polym. Chem.2008,46,2222-2232.
    [37]Sahiner, N.; Singh, M.; Kee, D. D.; John, V. T.; McPherson, G. L. Rheological characterization of a charged cationic hydrogel network across the gelation boundary. Polymer 2006,47,1124-1131.
    [38]Weng, L.; Chen, X.; Chen, W. Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules 2007,8,1109-1115.
    [1]Pourjavadi, A.; Harzandi, A. M.; Hosseinzadeh, H. Modified carrageenan 3. Synthesis of a nonel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur. Polym. J. 2004,40,1363-1370.
    [2]Pourjavadi, A.; Harzandi, A. M.; Amini-Fazl, M. S. Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur. Polym. J.2008,44,1209-1216.
    [3]Ibrahim, S. M.; El Salmawi, K. M.; Zahran, A. H. Synthesis of crosslinked superabsorbent carboxymethylcellulose/acrylamide hydrogels through electron-beam irradiation. J. Appl. Polym. Sci.2007,104,2003-2008.
    [4]Murthy, P. S. K.; Mohan, Y. M.; Varaprasad, K.; Sreedhar, B.; Raju, K. M. First successful design of semi-IPN hydrogel-silver nanocomposites:A facile approach for antibacterial application. J. Colloid Interface Sci.2008,318,217-224.
    [5]Kim, J.; Lee, K.; Hefferan, T.; Currier, B.; Yaszemski, M.; Lu, L. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules 2008,9,149-157.
    [6]Adhikari, B.; Majumdar, S. Polymers in sensor applications. Prog. Polym. Sci. 2004,29,699-766.
    [7]Pourjavadi, A.; Ghasemzadeh, H.; Soleyman, R. Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J. Appl. Polym. Sci.2007,105,2631-2639.
    [8]Guilherme, M R.; Reis, A. V.; Paulino, A. T.; Fajardo, A. R.; Muniz, E. C.; Tambourgi, E. B. Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2+and Cu2+from water with excellent performance. J. Appl. Polym. Sci.2007,105,2903-2909.
    [9]Rodriguez, R.; Alvarez-Lorenzo, C.; Concheiro, A. Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J. Controlled Release 2003,86,253-265.
    [10]Zhang, X.; Yang, Y.; Chung, T. The influence of cold treatment on properties of temperature-sensitive poly(N-isopropylacrylamide) hydrogels. J. Colloid Interface Sci.2002,246,105-111.
    [11]Yue, Y.; Shen, X.; Wang, P. Fabrication and characterization of microstructure and pH sensitive interpenetrating networks hydrogel films and application in drug delivery field. Eur. Polym. J.2009,45,309-315.
    [12]Yan, Q.; Zhang, W.; Lu, G.; Su, X.; Ge, C. Frontal copolymerization synthesis and property characterization of starch-graft-poly(acrylic acid) hydrogels. Chem. Eur.J.2005,11,6609-6615.
    [13]Washington, R. P.; Steinbock, O. Frontal polymerization synthesis of temperature-sensitive hydrogels. J. Am. Chem. Soc.2001,123,7933-7934.
    [14]Zhang, J.; Wang, L.; Wang, A. Preparation and swelling behavior of fast-swelling superabsorbent hydrogels based on starch-g-poly(acrylic acid-co-sodium acrylate). Macromol. Mater. Eng.2006,291,612-620.
    [15]Pourjavadil, A.; Sadeghi, M.; Hosseinzadeh, H. Modified carrageenan.5. Preparation, swelling behavior, salt-and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polym. Adv. Technol.2004,15,645-653.
    [16]Pourjavadi, A.; Mahdavinia, G. R.; Zohuriaan-Mehr, M. J. Modified chitosan. Ⅱ. H-chitoPAN, a novel pH-responsive superabsorbent hydrogel. J. Appl. Polym. Sci.2003,90,3115-3121.
    [17]Kabiri, K.; Omidian, H.; Zohuriaan-Mehr, M. J. Novel approach to highly porous superabsorbent hydrogels:synergistic effect of porogens on porosity and swelling rate. Polym. Int.2003,52,1158-1164.
    [18]Marandi, G. B.; Esfandiari, K.; Biranvand, F.; Babapour, M.; Sadeh, S.; Mahdavinia, G. R. pH sensitivity and swelling behavior of partially hydrolyzed formaldehyde-crosslinked poly(acrylamide) superabsorbent hydrogels. J. Appl. Polym. Sci.2008,109,1083-1092.
    [19]D'Errico, G.; DeLellis, M.; Mangiapia, G.; Tedeschi, A.; Ortona, O.; Fusco, S.; Borzacchiello, A.; Ambrosio, L. Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels Biomacromolecules 2008,9,231-240.
    [20]Yu, H.; Lu, J.; Xiao, C. Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-Linked chitosan for in vitro drug delivery. Macromol. Biosci.2007,7,1100-1111.
    [21]Butler, M.; Clark, A.; Adams, S. Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin. Biomacromolecules 2006,7,2961-2970.
    [22]Teijon, C.; Olmo, R.; Blanco, M. D.; Teijon, J. M.; Romero, A. Effect of the cross-linking degree and the nickel salt load on the thermal decomposition of poly(2-hydroxyethyl methacrylate) hydrogels and on the metal release from them. J. Colloid Interface Sci.2006,295,393-400.
    [23]El-Rehim, H. A.; Hegazy, E A.; El-Mohdy, H. A. Effect of various environmental conditions on the swelling property of PAAm/PAAcK superabsorbent hydrogel prepared by ionizing radiation. J. Appl. Polym. Sci. 2006,101,3955-3962.
    [24]Shang, J.; Shao, Z.; Chen, X. Chitosan-based electroactive hydrogel. Polymer 2008,49,5520-5525.
    [25]Wu, Y.; Sasaki, T.; Irie, S.; Sakurai, K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 2008,49,2321-2327.
    [26]Wang, C.; Liu, H.; Gao, Q.; Liu, X.; Tong, Z. Alginate-calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strength. Carbohydr. Polym.2008,71,476-480.
    [27]Liu, H.; Wang, C.; Gao, Q.; Tong, Z. Fabrication of novel core-shell hybrid alginate hydrogel beads. International J. Pharmaceutics 2008,351,104-112.
    [28]Liu, P.; Peng, J.; Li, J.; Wu, J. Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiat. Phys. Chem.2005,72,635-638.
    [29]Liu, P.; Zhai, M.; Li, J.; Peng, J.; Wu, J. Radiation preparation and swelling behavior of sodium carboxymethylcellulose hydrogels. Radiat. Phys. Chem. 2002,63,525-528.
    [30]Sannino, A.; Maffezzoli, A.; Nicalais, L. Introduction of molecular spacers between the crosslinks of a cellulose-based superabsorbent hydrogel:Effects on the equilibrium sorption properties. J. Appl. Polym. Sci.2003,90,168-174.
    [31]Marci, G.; Mele, G.; Palmisano, L.; Pulito, P.; Sannino, A. Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem. 2006,8,439-444.
    [32]Yoshimura, T.; Matsuo, K.; Fujioka, R. Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride:Synthesis and characterization. J. Appl. Polym. Sci.2006,99,3251-3256.
    [33]Sannino, A.; Esposito, A.; Cozzolino, A.; Ambrosio, L.; Nicolais, L. Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J. Biomed. Mater. Res.2003,67A,1016-1024.
    [34]Sannino, A.; Madaghiele, M.; Conversano, F.; Mele, G.; Maffezzoli, A.; Netti, P. A.; Ambrosio, L.; Nicolais, L. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 2004,5, 92-96.
    [35]Bhattarai, N.; Ramay, H.; Gunn, J.; Matsen, F.; Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release 2005,103,609-624.
    [36]Miguel, I. D.; Rieumajou, D.; Betbeder, D. New methods to determine the extent of reaction of epichlorohydrin with maltodextrins. Carbohydr. Res.1999,319, 17-23.
    [37]Miguel, I. D.; Rieumajou, D.; Betbeder, D. New methods to determine the extent of reaction of epichlorohydrin with maltodextrins. Carbohydr. Res.1999,319, 17-23.
    [38]Barbucci, R.; Magnani, A.; Consumi, M. Swelling Behavior of Carboxymethyl cellulose Hydrogels in Relation to Cross-Linking, pH, and Charge Density. Macromolecules 2000,33,7475-7480.
    [39]Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 2006,7,183-189.
    [40]Zhao, Y.; Kang, J.; Tan, T. Salt-, pH-and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 2006,47,7702-7710.
    [41]Molina, I.; Li, S.; Martinez, M.; Vert, M. Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials 2001,22,363-369.
    [1]Gong, C.; Wong, K.; Lam, M. Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media. Chem. Mater.2008,20,1353-1358.
    [2]Zhou, W.; Pan, A.; Li, Y.; Dai, G.; Wang, Q.; Zhang, Q.; Zou, B. Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 2008,112,9253-9260.
    [3]Mamedov, A.; Belov, A.; Giersig, M.; Mamedova, N.; Kotov, N. Nanorainbows: Graded Semiconductor Films from Quantum Dots. J. Am. Chem. Soc.2001,123, 7738-7739.
    [4]Ruan, G.; Agrawal, A.; Marcus, A. I.; Nie, S. Imaging and tracking of tat peptide-conjugated quantum dots in living cells:new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc.2007,129, 14759-14766.
    [5]Smith, A. M.; Nie S. Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands. J. Am. Chem. Soc.2008,130, 11278-11279.
    [6]Kairodlf, B. A.; Smith, A. M.; Nie, S. One-pot synthesis, encapsulation, and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands. J. Am. Chem. Soc.2008,130,12866-12867.
    [7]Manchi, M.; Kairolf, B. A.; Smith, A. M.; Nie, S. Oxidative quenching and degradation of polymer-encapsulated quantum dots:new insights into the long-term fate and toxicity of nanocrystals in vivo. J. Am. Chem. Soc.2008,130, 10836-10837.
    [8]Goto, Y.; Matsuno, R.; Konno, T.; Takai, M.; Ishihara, K. Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes.Biomacromoleules 2008,9,3252-3257.
    [9]Li, S.; Toprak, M.; Jo, Y.; Dobson, J.; Kim, D.; Muhammed, M. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv. Mater.2007,19,4347-4352.
    [10]Tomczak, N.; Janczewski, D.; Han, M.; Vancso, G. J. Designer polymer-quantum dot architectures. Prog. Polym. Sci.2009,34,393-430.
    [11]Kim, S.; Bawendi, M. G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc.2003,125,14652-14653.
    [12]Wang, M.; Oh, J. K.; Dykstar, T. E.; Lou, X.; Scholes, G. D.; Winnik, M. A. Surface modification of CdSe and CdSe/ZnS semiconductor nanocrystals with poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 2006,39, 3664-3672.
    [13]Hirai, T.; Saito, T.; Komasawa, I. Preparation of semiconductor nanoparticle-polymer composites by direct reverse micelle polymerization using polymerizable surfactants. J. Phys. Chem. B 2000,104,8962-8966.
    [14]Zhang, H.; Cui, Z.; Wang, Y.; Zhang, K.; Ji, X.; Lu, C. Yang, B.; Gao, M. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater.2003,15, 777-780.
    [15]Hammouda, A.; Gulik, T.; Pileni, M. P. Synthesis of nanosize latexes by reverse micelle polymerization. Langmuir 1995,11,3656-3659.
    [16]Srivastava, S.; Ball, V.; Podsiadlo, P.; Lee, J.; Ho, P.; Kotov, N. A. Reversible loading and unloading of nanoparticles in "exponentially" growing polyelectrolyte LBL films. J. Am. Chem. Soc.2008,130,3748-3749.
    [17]Podsiadlo, P.; Tang, Z.; Shim, B. S.; Kotov, N. A. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett.2007,7,1224-1231.
    [18]Cao, X.; Li, C.; Bao, H.; Bao, Q.; Dong, H. Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution. Chem. Mater.2007,19, 3773-3779.
    [19]Zebli, B.; Susha, A. S.; Surkhorukov, G. B.; Rogach, A. L.; Parakw, W. J. Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. Langmuir 2005,21, 4262-4265.
    [20]Colvin, V. L.; Schlamp, A. P.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994,370, 354-357.
    [21]Han, L. L.; Qin, D. H.; Jiang, X.; Liu, Y. S.; Wang, L.; Chen, J. W. Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology 2006,17,4736-4742.
    [22]Winiarz, J. G.; Zhang, L. M.; Lai, M.; Friend, C. S.; Prasad, P. N. Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite. J. Am. Chem. Soc.1999,121,5287-5295.
    [23]Welss, P. S.2008 Nobel Prize in chemistry:green fluorescent protein, its variants and implications. ACS Nano 2008,2,1977.
    [24]Li, J.; Hong, X.; Liu, Y.; Li, D.; Wang, Y. W.; Li, J. H.; Bai, Y. B.; Li, J. T. Highly photoluminescent CdTe/poly(N-isopropylacrylamide) temperature-sensitive gels. Adv. Mater.2005,17,163-166.
    [25]Asfura, K. M. G.; Zheng, Y.; Micic, M.; Snedaker, M. J.; Ji, X.; Sui, G.; Orbulescu, J.; Andreopoulos, F. M.; Pham, S. M.; Wang, C.; Leblanc, R. M. Immobilization of quantum dots in the photo-cross-linked poly(ethylene glycol)-based hydrogel. J. Phys. Chem.B 2003,107,10464-10469.
    [26]Klemm, D.; Heublein, B.; Fink, H.; Bohn, A. Cellulose:Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [27]Cai, J.; Zhang, L. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 2006,7,183-189.
    [28]Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.; Cheng, H.; Han, C. C.; Kuga, S. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 2008,41,9345-9351.
    [29]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen, X.; Chu, B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [30]Qi, H.; Chang, C.; Zhang, L. Properties and applications of biodegradable transparent and photoluminecent cellulose films prepaerd via a green process. Green Chem.2009,11,177-184.
    [31J Liang, S.; Zhang, L.; Li Y.; Xu, J. Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol. Chem. Phys.2007,208, 594-602.
    [32]Luo, X.; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J. Mater. Chem.2009,19, 3538-3545.
    [33]Zhou, J.; Chang, C.; Zhang, R.; Zhang, L. Hydrogel prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci.2007,7,804-809.
    [34]Qu, L.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc.2002,124,2049-2055.
    [35]Xie, H. Y.; Liang, J. G.; Liu, Y.:; Zhang, Z. L.; Pang, D. W.;. He, Z. K.;. Lu, Z. X.; Huang, W. H. Preparation and characterization of overcoated II-VI quantum dots. J. Nanosci. Nanotechnol.2005,5,880-886.
    [36]Lin, C. J.; Sperling, R. A.; Li, J. K.; Yang, T. Y.; Li, P. Y.; Zanella, M.; Chang, W. H.; Parak, W. J. Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 2008,4,334-341.
    [37]Anderson, R. E.; Chan, W. C. W. Systematic investigation of preparing biocompatible, single, and small ZnS-capped CdSe quantum dots with amphiphilic polymers. ACS Nano 2008,2,1341-1352.
    [38]Hu, Z.; Lu, X.; Gao, J. Hydrogel Opals. Adv. Mater.2001,13,1708-1712.
    [39]Miguel, I. D.; Rieumajou, D.; Betbeder, D. A thermal analysis investigation of partially hydrolyzed starch. Carbohydr. Res.1999,319,17-25.
    [40]Sahiner, N.; Singh, M.; Kee, D. D.; John, V. T.; McPherson, G. L. Rheological characterization of a charged cationic hydrogel network across the gelation boundary. Polymer 2006,47,1124-1131.
    [41]Weng, L.; Chen, X.; Chen, W. Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules 2007,8,1109-1115.
    [42]Myer, G. H. Hydrothermal wurtzite at thomaston dam, connecticut. Am. Mineral, 1962,47,977-979.
    [1]Luo, Y.; Shoichet, M. S. Aphotolabile hydrogel for guided three-dimensional cell growth and migration. Nat. Mater.2004,3,249-253.
    [2]Zhang, J.; Jandt, K. D. A Novel approach to prepare porous poly(N-isopropylacrylamide) hydrogel with superfast shrinking kinetics Macromol. Rapid Commum.2008,29,593-597.
    [3]Zhang, X.; Chu, C. Fabrication and characterization of microgel-impregnated, thermosensitive PNIPAAm hydrogels. Polymer 2005,46,9664-9673.
    [4]Mujumdar, S. K.; Silegel, R. A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. J. Polym. Sci. Part A:Polym. Chem.2008,46,6630-6640.
    [5]Horkay, F.; Basser, P. J.; Hecht, A.; Geissler, E. Calcium-induced volume transition in polyacrylate hydrogels swollen in physiological salt solutions Macromol. Biosci.2002,2,207-213.
    [6]Suzuki, A.; Tanaka, T. Phase transition in polymer gels induced by visible light. Nature 1990,346,345-347.
    [7]Park, H.; Kim, D. Swelling and mechanical properties of glycol chitosan/poly(vinyl alcohol) IPN-type superporous hydrogels. J. Biomed. Mater. Res.2006,78A,662-667.
    [8]Yin, L.; Fei, L.; Tang, C.; Yin, C. Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network-super-porous hydrogel containing sodium alginate. Polym. Int.2007,56, 1563-1571.
    [9]Kim, D.; Park, K. Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks Polymer 2004,45,189-196.
    [10]Kumar, H.; Siddaramaih, Somashekar, R.; Mahesh, S. S. Physico-mechanical and WAXS studies of PU/PS semi interpenetrating polymer networks. Eur. Polym. J. 2007,43,611-619.
    [11]Gong, J.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater.2003,15,1155-1158.
    [12]Nakayama, A.; Kakugo, A.; Gong, J.; Osada, Y; Takai, M.; Erata, T.; Kawano, S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater.2004,14,1124-1128.
    [13]Kaneko, D.; Tada, T.; Kurokawa, T.; Gong, J.; Osada, Y. Mechanically strong hydrogels with ultra-low frictional coefficients. Adv. Mater.2005,17,535-538.
    [14]Myung, D.; Waters, D.; Wiseman, M.; Duhamel, P.; Noolandi, J.; Ta, C. N.; Frank, C. W. Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol.2008,19,647-657.
    [15]Myung, D.; Koh, W.; Ko, J.; Hu, Y.; Carrasco, M.; Noolandi, J.; Ta, C. N.; Frank, C. W. Biomimetic strain hardening in interpenetrating polymer network hydrogels. Polymer 2007,48,5376-5387.
    [16]Myung, D.; Koh, W.; Bakri, A.; Zhang, F.; Marshall, A.; Ko, J.; Noolandi, J.; Carrasco, M.; Cochran, J. R.; Frank, C. W.; Ta, C. N. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed. Microdevices 2007,9(6),911-922.
    [17]Harmon, M. E.; Schrof, W..; Frank, C. W. Fast-responsive semi-interpenetrating hydrogel networks imaged with confocal fluorescence microscopy. Polymer 2003,44,6927-6836.
    [18]Bajpai, A. K.; Shukla, S. K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci.2008,33,1088-1118.
    [19]Tominaga, T.; Tirumala, V.; Lee, S.; Lin, E.; Gong, J.; Wu, W. Thermodynamic interactions in double-network hydrogels. J. Phy. Chem. B 2008,112, 3903-3909.
    [20]Schurz, J. A bright future for cellulose. Prog. Polym. Sci.1999,24,481-483.
    [21]Eichhorn, S. J.; Young, R. J.; Davies, G. R. Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 2005,6, 507-513.
    [22]Klemm, D.; Heublein, B.; Fink, H.; Bohn, A. Cellulose:Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed.2005,44,3358-3393.
    [23]Cai, J.; Zhang, L.; Zhou, J.; Qi, H.; Chen, H.; Kondo, T.; Chen X.; Chu, B. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:structure and properties. Adv. Mater.2007,19,821-825.
    [24]Liu, S.; Zhang, L.; Zhou, J.; Wu, R. Structure and properties of cellulose/Fe2O3 nanocomposite fibers spun via an effective pathway. J. Phys. Chem. C 2008,112, 4538-4544.
    [25]Liang, S.; Zhang, L.; Li Y.; Xu, J. Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol. Chem. Phys.2007,208, 594-602.
    [26]Chang, D. P.; Dolbow, J. E.; Zauscher, S. Switchable friction of stimulus-responsive hydrogels. Langmuir 2007,23,250-257.
    [27]Caykara, T.; Sengul, G.; Birlik, G. Preparation and swelling properties of temperature-sensitive semi-Interpenetrating polymer networks composed of poly[(N-tert-butylacrylamide)-co-acrylamide] and hydroxypropyl cellulose Macromol. Mater. Eng.2006,291,1044-1051.
    [28]Bajpai, A. K.; Mishra, A. Ionizable interpenetrating polymer networks of carboxymethyl cellulose and polyacrylic acid:Evaluation of water uptake. J. Appl. Polym. Sci.2004,93,2054-2065.
    [29]Tsukeshiba, H.; Huang, M.; Na, Y. H.; Kurokawa, T.; Kuwabara, R.; Tanaka, Y.; Furukawa, H.; Osada, Y.; Gong, J. P. Effect of polymer entanglement on the toughening of double network hydrogels. J. Phys. Chem. B 2005,109, 16304-16309.
    [30]Liang, L.; Rieke, P. C.; Liu, J.; Fryxell, G. E.; Young, J. S.; Engelhard, M. H.; Alford, K. L. Surfaces with reversible hydrophilic/hydrophobic characteristics on cross-linked poly(N-isopropylacrylamide) hydrogels. Langmuir 2000,16, 8016-8023.
    [31]Zhang, X. Z.; Yang, Y Y.; Chung, T. S.; Ma, K. X. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir 2001,17,6094-6099.
    [32]Xu, X. D.; Chen, C. S.; Wang, G. R.; Cheng, S. X.; Zhang, X. Z.; Zhuo, R. X. Click" chemistry for in situ formation of thermoresponsive p(NIPAAm-co-HEMA)-based hydrogels. J. Polym. Sci. Part A:Polym. Chem. 2008,46,5263-5277.
    [1]Sidorenko, A.; Krupenkin, T.; Taylor, A.; Aizenberg, J. Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns. Science 2007,315, 487-490.
    [2]Zhang Y.; Wu F.; Li M.; Wang E. pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine. Polymer 2005,46,7695-7700.
    [3]Stuart M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nature Materials 2010,9,101-113.
    [4]Tokarev, I.; Orlov, M.; Minko, S. Responsive polyelectrolyte gel membranes. Adv. Mater.2006,18,2458-2460.
    [5]Tokarev, I.; Minko, S. Multiresponsive, hierarchically structured membranes:new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv. Mater.2009,21,241-247.
    [6]Tokarev, I.; Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter.2009,5, 511-524.
    [7]Zhou, F.; Shu, W.; Welland M. E.; Huck, W. T. S. Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes. J. Am. Chem. Soc.2006,128,5326-5327.
    [8]Zhou, F.; Biesheuvel P. M.; Choi, E. Y.; Shu, W.; Poetes, R.; Steiner, U.; Huck W. T. S. Polyelectrolyte brush amplified electroactuation of microcantilevers. Nano Letters 2008,8,725-730.
    [9]Edmondson, S.; Frieda, K.; Comrie J. E.; Onck P. R.; Huck W. T. S. Surface polymerization from planar surfaces by atom transfer radical polymerization using polyelectrolyte macroinitiators. Adv. Mater.2006,18,724-728.
    [10]Li, F.; Zhu, Y.; Zhao, D.; Ruan, Q.; Zeng, Y; Ding, C. Smart hydrogels co-switched by hydrogen bonds and π-π stacking for continuously regulated controlled-release system. Adv. Funct. Mater.2010,20,669-676.
    [11]Misra, A; Jarrett, W.; Urban, M. W. Fluoromethacrylate-containing colloidal dispersions:phospholipid-assisted synthesis, particle morphology, and temperature-responsive stratification. Macromolecules 2007,41,6190-6198.
    [12]Lestage, D. J.; Urban M. W. Stimuli-responsive surface localized ionic cluster (SLICs) formation from nonspherical colloidal particles. Langmuir 2005,21, 6753-6761.
    [13]Lestage, D. J.; Urban, M. W. Stimuli-responsive surfactant/phospholipid stabilized colloidal dispersions and their film formation. Biomacromolecules 2005, 6,1561-1572.
    [14]Liu, F.; Urban, M. W. Propylmethacrylamide-co-n-butyl acrylate) colloids and their coalescence.3D directional temperature responsive (N-(DL)-(1-Hydroxymethyl) propylmethacrylamide-co-n-butyl acrylate) colloids and their coalescence. Macromolecules 2008,41,352-360.
    [15]Liu, F.; Urban, M. W. Thermal transitions in stimuli-responsive copolymer films. macromolecules. Macromolecules 2009,42,2161-2167.
    [16]Peppas, N.; Khare, A.R. Preparation, structure and diffusional behaviour of hydrogels in controlled release. Adv. Drug Deliver Rev.1993,11,1-35.
    [17]Shiotani, A.; Mori, T.; Niidome, T.; Niidome, Y.; Katayama, Y Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-IR laser irradiation. Langmuir 2007,23, 4012-4018.
    [18]Kudaibergenov, S.; Jaeger, W.; Laschewsky, A. Polymeric betaines:synthesis, characterization and application. Adv. Polym. Sci.2006,201,157-224.
    [19]Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver Rev.2001,53,321-339.
    [20]Mujumdar S. K.; Siegel, R. A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. J. Polym. Sci. Part A:Polym. Chem.2008,46,6630-6640.
    [21]Mao, J.; McScane, M. J. Transduction of volume change in pH-sensitive hydrogels with resonance energy transfer. Adv. Mater.2006,18,2289-2293.
    [22]Chan, A.; Whitney, R. A.; Neufeld R. J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 2009,10,609-616.
    [23]Jahern, S. L.; Butler, M. F.; Adams, S.; Cameron, R. E. Swelling and viscoelastic characterisation of pH-responsive chitosan hydrogels for targeted drug delivery. Macromol. Chem. Phys.2010,211,644-650.
    [24]Ghosh, B.; Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 2009,323,1458-1480.
    [25]Banmberger, T.; Caroli, C. Solvent control of crack dynamics in a reversible hydrogel. Natural Mater.2006,5,552-555.
    [26]Yan, Q.; Zhang, W.; Lu, G.; Su, X.; Ge, C. Frontal copolymerization synthesis and property characterization of starch-graft-poly(acrylic acid) hydrogels. Chem. Eur.J.2005,11,6609-6615.
    [27]Liu, J.; Zhai, M.; Ha, H. Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric. Radiat. Phys. Chem.1999,55,55-59.
    [28]Pourjavadi, A.; Harzandi, A. M.; Amini-Fazl, M. S. Taguchi optimized synthesis of collagen-g-poly (acrylic acid)/kaolin composite superabsorbent hydrogel. Eur. Polym. J.2008,44,1209-1216.
    [29]Rasool, N.; Yasin, T.; Heng, J.; Arkhter, Z. Synthesis and characterization of novel pH-, ionic strength and temperature-sensitive hydrogel for insulin delivery. Polymer 2010,51,1687-1693.
    [30]Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.; Cheng, H.; Han, C. C.; Kuga, S. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 2008,41, 9345-9351.
    [31]Qi, H.; Chang, C.; Zhang, L. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem.2009,11,177-184.
    [32]Song, Y.; Sun, Y.; Zhang, X.; Zhou, J.; Zhang, L. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 2008,9,2259-2264.
    [33]Qi, H.; Liebert, T.; Meister, F.; Heinze, T. Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React. Fund. Polym.2009,69, 779-784.
    [34]Khokhlov, A. R.; Kramarenko, E. Y. Weakly charged polyelectrolytes:collapse induced by extra ionization. Macromolecules 1996,29,681-685.
    [35]Hirotsu, S.; Hirokawa, Y.; Tanaka, T.V. Volume-phase transitions of ionized N-isopropyl acrylamide. J. Chem. Phys.1987,87,1392-1395.
    [36]Bajpai, S. K.; Dubey, S. In vitro dissolution studies for release of vitamin B12 from poly (N-vinyl-2-pyrrolidone-co-acrylic acid) hydrogels. React. Funct. Polym.2005,62,93-104.
    [37]Kim, S.; Kim, M.; Kim, S.; Spinks, G.; Kim, B.; Wallace, G. Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chem. Mater.2006,18,5805-5809.
    [38]Lai, F.; Li, H. Modeling of effect of initial fixed charge density on smart hydrogel response to ionic strength of environmental solution. Soft Matter 2010,6, 311-320.
    [39]Holtz, J.; Asher, S. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997,389,829-832.
    [40]Sokoloff, J. B. Theory of hydrostatic lubrication for two like-charge polymer hydrogel coated surfaces. Soft Matter 2010,6,3856-3862.
    [41]Khokhlov, A. R.; Kramarenko E. Y. Weakly charged polyelectrolytes:collapse induced by extra ionization. Macromolecules 1996,29,681-685.
    [42]Hirotsu, S.; Hirokawa, Y.; Tanaka, T. Volume-phase transitions of ionized N-isopropylacrylamide gels. J. Chem. Phys.1987,87,1392-1395.
    [43]Swann, J.; Bras, W.; Topham, P.; Howse, J.; Ryan, A. Effect of the hofmeister anions upon the swelling of a self-assembled pH-responsive hydrogel. Langmuir 2010,26,10191-10197.
    [44]Schneider, S.; Linse, P. Monte carlo simulation of defect-free cross-linked polyelectrolyte gels. J Phys Chem B 2003,107,8030-8040.
    [1]Liu, Y.; Chan-Park, M. B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 2009,30, 196-207.
    [2]Lee, K. Y.; Mooney, D J. Hydrogels for Tissue Engineering. Chem. Rev.2001, 101,1869-1880.
    [3]Zhang, J. T.; Jandt, K. D. A. Novel approach to prepare porous poly (N-isopropylacrylamide) hydrogel with superfast shrinking kinetics. Macromol. Rapid Commun.2008,29,593-597.
    [4]Ferruti, P.; Bianchi, S.; Ranucci, E.; Chiellini, F.; A. Piras, M. Novel agmatine-containing poly(amidoamine) hydrogels as scaffolds for tissue engineering. Biomacromolecules 2005,6,2229-2235.
    [5]Dadsetan, M.; Szatkowski, J. P.; Yaszemski, M.J.; Lu, L. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromolecules 2007,8,1702-1709.
    [6]Nagahama, K.; Ouchi, T.; Ohya, Y. Temperature-induced hydrogels through self-assembly of cholesterol-substituted star PEG-b-PLLA copolymers:an injectable scaffold for tissue engineering. Adv. Funct. Mater.2008,18, 1220-1231.
    [7]Poon, Y. F.; Cao, Y.; Zhu, B.; Judeh,Z. M. A.; Chan-Park, M. B. Addition of β-malic acid-containing poly(ethylene glycol) dimethacrylate to form biodegradable and biocompatible hydrogels. Biomacromolecues.2009,10, 2043-2052.
    [8]Martens, P. J.; Bryant, S. J.; Anseth, K.S. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules.2003,4,283-292.
    [9]Kim, J.; Lee, K.; Hefferan, T. E.; Yaszemski, M. J.; Lu, L. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules.2008,9, 149-157.
    [10]Chevallay, B.; Abdul-Malak, N.; Herbage, D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds:influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J. Biomed. Mater. Res.1999,49,448-459.
    [11]Inoue, N.; Bessho, M.; Furuta, M.; Kojima, T.; Okuda, S.; Hara, M. J. A novel collagen hydrogel cross-linked by gamma-ray irradiation in acidic pH conditions. Biomater. Sci. Polym. Ed.2006,17,837-858.
    [12]Leach, J. B.; Schmidt, C. E. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 2005,26,125-135.
    [13]Augst, A. D.; Kong, H. J.; Mooney, D. J. Alginate hydrogels as biomaterials. Macromol Biosci.2006,6,623-633.
    [14]Kong, H. J.; Wong, E.; Mooney, D. J. Independent control of rigidity and toughness of polymeric hydrogels. Macromolecues 2003,36,4582-4588.
    [15]Kong, H. J.; Kailer, D.; Kim, K.; Mooney, D. J. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution Biomacromolecues 2004,5,1720-1727.
    [16]Shi, X. W.; Tsao, C. Y.; Yang, X.; Liu, Y.; Dykstra, P.; Rubloff, G. W.; Ghodssi, R.; Bentley, W. E.; Payne, G. F. Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels. Adv. Funct. Mater.2009,19, 2074-2080.
    [17]Chan, A.W.; Whitney, R.A.; Neufeld, R. J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 2009,10,609-616.
    [18]Liu, Y.; Chan-Park, M. B. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 2010,31,1158-1170.
    [19]Zhou, J.; Chang, C.; Zhang, R.; Zhang, L. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution, Macromol. Biosci.2007,7,804-809.
    [20]Vrana, N. E.; Liu, Y.; McGuinness, G. B.; Cahill, P. A. Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol. Symp.2008,269,106-110.
    [21]Shi, X. W.; Yang, X.; Gaskell, K. J.; Liu, Y.; Kobatake, E.; Bentley, W. E.; Payne, G. F. Reagentless protein assembly triggered by localized electrical signals. Adv. Mater.2009,21,984-988.
    [22]Kumar, M. A review of chitin and chitosan applications. React. Funct. Polym. 2000,46,1-27.
    [23]Pillai, C.; Paul, W.; Sharma, C. Chitin and chitosan polymers:chemistry, solubility and fiber formation. Prog. Polym. Sci.2009,34,641-678.
    [24]Rinaudo, M.. Chitin and chitosan:Properties and applications. Prog. Polym. Sci. 2006,31,603-632.
    [25]Austin, P. R. Chem. Abstr.1978,88,6349d.
    [26]Terbojevich, M.; Carrara, C.; Cosani, A. Solution studies of the chitin-lithium chloride-N,N-di-methylacetamide system. Carbohydr. Res.1988,180,73-86.
    [27]Austin, P. R.1975, Solvents and purification of chitin. US Patent 3,892,731.
    [28]Tamura, H.; Nagahama, H.; Tokura, S. Preparation of chitin hydrogel under mild conditions. Cellulose 2006,13,357-364.
    [29]Hu, X.; Du, Y.; Tang, Y.; Wang, Q.; Feng, T.; Yang, J.; Kennedy, J. F. Fair wages, unemployment and technological change in a global economy. Carbohydr. Polym. 2007,70,451-469.
    [30]Elisseeff, J. Hydrogels:Structure starts to gel. Nature Mater.2008,7,271-273.
    [31]Sebastien, L.; David, L.; Domard, A.; Multi-membrane hydrogels. Nature 2008, 452,76-79.
    [32]Cohen Stuart, M.; Huck, W.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.; Szleifer, I.; Tsukruk, V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, Minko, I. S. Emerging applications of stimuli-responsive polymer materials. Nature Mater.2010,9,101-113.
    [33]Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.; Cheng, H.; Han,C.C.; Kuga, S. Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 2008,41,9345-9351.
    [34]Lou, X.; Zhang, L. High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J. Hazard. Mater.2009,171, 340-347.
    [35]Qi, H.; Chang, C.; Zhang, L. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process Green Chem.2009,11,177-184.
    [36]Luo, X; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of Fe3O4/cellulose micropheres with magnetic-induced protein delivery. J. Mater. Chem.2009,19, 3538-3545.
    [37]Gagnaire, D. NMR studies of chitin and chitin derivatives. Makromol. Chem. 1982,183,593-601.
    [38]Yamaguchi, Y.; Nge, T.; Takemura, A.; Hori, N.; Ono, H. Characterization of uniaxially aligned chitin film by 2D FT-IR spectroscopy. Biomacromolecules 2005,6,1941-1947.
    [39]Wada, M.; Saito, Y. Lateral thermal expansion of chitin crystals. J. Polym. Sci. Part B:Polym. Phys.2001,39,168-174.
    [40]Zhang, X.; Chu, C.; Zhuo, R. J. Using hydrophobic additive as pore-forming agent to prepare macroporous PNIPAAm hydrogels. J. Polym. Sci. Part A: Polym. Chem.2005,43,5490-5497.
    [41]Andac, M.; Plieva, F.; Denizli, M. A.; Galaev, B I.Y.; Mattiasson, Poly(hydroxyethyl methacrylate)-based macroporous hydrogels with disulfide cross-linker. Macromol. Chem. Phys.2008,209,577-584.
    [42]Goycoolea, F.; Argiielles-Monal, W.; Lizardi, J.; Peniche, C.; Heras, A.; Galed, G.; Diaz, E. Temperature and pH-sensitive chitosan hydrogels:DSC, rheological and swelling evidence of a volume phase transition. Polym. Bull.2007,58,225-234.
    [43]Crompton, K.; Goud, J.; Bellamkonda, R.; Gengenbach, T.; Finkelstein, D.; Home, M.; Forsythe, J. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 2007,28,441-449.
    [44]Butler, M.; Clark, A.; Adams, S. Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin Biomacromolecules 2006,7,2961-2970.
    [1]Freed, L. E.; Engelmayr, G. C.;.Borenstein, J. T.; Moutos, F. T.; Guilak, F. Advanced material strategies for tissue engineering scaffolds. Adv. Mater.2009,21, 3410-3418.
    [2]Shastri, V. P. In vivo engineering of tissues:biological considerations, challenges, strategies, and future Directions. Adv. Mater.2009,21,3246-3254.
    [3]Lutolf, M. P.; Blau, H. M. Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials. Adv. Mater.2009,21,3237-3245.
    [4]Hollister, S. J. Scaffold design and manufacturing:from concept to clinic. Adv. Mater.2009,21,3330-3337.
    [5]Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002,47,424-428
    [6]Chen, K. Y.; Shyu, P. C.; Dong, G. C; Chen, Y. S.; Kuo, W. W.; Yao, C. H. Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite. Biomaterials 2009,30, 1682-1688.
    [7]Khan, F.; Tare, R. S.; Oreffo, R. O. C.; Bradley, M. Versatile biocompatible polymer hydrogels:scaffolds for cell growth. Angew. Chem. Int. Ed.2009,48, 978-982.
    [8]Jayakumar, R.; Rani, V.V. D.; Shalumon, K.T.; Kumar, P.T. S.; Nair, S.V.; Furuike, T.; Tamura, H. Bioactive and osteoblast cell attachment studies of novel α-and β-chitin membranes for tissue-engineering applications. Inter. J. Biolog. Macromol.2009,45,260-264.
    [9]Gun'ko, V. M.; Mikhalovska, L. I.; Savina, I. N.; Shevchenko, R. V.; James, S. L.; Tomlinsc, P. E.; Mikhalovsky, S. V. Characterisation and performance of hydrogel tissue scaffolds. Soft Matter 2010,6,5351-5358.
    [10]Zhang, C.; Aung, A.; Liao, L.; Varghese, S. A novel single precursor-based biodegradable hydrogel with enhanced mechanical properties. Soft Matter 2009,5, 3831-3834
    [11]Xu, Y.; Sato, K.; Mawatari, K0; Konno, T.; Jang, K.;Ishihara, K.; Kitamori, T. A microfluidic hydrogel capable of cell preservation without perfusion culture under cell-based assay conditions. Adv. Mater.2010,22,3017-3021.
    [12]Liu, X.; Okada, M.; Maeda, H.; Fujii, S.; Tsutomu, F. Hydroxyapatite/biodegradable poly(L-lactide-co-ε-caprolactone) composite microparticles as injectable scaffolds by a pickering emulsion route. Acta Biomater.2011,7,821-828.
    [13]Wei, G.; Ma, P. X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004,25, 4749-4757.
    [14]Zhang, R.; Ma, P. X. Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res.1999,45,285-93.
    [15]Lee, S. J.; Johnson W. A. J., Murphy, W. L. A modular, hydroxyapatite-binding version of vascular endothelial growth factor. Adv. Mater.2010,22,5494-5498.
    [16]Song, J.; Saiz, E.; Bertozzi, C. R. A new approach to mineralization of biocompatible hydrogel scaffolds:An efficient process toward 3-Dimensional bonelike composites. J. Am. Chem. Soc.2003,125,1236-1243.
    [17]Mukhopadhyay, S.; Maitra, U.; Krishnamoorthy, I. G.; Schmidt, J.; Talmon, Y. Structure and dynamics of a molecular hydrogel derived from a tripodal cholamide. J. Am. Chem. Soc.2004,126,15905-15914.
    [18]Pan, Y. Swelling properties of nano-hydroxyapatitle reinforece poly(vinyl alcohol) gel biocomposite. Micro Nano Lett.2010,5,237-240.
    [19]Roohani-Esfahani, S. I.; Nouri-Khorasani, S.; Lu, Z.; Appleyard, R.; Zreiqat, H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010,31,5498-5509.
    [20]Laschke, M. W.; Strohe, A.; Menger, M. D.; Alini, M.; Eglin, D. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomater.2010,6, 2020-2027.
    [21]Du, M.; Song, W.; Cui, Y.; Yang, Y.; Li, J. Fabrication and biological application of nano-hydroxyapatite(nHA)/alginate(ALG) hydrogel as scaffolds. J. Mater. Chem.2011,21,2228-2236.
    [22]Hutchen, S. A.; Benson, R. S.; Evans, B. R.; O'Nell, H. M.; Rawn, C. J. Biomimetic synthesis of calcium-deficent hydroxyapatite in a natural hydrogel. Biomaterials 2006,27,4661-4670.
    [23]Nair, M. B.; Babu, S. S.; Varma, H. K.; John, A. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater.2008,4, 173-181.
    [24]Hakimimehr, D.; Liu, D. M.; Troczynski, T. In-situ preparation of poly(propylene fumarate)-hydroxyapatite composite. Biomaterials 2005,26, 7297-7303
    [25]Watanabe, J.; Akashi, M. Novel biomineralization for hydrogels:Electrophoresis approach accelerates hydroxyapatite formation in hydrogels. Biomacromolecules 2006,7,3008-3011.
    [26]Li, L. H.; Kommareddy, K. P.; Pilz, C.; Zhou, C. R.; Fratzl, P.; Manjubala, I. In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomater.2010,6,2525-2531.
    [27]Tan, R.; Feng, Q.; She, Z.; Wang, M.; Jin, H.; Li, J.; Yu, X. In vitro and in vivo degradation of an injectable bone repair composite. Polym. Degrad. Stab.2010, 95,1736-1742.
    [28]Eosoly, S.; Brabazon, D.; Lohfeld, S.; Looney, L. Selective laser sintering of hydroxyapatite/poly-s-caprolactone scaffolds. Acta Biomater.2010,6, 2511-2517.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700