有机薄膜场效应晶体管、发光和显示驱动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文进行了如下具有创新性的研究工作。
     在自行设计的水平式有机晶体的气相沉积装置中,进行了并五苯单晶薄膜的重复性再生长研究。
     以并五苯薄膜为有源层,先后制备了多类有机场效应器件,研究了场的作用下载流子的注入特性,实现了并五苯有源层的双极载流子传输,这些为实现有机电泵浦激光器所需要的电子、空穴均衡注入提供了新的途径。
     以多种工艺在硅基衬底和玻璃衬底上制备了不同结构的有机薄膜场效应晶体管(OTFT),论述了不同制备工艺的优缺点,以及器件结构对性能的影响。制备的全有机薄膜场效应晶体管最高迁移率接近1 cm~2/Vs,开关电流比超过10~5。采用全蒸镀方式制备了双极并五苯薄膜场效应迁移率,其空穴迁移率为0.17 cm~2/Vs,电子迁移率为2.0×10~(-2) cm~2/Vs。提出双栅绝缘层结构全有机薄膜场效应晶体管,达到了减少器件栅的漏电流、降低器件工作电压和提高器件工作电流的目的。并在此基础上设计和制备了OTFT-OLED全有机集成像素。
The information technology has become the global stratagem technology. Based on the photoelectron and microelectronics, communication and net technology has become the core of high-tech. As the main carriers of information technology, lasers and display devices play significant roles. Compare to the inorganic semiconductors, the organic semiconductors have much advantages. The semiconductor photo-electronic devices and field-effect devices with organic semiconductor acting as active layer have wide application foreground, and become one of the research hotspots.
     Physical vapor deposition in horizontal system is used to grow the pentacene single crystal thin-film. By repeatedly experiments, the condition of pentacene single crystal growth is optimized.
     For the research of electrically pumped organic lasers, the carrier injection is considered as the key questions of carrier imbalance injection and low mobility in organic materials. With the pentacene acting as the active layer, the diode of ITO/pentacene/Al, the vertical organic thin-film field-effect transistor, the organic thin-film ambipolar field-effect transistor and the organic thin-film double-field-effect transistor are fabricated. The devices performances are researched and the ambipolar carriers injection in pentacene is successfully realized, which supply a new way for electron and
引文
[1] Daniel Moses. High quantum efficiency luminesecence from a conducting polymer solution: A novel polymer laser dye, Appl.phys.Lett. (1992) 60, 3215-3217
    [2] Fumitomo Hide, Marfa A, and Dfaz-Garcfa, et al. Semiconducting polymer:a new class of solid-state laser materials, Science. (1996) 273 (27), 1833-1836
    [3] N. Tessler, G. J. Denton and R. H. Friend. Lasing from conjugated- polymer microcavities, Nature (1996) 382, 695 - 697
    [4] V.G..ozlov, V.Bulovi, and P.E.Burrows, et al. Laser action in organic semiconductor waveguide and double-heterostructure devices, Nature. (1997) 389, 362- 364
    [5] A. Dodabalapur, E. A. Chandross, M. Berggren, and R. E. Slusher. Organic Solid-State Lasers: Past and Future, Science (1997) 277, 1787 – 1788.
    [6] M. Berggren, A. Dodabalapur, RE Slusher, Z. Bao. Light amplification in organic thin films using cascade energy transfer, Nature (1997) 389, 466-469
    [7] V. Bulovic, V. G. Kozlov, and V. B. Khalfin, et al. Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities, Science. (1998) 279, 553-555
    [8] Peidong Yang, Gernot Wirnsberger, and Howard C. Huang, Mirrorless lasing from mesostructured wave-guides patterned by soft lithography, Science. (2000), 287, 465-467
    [9] R. ?sterbacka, C. P. An, and X. M. Jiang, et al. Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals,Science. (2000) 287, 839 – 842
    [10] Mari′a A. D?′az-Garc, Fumitomo Hide, and Benjamin J. Schwartz, et al. “Plastic” lasers: Comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities, Appl.Phys.Lett.(1997) 70(24), 3191-3193
    [11] A. Schülzgen, Ch.Spiegelberg, and M. M. Morrell, et al. Near diffraction-limited laser emission from a polymer in a high finesse planar cavity, Appl.Phys.Lett. (1998) 72(3), 269-271
    [12] S. V. Frolov, M.Shkunov, and Z.V.Vardeny, Ring microlasers from conducting polymers, Phys.Rev.B. (1997) 56(8), 4363-4366
    [13] S.V.Frolv and Z.V.Vardeny, Plastic microring lasers on fibers and wires. Appl.Phys.Lett. (1998) 72(15), 1802-1804.
    [14] R.C.Polson, Z.V.Vardeny, and D.A.Chinn, Multiple resonances in microdisk lasers of π-conjugated polymers, Appl.Phys.Lett. (2002) 81,1561-1563.
    [15] Hisao Yanagi, Masatoshi Kondo, and Naoki Matsuoka, et al. Gain-narrowed light emission from self-organized organic microdots, Chem.Mater. (2001) 13, 4800-4803
    [16] G.Wegman, H.Giessen, and A.Greiner, et al. Laser emission from a solid conjugated polymer:gain,tunability,and coherence. Phys.Rew.B. (1998) 57(8), 4218-4221.
    [17] G.Wegmann, B.Schweitzer, and M.Hopmeier, et al. Conjugated polymer lasers:emission characteristics and gain mechanism. Phys.Chem.Chem.Phys. (1999) 1, 1795-1800
    [18] H.Kogelnik and C.V.Shank, Stimulated emission in a periodic structure.Appl.Phys.Lett. (1972) 18(4),152-154.
    [19] R.Gupta, M.Stevenson and A.J.Heeger, Low threshold distributed feedback lasers fabricated from blends of conjugated polymers:reduced losses and through forster transfer, J.Appl.Phys. (2002) 92(9). 4874-4877.
    [20] S.Riechel, U.Lemmer, and J.Feldmann, et al. Laser modes in organic solid-state distributed feedback lasers. Appl.Phys.B. (2000) 71. 897-900.
    [21] Christian Kallinger, Martin Hilmer, and Andreas Haugeneder, et al. A Flexible conjugated polymer laser. Adv.Mater, (1998) 10(12), 920-923.
    [22] T.Voss, D.Scheel and W.Schade, A microchip-laser-pumped DFB-polymer-dye laser, Appl.Phys.B. (2001) 73, 105-109
    [23] Xiao-lei Zhu and Dennis Lo, Distributed-feedback sol-gel dye laser tunable in the near ultraviolet, Appl.Phys.Lett. (2000) 77(17), 2847-2849
    [24] Brett Maune, Marko Loncar and Jeremy Witzens, et al. Liquid-crystal electric tuning of a photonic crystal laser, Appl.Phys.Lett. (2004) 85(3), 360-362.
    [25] K.Yoshino, S.Tatsuhara and Y.Kawagishi, et al. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Appl.Phys.Lett. (1999) 74(18), 2590-2591.
    [26] Katsumi Yoshino, Satoshi Tatsuhara and Yoshiaki Kawagishi, et al. Spectral narrowing of photoluminescence in conducting polymer and fluorescent dyes infiltrated in photonic crystal, synthetic opal. Jpn.J.Appl.Phys, (1998) 37, 1187-1189.
    [27] M. D. Mcgehee, et al. Semiconduting polymer distributed feedback lasers, Appl. Phys. Lett., (1998) 72,1536
    [28] V. G. Kozlov, G. Parthasaratny and P. E. Burrows, et al, Opticallypumped blue organic semiconductor lasers, Appl. Phys.Lett., (1998) 72(2), 144-146
    [29] Nir Tessler. Lasers based on semiconducting organic materials, Advanced materials, (1999) 11, 363-370
    [30] Michael D. McGehee and Alan J. Heeger, Semiconducting (conjugated) polymers as materials for solid-state lasers, Advanced materials, (2000) 12, 1655-1668
    [31] U. Scherf, S. Riechel and U. Lemmer, et al. Conjugated polymers: lasing and stimulated emission, Current opinion in solid state and materials science, (2001) 5, 143-154
    [32] M. A. Baldo, R. J. Holmes, and S. R. Forrest. Prospects for electrically pumped organic lasers. Physical Review B. (2002) 66, 035321
    [33] J. H. Sch?n, Ch. Kloc and A. Dodabalapur, et al. An organic solid state injection laser. Science (2000) 289, 599-602. This paper has been retracted [298 961(2002)],yet contains legitimate and innovating ideas that are now generally accepted.
    [34] M. Pope, H. Kallmann and P. J. Magnante, Electroluminescence in organic crystals. J. Chem. Phys. (1963) 38, 2042.
    [35] W. Helfrich and W. G. Schneider, Recombination radiation in anthracene crystals, Phys. Rev. Lett. (1965)14, 229.
    [36] F. Lohmann and W. Mehl, Dark injection and radiative recombination of electrons and holes in naphthalene crystals J. Chem. Phys. (1969) 50, 500.
    [37] D. F. Williams and M. Schadt, A simple electroluminescence diode Proc. IEEE, (1970) 58, 476.
    [38] P. S. Vincett, W. A. Barlow and R. A. Hann, et al. Electrical conductionand low voltage blue electroluminescence in vacuum-deposited organic films, Thin Solid Film, (1982) 94, 171.
    [40] S.A.Vanslyke, C.W.Tang, U.S.Patent-4, (1985) 539, 507.
    [41] C. W. Tang and S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett (1987) 51,913.
    [42] C. Adachi, S. Tolito and T. Tsutsui, et al. Organic electroluminescence device with a three-layer structure, Jpn. J. Appl. Phys. (1988) 27, L713.
    [43] J. H. Barroughes, D. D. C. Bradley and A. R. Brown et. al. Light-emitting diodes based on conjugated polymers, Nature, (1990) 347 539.
    [44] D. Braun and A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. phys. Lett, (1991) 58 1982.
    [45] G. H. Heilmeier, and L. A. Zanoni, Surface studies of phthalocyanine-copper films, J. Phys. Chem. Solids, (1964) 25, 603-611
    [46] F. Ebisawa, T. Kurokawa, and S. Nara, Eletrical properties of polyacetylene- polysiloxane interface, J. Appl. Phys., (1983) 54, 3255.
    [47] K. Kudo, M. Yamashina and T. Moriizumi, Field Effect Measurement of Organic Dye Films, Jpn. J. Appl. Phys., 1984, 23, 130.
    [48] A. Tsumura, H. Koezuka, and T. Ando, Macromolecular electronic device: Field-effect transistor with a polythiophene thin film, Appl. Phys. Lett. (1986) 49, 1210-1212
    [49] D. J. Gundlach, Y. Y. Lin and T. N. Jackson, et al. Pentacene organic thin-film transistors-Molecular ordering and mobility, IEEE Electron Device Lett. (1997) 18, 87-89
    [50] Y. Y. Lin, D. J. Gundlach and S. F. Nelson, et al, Stacked pentacene layer organic thin film transistors with improved characteristics, IEEE ElectronDevice Lett. (1997) 18, 606-608
    [51] Oana D.Jurchescu, Jacob Baas and Thomas T.M.Palstra, Effect of impurities on the mobility of single crystal pentacene. Appl.Phys.Lett. (2004) 84: 3061-3063
    [52] J. H. Burroughes, C. A. Jones and R. H. Friend. New Semiconductor Device Physics in Polymer Diodes and Transistors. Nature, (1988) 335:137.
    [53] C. Clarisse, M. T. Riou, M. Gauneau, and M. Le Contellec. Field-Effect Transistor with Diphthalocyanine Thin Film. Electron. Let. (1988) 24: 674.
    [54] A. Assadi, C. Svensson, M. Willander and O. Inganas. Field-Effect Mobility of Poly(3-hexylthiophene). Appl. Phys. Lett. (1988) 53: 195-197.
    [55] J. Paloheimo, E. Punkka, H. Stubb and P. Kuivalainen. Proceedings of NATO ASI, Spetses. Greece, R. M. Mertzger, Ed., Plenum Press, New York, 1989.
    [56] Gilles Horowitz, Denis Fichou and Xuezhou Peng, et al. A Field-Efect Transistor based on Conjugated Alpha-Sexithienyl", Solid State Commun.(1989) 72:381-384.
    [57] Xuezhou Peng, Gilles Horowitz, and Denis Fichou, et al. All-organic thin-film transistors made of alpha-sexithienyl semiconducting and various polymeric insulating layers. Appl. Phys. Lett. (1990) 57: 2013-2015.
    [58] G. Guillaud, M. A. Sadound and M. Maitrot. Field-effect transistors based on intrinsic molecular semiconductors. Chem. Phys. Lett. (1990) 167: 503-506
    [59] D.M.Taylor, H.L.Gomes and A.E.Underhill, et al. Effect of oxygen on the electrical characteristics of field effect transistors formed from electrochemically deposited films of Poly(3-methylthiophene).J.Phys.D:Appl.Phys. (1991) 24:2032-2038
    [60] G. Horowitz, X. Peng, D. Fichou, and F. Gamier, Role of the semiconductor/insulator interface in the characteristics of n-conjugated- oligomer-based thin-film transistors. Synth. Met. (1992) 51: 419-424
    [61] C.D.Dimitrakopoulos and D.J.Mascaro. Organic thin-film transistors: A review of recent advances. IBM J.RES. & DEV. (2001) 45: 11-27
    [62] F. Gamier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Delofre, B. Servet, S. Ries, and P. Alnot. Engineering of Organic Semiconductors: Design of Self-Assembly Properties in Conjugated Thiophene Oligomers. J. Am. Chem.Soc. (1993) 115: 8716
    [63] H.Fuchigami, A.Tsumura and H.Koezuka. Polythienylenevinylene thin-film transistor with high carrier mobility. Appl. Phys. Lett. (1993) 63: 1372-1374.
    [64] F. Gamier, R. Hajlaoui, and A. Yassar, et al. All-Polymer Field-Efect Transistors Realized by Printing Techniques. Science (1994) 256: 1648.
    [65] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp. Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications. J.Appl. Phys. (1996) 80: 2501.
    [66] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M.Fleming. C60 thin film transistors. Appl. Phys. Lett. (1995) 67:121-123.
    [67] Z. Bao, A. J. Lovinger and A. Dodabalapur. Organic Field-Effect Transistors with High Mobility Based On Copper Phthalocyanine. Appl.Phys.Lett. (1996) 69: 3066-3068
    [68] Z.Bao, A.Dodabalapur and A. J. Lovinger. Soluble and Processable Regioregular Poly(3-hexylthiophene) for Thin Film Field-Effect TransistorApplications with High Mobility. Appl. Phys. Lett. (1996) 69: 4108-4110.
    [69] C.D.Dimitrakopoulos, B.K.Furman and T.Graham, et al. Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-di-hexyl- hexathiophene and Polymeric Insulators. Synth.Met. (1998) 92: 47
    [70] Y. Y. Lin, D.J.Gundlach, and T. N. Jackson. High Performance Pentacene Organic Thin-Film Transistors, 54'11 Annual Device Research Conference Digest, 1996, 80.
    [71] H. Sirringhsus, R. H. Friend, X. C. Li, S. C. Morati, A. B. Holmes, and N.Feeder. Bis(dithienothiophene) Organic Field Effect Transistors with HighON/OFF Ratio. Appl. Phys. Lett. (1997) 71: 3871
    [72] H. Sirringhaus, N. Tessler, and R. H. Friend. Field-Efect Integrated Optoelectronic Devices Based On Conjugated Polymers. Science (1998) 280:1741.
    [73] H.E.Katz, A.J.Lovinger, and J.Cx Laquindanum. α-ω-dihexyl- quaterthiophene: A Second Thin Film Single-Crystal Organic Semiconductor. Chem. Mater. (1998) 10: 475.
    [74] Z. Bao, A. J. Lovinger, J. Brown. New Air-Stable n-Channel Organic Thin Film transistors. J. Am. Chem. Soc. (1998) 120: 207-208
    [75] S.F.Nelson, Y.Y.Lin, D.J.Gundlach and T.N.Jackson. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. (1998) 72: 1854
    [76] D. J. Gundlach, C. C. Kuo, S. F. Nelson and T. N. Jackson. Organic Thin Film Transistors with Field Efect Mobility > 2cm2/Vs. 57th Device Research Conference Digest, June 1999 164-165.
    [77] A. Faccheti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R.H.Friend, Angew. Chem., Int. Ed. 2000, 39, 4547.
    [78] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L Kosbar, T. O.Graham, A. Curioni, W. Andreoni. N-type organic thin-film transistor with high field-efect mobility based on a NN'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivate. Appl. Phys. Lett. (2002) 80: 2517-2519.
    [79] T. Kelley, L. D. Boardman, T. D. Dunbar, D. V Muyres,M. J. Pellerite, and T. P.Smith. High-performance OTFTs using surface-modified alumina dielectrics. J.Phys. Chem. B (2003) 107: 5877-5881.
    [80] A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen. High-performance, Solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc. (2002) 124: 8812-8813
    [81] V Podzrov, S. E. Sysoev, E. loginova, V M. Pudalov, and M. E. Gershenson. Single-crystal organic field efect transistors with the hole mobility ~8cm2/Vs. Appl. Phys. Lett. (2003) 83: 3504-3506.
    [82] S. Kobayashi, T. Takenobu and S. Mori. Fabrication and characterization of C60 thin film transistors with high field-efect mobility. Appl. Phys. Lett. (2003) 82: 4581-4583.
    [83] G Wang, J. Swensen, D. Moses, and A. J. Heeger. Increased mobility from regiorregular poly(3-hexylthiophene) field efect transistors. J. Appl. Phys. (2003) 93: 6137-6141.
    [84] M. Halik, H. Klauk, and U. Zschieschang, et al. Relationship between molecular structure and electrical performance of oligothiophene organic thin film transistors. Adv.Mater. (2003) 15: 917-922.
    [85] V. C. Sundar, J. Zaumseil, and V. Podzorov, et al. Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals. Science(2004) 303: 164
    [86] J. Zhang, J. Wang, H. Wang, and D. Yan. Organic thin-film transistors in sandwich configuration. Appl. Phys. Lett. (2004) 84: 142-144.
    [87] Marcus Ahles, Roland Schmechel and Heinz von Seggenrn. N-type organic field-effect transistor based on interface-doped pentacene. Appl. Phys. Lett. (2004) 85: 4499-4501.
    [88] Hisashi Fukuda, Yasuaki Yamagishi and Masafumi Ise, et al. Gas sensing properties of poly-3-hexylthiophene thin film transistors. Sensors and Actuators B (2005) 108: 414-417
    [89] Joshua N.Haddock, Xiaohong Zhang and Benoit Domercq, et al. Fullerene based n-type organic thin-film transistors. Organic Electronics (2005) 6:182-187
    [90] D.J.Gundlach, K.P.Pernstich, and G.Wilckens, et al. High mobility n-channel organic-thin-film transistors. J.Appl.Phys. (2005) 98: 064502
    [91] Tsumora, H. Koezuka and T. Ando. Polythiophene Field-Efect Transistor: Its Characteristics and Operation Mechanism. Synth. Met. (1988) 25: 11-23.
    [92] H.Akimichi, K.Waragai, S.Hota, H.Kano and H. Sakaki. Field-effect Transistors using alkyl substituted oligothiophenes. Appl. Phys. Lett. (1991) 58(14):1500-1502.
    [93] F.Gamier, R.Hajlaoui, A.Yassar, P.Srivastava. All-polymer field-effect transistor Realized by printing techniques. Scinece (1994) 265: 1684-1686.
    [94] Dodabalapur, H. E. Katz, L. Torsi, and R.C. Haddon. Organic Heterostructure Field-Effect Transistors. Science (1995) 269:1560-1562
    [95] J. G Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur. Morphological origin of high Mobility in Pentacebe Thin-Film Transistors.Chem. Mater. (1996) 8: 2542-2544.
    [96] G Horowitz, F. Gamier, and A. Yassar,et al. Field-Efect Transistor Made with a Sexithiophene Single Crystal. Adv. Mater. (1996) 8(1): 52-54.
    [97] A. R. Brown, C. P Jarrett, D. M. De Leeuw, and M. Matters. Field-effect transistors made from solution-processed organic semiconductors. Synth. Met. (1997) 88: 37-55.
    [98] Dodabalapur, Z. Bao, and A. Makhijia, et al. Organic smart pixels. Appl. Phys. Lett. (1998) 73(2): 142-144.
    [99] C. J. Drury C. M. J. Mutsaers, abd C. M. Hart, et al. Low-cost all-polymer integrated circuits. Science (1998) 73(1): 108-110.
    [100] W A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk. Intrinsic charge transport properties of an organic single crystal determined using a multiterminal thin-film transistor. Appl. Phys. Lett. (1998) 73(26): 3884-3886.
    [101] C. D. Dimitrakopoulos, S. Purushothaman, and J Kymissis, et al. Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators. Scinece (1999) 283: 822.
    [102] Crone, A. Dodabalapur, and Y-Y Lin, et al. Large-scale complementary integrated circuits based on organic transistors. Nature (2000) 430: 521-523.
    [103] J. A. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija, IEEE Electron Device Letters (2000) 21(3):100
    [104] H.E.A Huitema, G.H.Gelinck and J.B.P.H. vander Puten, et al. Polymer electronics: Plastic transistors in active-matrix displays. Nature (2001) 414: 599
    [105] E. J. MEIJER, D. M. DE LEEUW, and S. SETAYESH, et al.Solution-processed ambipolar organic field-efect transistors and inverters. Nature materials (2003) 2: 678.
    [106] R. J. Chesterfield, C. R. Newman, and T. M. Pappenfus, et al. High Electron Mobility and Ambipolar Transport in Organic Thin-Film Transistors Based on π-Stacking Quinoidal Terthiophene. Adv. Mater. (2003) 15: 1278.
    [107] E. J. MEIJER, D. M. DE LEEUW, and S. SETAYESH, et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature materials. (2003) 2: 678.
    [108] Y Xia, G M. Whitesides. Soft Lithography. Annu. Rew. Mater. Sci. (1998) 28: 153-184.
    [109] Y. L. Loo, R.W Willet, K. Baldwin and J.A. Rogers. Additive, nanoscale paterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics. Appl. Phys. Lett. (2002) 81: 562
    [110] Michael D.Austin and Stephen Y.Chou. Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett. (2002) 81: 4431
    [111] C. D. Sheraw, L. Zhou and J. R. Huang, et al. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. (2002) 80:1088
    [112] Henning Sirringhaus, Nir Tessler and Richard H.Friend. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science (1998) 280: 1741-1744
    [113] T.Kodzasa, M.Yoshida and S.Uemura, et al. Memory effects of pentacene MFS-FET. Synth. Met. (2003) 137: 943-944
    [114] K.N.Narayanan Unni, Remi de Bettignies and Sylvie Dabos-Seignon, et al. A nonvolatile memory element based on an organic field-effect transistor. Appl. Phys. Lett. (2004) 85: 1823
    [115] Raoul Schroeder, Leszek A. Majewski and Martin Grell. All-organic permanent memory transistor using an amorphous spin-cast ferroelectric-like gate insulator. Adv. Mater. (2004) 16(7): 633-636
    [116] Zheng-Tao Zhu, et al. Humidity sensors based on pentacene thin-film transistors. Appl. Phys. Lett. (2002) 81: 4643
    [117] Grzegorz Darlinski, Ulrich Bottger and Rainer Waser. Mechanical force sensors using organic thin-film transistors. J.Appl.Phys. (2005) 97: 093708
    [118] A. Dodabalapur, J. Laquindanum, and Z. Bao. Complementary circuits with organic transistors. Appl. Phys. Lett. (1996) 69: 4227
    [119] C. J. Drury, C. M. J. Mutsaers, and C. M. Hart, et al. Low-cost all-polymer integrated circuits. Appl. Phys. Lett. (1998) 73: 108
    [120] G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw. High-performance all-polymer integrated circuits. Appl. Phys. Lett. (2000) 77:1487
    [121] A.Knobloch, A.Manuelli and A.Bernds. Fully printed integrated circuits from solution processable polymers. J.Appl. Phys. (2004) 96: 2286
    [122] T. N. Jackson, Y. Y. Lin, D. J. Gundlach, and H. Klauk. Organic thin-film transistors for organic light-emitting flat-panel display backplanes. IEEE Journal of Selected Topics in Quantum Electronics (1998) 4:100
    [123] Lisong Zhou, Alfred Wanga and Sheng-Chu Wu, et al. All-organic active matrix flexible display. Appl. Phys. Lett. (2006) 88: 083502
    [124] A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw. Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators. Science(1995) 270: 972
    [125] Y. Y. Lin, A. Dodabalapur andR. Sarpeshkar, et al. Organic complementary ring oscillators. Appl. Phys. Lett. (1999) 74: 2714
    [126] M. G. Kane, J. Campi and M. S. Hammond, et al. Analog and Digital Circuits Using Organic Thin-Film Transistors on Polyester Substrates. IEEE Electron Device Leters. (2000) 21: 534
    [127] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu,and E. P. Woo. Reports High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science (2000) 290: 212
    [128] Takeshi Yasuda, Takeshi Goto and Katsuhiko Fujita, et al. Ambipolar pentacene field –effect transistors with calcium source-drain electrodes. Appl. Phys. Lett. (2004) 85: 2098
    [129] Eriko Mizuno, Masateru Taniguchi and Tomoji Kawai. Ambipolar organic field –effect transistors using gate insulator hysteresis. Appl. Phys. Lett. (2005) 86: 143513
    [130] Aline Hepp Heil, Wieland Weise and Marcus Ahles, et al. Light-emitting field-effect transistor based on a tetracene thin film. Physical review letters (2003) 91: 157406
    [131] Constance Rost, Siegfried Karg and Walter Riess. Ambipolar light- emitting organic field –effect transistors. Appl. Phys. Lett. (2004) 85: 1613
    [132] Yueh-Lin Loo, and Robert, et al. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics. Appl. Phys. Lett. (2002) 81: 562
    [133] Liang Wang, Daniel Fine and Taeho Jung, et al. Pentacene field-effect transistors with sub-10-nm channel lengths. Appl. Phys. Lett. (2004) 85: 1772
    [1] Y.Y.Lin, D.J.Gundlach and S.F.Nelson, et al. Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Letters, (1997) 19(12), 606-608
    [2] Hagen Klauk, Marcus Halik and Ute Zschieschag, et al. High-mobility polymer gate dielectric pentacene thin film transistors, J.Appl.Phys. (2002) 92, 5259-5263
    [3] Yusaku Kato, Shingo Iba and Ryohei Teramoto, et al. High mobility of pentacene field-effect transistors with polyimide gate dielectric layers, Appl.Phys.Lett. (2004) 84, 3789-3791
    [4] Nobuhide Yoneya, Makoto Noda and Nobukazu Hirai, et al. Reduction of contact resistance in pentacene thin-film transistors by direct carrier injection into a-few-molecular-layer channel. Appl.Phys.Lett. (2004) 85, 4663-4665
    [5] S.Yaginuma, J.Yamaguchi and K.Itaka, et al. Pulsed laser deposition of oxide gate dielectrics for pentacene organic field-effect transistors. Thin Solid Films. (2005) 486, 218-221
    [6] F.De Angelis, S.Cipolloni and L.Mariucci, et al. High-field-effect-mobility pentacene thin-film transistors with polymethylmetacrylate buffer layer. Appl.Phys.Lett. (2005) 86: 203505
    [7] Barbara Stadlober, Martin Zikl and Michael Beutl, et al. High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric. Appl.Phys.Lett. (2005) 86: 242902
    [8] V.Y.Butko, X.Chi and D.V.Lang, et al. Field-effect transistors on pentacene single crystal. Appl.Phys.Lett. (2003) 83: 4773-4775
    [9] Guanzhong Wang, Yi Luo and Peter H.Beton. High mobility organictransistors fabricated from single pentacene microcrystals grown on a polymer film. Appl.Phys.Lett. (2003) 83: 3108-3110
    [10] C.Goldmann, S.Haas and C.Krellner, et al. Hole mobility in organic single crystals measured by a “flip-crystal” field-effect technique. J.Appl.Phys. (2004) 96: 2080-2086
    [11] Oana D.Jurchescu, Jacob Baas and Thomas T.M.Palstra, Effect of impurities on the mobility of single crystal pentacene. Appl.Phys.Lett. (2004) 84: 3061-3063
    [12] Jae-Hoon Shim, Lae-Young Jung and Sang-Woo Pyo, et al. Organic thin-film transistors with ODPA-ODA polyimide as a gate insulator through vapor deposition polymerization. Thin Solid Film. (2003) 441: 284-286
    [13] Takeshi Yasuda, Takeshi Goto and Katsuhiko Fujita, et al. Ambipolar pentacene field-effect transistors with calcium source-drain electrodes, Appl.Phys.Lett. (2004) 85: 2098-2090
    [14] Y.S.Lee, J.H.Park and J.S.Choi. Electrical characteristics of pentacene-based schotkty diodes. Optical Materials (2002) 21: 433-437
    [15]《光电功能超薄膜》,黄春辉,李富友,黄岩宜,北京大学出版社,(2001) 160 页
    [16] By.R.B.Campbell, J.Monteath Robertson and J.Trotter. The crystal and molecular structure of pentacene. Acta Crystal. (1961) 14: 705
    [17] Frank J.Meyer zu Heringdorf, M.C.Reuter and R.M.Tromp. Growth dynamics of pentacene thin film. Nature (2001) 412: 517
    [18] J.Tersoff, A.W.Denier van der gon, and R.M.Tromp. Critical island size for layer-by-layer growth. Physical Review Letters (1994) 72: 266
    [19] M.Yoshida, S.Uemura and T.Kodzasa, et al. Surface Potential Control ofInsulator Layer for the High Performance Organic FET. Synth. Met. (2003) 137: 967-968
    [20] Jiyoul Lee, J.H.Kim and Seongil lm. Effects of substrate temperature on the device properties of pentacene-based thin film transistors using Al2O3+x gate dielectric. J.Appl.Phys. (2004) 95: 3733-3736
    [21] Fumitomo Hide, Maria A, et al. Semiconducting polymer: A new class of solid-state laser materials. Scienece (1996) 273: 1833
    [22] Ch.Kloc, P.G. Simpkins, T.Siegrist. R.A.Laudise, et al. Physical vapor growth of centimeter-sized crystals of α-hexathiophene. J. Crystal. Growth. (1997) 182: 416-427
    [23] R.A.Laudise, et al. Physical Vapor Growth of Organic Semiconductors. Crystal Growth. (1998) 187: 449-454
    [24] R.A.Laudise, R.M.Bridenbaugh, Ch.Kloc. Organic thermal crystal growth of α-6 thiophene. Crystal Growth. (1997) 178: 585-592
    [25] Christine C. Mattheus and Anne B. Dros, et al. Identification of polymorphs of pentacene. Synthetic Metals (2003) 138: 475–481
    [1] S. R. Forrest, P. E. Burrows and M. E. Thompson. Organic emitters promise a new generation of displays. Laser Focus World. (1995) 31: 99
    [2] I. D. Parker. Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys. (1994) 75: 1656
    [3] P. E. Burrows and S. R. Forrest. Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting device. Appl. Phys. Lett. (1994) 64: 2285
    [4] S. Karg, M. Meier and W. Riess. Light-emitting diodes based on poly-p-phenylene-vinylene: I. Charge-carrier injection and transport. J. Appl. Phys. (1997) 82: 1951
    [5] P. E. Burrows, Z. Shen and V. Bulovic, et al. Relationship between electroluminescence and current transport in organic heterojuntion light-emitting devices. J. Appl. Phys. (1996) 79: 7991
    [6] M. Strukelj, T. M. Miller, F. Papadimitrakopoulos, and S. Son. Effects of polymeric electron transporters and the structure of poly(p-phenylenevinylene) on the performance of light-emitting diodes. J. Am. Chem. Soc. (1995) 117: 11976
    [7] P. W. Blom, M. J. Mdejong and J. J. Vieggaar. Electron and hole transport in poly( p-phenylene vinylene) devices. Appl. Phys. Lett. (1996) 68: 3308
    [8] M.Matsumura, T.Akai, M. Masayuki, and T. Kimura. Height of the energy barrier existing between cathldes and hydroxyquinoline-aluminum complex of organic electroluminescence devices. J. Appl. Phys. (1996) 79:264
    [9] J. H. Sch?n, Ch. Kloc and A. Dodabalapur, et al. An organic solid state injection laser. Science (2000) 289, 599-602. This paper has been retracted[Science 298 961(2002)],yet contains legitimate and innovating ideas that are now generally accepted.
    [10] M.A.Baldo, R.J.Holmes and S.R.Forrest. Prospects for electrically pumped organic lasers. Physical review B. (2002) 66: 035321
    [11] Liping Ma and Yang Yang. Unique architecture and concept for high-performance organic transistors. Appl. Phys. Lett. (2004) 85: 5084-5086
    [12] N.Karl, in Crystal and Solid Physics, edited by O. Madelung (Springer, Berlin, 1985), Vol.17i, Chap. 12, p.106.
    [13] L.Bredas, J.P.Calbert and D.A.da Silva Filho, et al. Proc.Natl.Acad.Sci U.S.A. 99, 5804 (2002).
    [14] E.J.Meijer, D.M.de Leeuw and S.Setayesh, et al. Nat.Mater. 2, 678 (2003).
    [15] Stijn Verlaak, David Cheyns and Maarten Debucquoy, et al. Numerical simulation of tetracene light-emitting transistors: A detailed balance of exciton processes. Appl.Phys.Lett. (2004) 85: 2405-2407
    [16] A.Dodabalapur, H.E.Katz, L.Torsi and R.C.Haddon. Organic Heterostructure Field-effect Transistors. Science (1995) 269: 1560-1562
    [17] Aline Hepp, Holger Heil and Wieland Weise, et al. Light-emitting field-effect transistor based on tetracene thin film. Physical Review Letters. (2003) 91:157406
    [18] C.Santato, I.Manunza and A.Bonfiglio, et al. Tetrancene ligh-emitting transistors on flexible plastic substrates. Appl.Phys.Lett. (2005) 86:141106
    [19] J.Reynaert, D.Cheyns and D.Janssen, et al. Ambipolar injection in a submicro-channel light-emitting tetracene transistor with distinct source anddrain contacts. J.Appl.Phys. (2005) 97:114501
    [20] Jae-Hoom Shim, Lae-Young Jung, and Sang-Woo Pyo, et al. Organic thin-film transistors with ODPA-ODA polyimide as a gate insulator through vapor deposition polymerization. Thin Solid Films. (2003) 441: 284-286
    [21] Takeshi Yasuda, Takeshi Goto, and Katsuhiko Fujita, et al. Ambipor pertacene field-effect transistors with calcium source-drain electrons. Appl.Phys.Lett. (2004) 85: 2098-2090
    [22] Marcus Ahles, Roland Schmechel and Heinz von Seggern. N-type organic field-effect transistor based on interface-doped pentacene. Appl.Phys.Lett. (2004) 85: 4499-4501
    [23] A.Dodabalapur, H.E.Katz, L.Torsi and R.C.Haddon. Organic Heterostructure Field-effect Transistors. Science (1995) 269: 1560-1562
    [1] Hagen Klauk, and Mathias Bonse, et al. A reduced complexity process for organic thin-film Transistors. Appl.Phys.Lett. (2000) 76: 1692
    [2] R. Parashkov, E. Becker and S. Hartmann, et al. Vertical channel all-organic thin-film transistors. Appl. Phys. Lett. 2003 82: 4579-4580
    [3] Liping Ma and Yang Yang. Unique architecture and concept for high-performance organic transistors. Appl. Phys. Lett. 2004 85: 5084-5086
    [4] C. D. Dimitrakopoulos and D. J. Mascaro. Organic thin-film transistors: A review of recent advances. IBM J. RES. & DEV. (2001) 45: 11-27
    [5] K. Waragai, and H. Akimichi, et al. Charge transport in thin films of semiconducting oligothiophenes. Phys. Rev. B.(1995)52:1786.
    [6] M. C. J. M. Vissenberg and M. Maters. Theory of the field-efect mobility in amorphous organic transistors. Phys. Rev. B. (1998)57: 12964.
    [7] G. Paasch, T. Lindner and S. Scheinert. Variable range hopping as possible origin of a universal relation between conductivity and mobility in disordered organic semiconductors. Synthetic Metals. (2002) 132: 97-104
    [8] W. Warta, and N. Karl. Hot holes in naphthalene: High electric-field-dependent mobilities. Phys. Rev. B. (1985) 32: 1172.
    [9] N. Karl, et al. High-field saturation of charge carrier drift velocities in ultrapurified of ganic photoconductors. Synth. Met (1991) 42: 2473.
    [10] J. H. Schon, and C. Kloc, et al. Electrical properties of single crystals of rigid rodlike conjugated molecules. Phys. Rev. B. (1998) 58: 12952.
    [11] J. H. Schon, C. Kloc, B. Batlogg. Charge transport in oligothiophene single crystals. Synthetic Metals, (2002) 155: 75-78.
    [12] J. H. Schon, S. Berg, C. Kloc, B. Batlogg. On the intrinsic limits ofpentacene field-effect transistors. Science. (2000) 287: 1022.
    [13] G..Horowitz. Organic Field-Effect Transistors. Adv. Mater. (1998) 10: 365.
    [14] P. G. Le Comber. Electronic Transport In Amorphous Silicon Films. Phys.Rev.Let. (1970) 25: 509
    [15] S. F. Nelson, and Y 丫 Lin, et al. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. (1998) 72: 1854.
    [16] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz. Charge transport in oligothiophene field-effect transistors. Phys. Rev. B. (1998) 57: 2271.
    [17] H. Sirringhaus, P. J. Brown and R. H. Friend, et al. Tow-dimensional charge transport in self-organized, high-mobility conjugated polymer. Nature. (1999) 401: 685.
    [18] G. Horowitz, M. E. Hajlaoui. Mobility in Polycrystalline Oligothiophene Field-Effect Transistors dependent on Grain Size. Adv. Mater. (2000) 12: 1046
    [19] J. H. Schon, and B. Batlogg. Modeling of the temperature dependence of the field-effect mobility in thin film devices of conjugated oligomers. Appl. Phys. Lett. (1999) 74: 260.
    [20] T. W. Kelley, C. D. Frisbie. Gate Voltage Dependent Resistance of a Single Organic Semiconductor Grain Boundary. J. Phys. Chem. B. (2001) 105: 4538
    [21] G. Horowitz. Tunneling Current in Polycrystalline Organic Thin-Film Transistors. Adv. Fund. Mater. (2003) 13: 53.
    [22] Jianfeng Yuan, Jian Zhangm, and Jun Wang, et al. Bottom-contactorganic field-effect transistors having low-dielectric layer under source and drain electrodes. Appl.Phys.Lett. (2003) 82: 3967
    [23] C.D.Dimitrakopoulos, S.Purushothaman and J.Kymissis, et al. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Scinece. (1999) 283: 822
    [24]Carmen Bartic, Henri Jansen and Andrew Campitelli, et al. Ta2O5 as gate dielectric material for low-volttage organic thin-film transistors. Organic Electronics (2002) 3: 65-72
    [25] Leszek Artur Majewski, Raoul Schroeder and Martin Grell, et al. Low-voltage, high-performance organic field-effect transistors with an ultra-thin TiO2 layers as gate insulator. Adv.Funct.Mater. (2005) 15: 1017-1022
    [26] Gilles Horowitz, Mohsen E.Hajlaoui and Riadh Haijiaoli. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J.Appl.Phys. (2000) 87: 4456
    [27] Kannan Seshadri and Daniel Frisbie. Potentiomertry of an operating organic semiconductor field-effect transistor. Appl.Phys.Lett. (2001) 78: 993
    [28] Kanan P.Puntambekar, et al. Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy. Appl.Phys.Lett. (2003) 83: 5539
    [29] Hagen Klauk, Günter Schmid, Wolfgang Radik, et al. Contact resistance in organic thin film transistors. Solid State Electronics (2003) 47: 297- 301
    [30] Paoul Schroeder, Leszek A. Majewski, and Martin Grell. Improving organic transistor performance with Schottky contacts. Appl.Phys.Lett 84, 1004-1006 (2004)
    [1] Dodabalapur, Z. Bao, A. Makhijia, and J. G Laquindanum, et al. Organic smart pixels. Appl. Phys. Lett. (1998) 73(2): 142-144.
    [2] Henning Sirringhaus, Nir Tessler and Richard H.Friend. Integrated Optoelectronic Devices Based on Conjugated Polymers. Science (1998) 280: 1741-1744
    [3] S.W.Pyo, Y.M.Kim and J.H.Kim, et al. An organic electrophosphorescent device driven by all-organic thin-film transistor using photoacryl as a gate insulator. Current Applied Physics (2002) 2: 417-419
    [4] M.Kitamura, T.Imada and Y.Arakawa. Organic light-emitting diodes driven by pentacene-based thin-film transistors. Appl. Phys. Lett. (2003) 83: 3410-3412
    [5] Lisong Zhou, Alfred Wanga and Sheng-Chu Wu, et al. All-organic active matrix flexible display. Appl. Phys. Lett. (2006) 88: 083502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700