并五苯有机薄膜晶体管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们提出利用有机小分子空穴注入材料m-MTDATA来改善金与并五苯表面层之间的空穴注入特性。有机空穴注入材料m-MTDATA具有较低的电离势(Ionization Potential, IP)、良好的成膜性和较高的黑电导率(10-10 S.cm-1),在有机发光二极管(OLEDs)中,它被广泛使用以降低器件的开启电压、提高器件的亮度和效率。本文,我们将m-MTDATA引入有机薄膜晶体管中,通过在与金接触的并五苯表面层中掺入m-MTDATA(比例1:1),有机半导体薄膜的成膜性得到改善,优化了金与有机层间的接触性质,减小了金与有机薄膜表面层之间的接触电阻,提高了源端到有机层的空穴注入能力。相对一般结构的器件,其阈值电压的绝对值由11V降至2.8V,线性区的场效应迁移率由0.16 cm2/Vs增大到了0.51 cm2/Vs;利用掺杂类型的空穴注入层也保证了器件在关态时具有较小的漏电流,当栅压由0V变化到-20V,得到了开关电流比大于104的性能较好的器件,为并五苯薄膜晶体管在低电压下的产业化应用提供了一种可能的方法。
     我们提出在金与并五苯之间生长一层氧化钼缓冲层,通过优化缓冲层的厚度,来改善金与并五苯之间的接触性质。氧化钼作为一种宽禁带半导体,它的价带位于5.2eV处,与金的功函数和并五苯的HOMO能级匹配得较好。当氧化钼的厚度由0纳米逐步增加到10纳米的时候,缓冲层的作用也逐步体现出来,器件在线性区的场效应迁移率由0.17 cm2/Vs增加到0.68 cm2/Vs,阈值电压的绝对值由13V下降到了5.5V。当缓冲层的厚度由10纳米继续增加时,器件的性能基本保持不变。由于氧化钼缓冲层的加入,避免了金与并五苯之间的高空穴注入势垒和较大接触电阻的问题,实现了较低工作电压下(栅压和源漏电压均较小)的较高迁移率的并五苯薄膜晶体管器件。
     考虑到热生长的并五苯薄膜一般呈多晶态的性质,我们在并五苯有机薄膜晶体管基本工作原理的基础上,考虑到晶粒间界等对空穴具有的陷阱作用,通过分析有机半导体薄膜中,限域态载流子和自由载流子与薄膜电导率的关系,得到了并五苯薄膜晶体管中,载流子迁移率与栅压相关的结论。我们借鉴多晶硅薄膜晶体管中迁移率与栅压相关的经验公式,估算出了在并五苯有机薄膜晶体管中,场效应迁移率的栅压依赖经验公式中的主要参数γ。
     介绍了我们自己设计和搭建的有机薄膜晶体管测试系统。我们以2004年4月,美国电气与电子工程师学会(The Institute of Electrical and Electronics Engineers, IEEE)公布的有机薄膜晶体管的标准测试方法为基础,以两个Keithly 2400电流-电压源、电脑、控制软件和数据收集卡为测试设备,利用电脑控制软件对Keithly 2400进行电压变化和电流参数的测量,并利用数据收集卡对所测得的数据进行电脑录入,实现对器件电流-电压特性和数据的准确测试。
In the last twenty years, organic electronics based on organicsemiconductor materials and its applications in the information industry havemade rapid progress. The studies on the organic semiconductor devicesinclude organic light-emitting diodes (OLEDs), organic thin-film transistors(OTFTs), organic solar cell and organic sensors, etc. And now, OLEDs andOTFTs are on the way to industrialization.
     The first example of an OTFTs based on polyacetylene was reported inthe literature in 1983. And in 1990, the OTFTs based on short conjugatedoligomer, e.g., sexithiophene, showed a mobility of the order of 10~(-1) cm~2/Vs,almost matching that of a-Si:H. And now, it has two important applicationsthat OTFTs will be showed in the market, one is the TFT unit device using inthe active matrix driving circuit, especially OTFTs are compatible with theflexible backbone circuit. The other one is the OTFTs can be used in thelow-cost Radio Freqency Identification (RFID).
     Most of switch devices in the active matrix circuit driving fiat planedisplay, such as AMLCD, are based on hydrogenated amorphous silicon(a-Si:H) with typical field-effect mobility of 0.5 - 1.0 cm~2/Vs and on/offcurrent ratio > 10~7. However, high performance a-Si:H TFTs require processtemperature > 200℃and therefore it limited compatibility with polymeric substrates.
     Organic TFTs on the other hand offer an attractive low-temperaturealternative. TFTs based on the organic seminconductor pentacene currentlyshow the best performance for OTFTs with typical field-effect mobility of 1.However, there are some problems should be solved such as stability, highthreshold voltage and high energy consuming etc.
     Pentacene is a p-type organic seminconductor, and in the vacuumdeposited polycrystalline pentacene film bulk, the free carrier density is verylow and the film is abundant of hole traps. At low gate voltage, most of theholes injected in the semiconductor are trapped into these localized states. Atan appropriately high gate voltage, all trap states are filled and subsequentlyinjected carriers move with the microscopic mobility associated with carriersin the delocalized band. So, the interface characteristic between Au andpentacene play an important role in the OTFT performance. Researchers havestudied the interface property. And they found the gold atom will diffusion intothe pentacene film surface when gold is deposited onto pentacene, there willform an metallic interface which result in the gold surface work function lower0.8eV, and then the hole injection barrier between Au and pentacene increasedto 1 eV which will confine the hole injection and lead to high contact resistance.This thesis reported relative high performance pentacene OTFTs by modifyingthe interface between Au electrodes and pentacene.
     We introduced the excellent organic hole injection material (HIM)m-MTDATA into the OTFTs, which has been widly used in OLEDs for itsexcellent uniformity, high dark conductance and stability in air. In the interfacelayer contact with Au, we doped HIM in it with ratio of 1:1. the performancesof the OTFTs with HIM are improved, the field-effect mobility increased from0.16 cm~2/Vs to 0.51 cm~2/Vs,and the absolute threshold voltage valuedecreased from 11V to 2.8V. That is say that with the HIM, the hole injection ability is enhanced and the contact resistance is reduced.
     Second, we insert a MoO3 buffer layer between Au and pentacene. Whenthe thickness of buffer layer varied from 0 to 10 nm, the performance ofOTFTs increased. The field-effect mobility in the linear region increased to0.68 cm~2/Vs and threshold value down to 5.5V, and when the buffer layerthickness increased to 20nm, the performance of the OTFTs is almost samewith 10nm. So, the OTFTs with the buffer layer of 10nm MoO_3 have relativehigh mobility and low operation voltage, this method can be used in theindustry process.
     Otherwise, we deduced the conclusion that the field-effect mobility of thepentacene-based organic thin-film transistors dependent on the gate voltage.For the high density of hole traps linked to grain boundaries in thepolycrystalline pentacene film, theμ_(FET) is expected to be much lower thanmicrocosmic mobility. Base on the relation of the mobility and gate voltage,we estimate the parameter of the experience expressions.
     The last, we introduced the manufacture process of our OTFTs and thetest system based on the IEEE standard test methods for the characterization ofOTFTs, in 2004.
引文
[1] Grice A W, Bradley D D C, Bernius M T, lnbasekaran M, Wu w w, Woo E P. Highbrightness and efficiency blue light-emitting polymer diodes. AppL Phys. Lett. ( 1998 ) ,73(5), 629.
    [2] G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Aluminum basedcathode structure for enhanced electron injection in electroluminescent organic devicesAppL Phys. Lett. (1998)73, 1185.
    [3] H. Tang, F. Li, J. Shinar, Bright high efficiency blue organic light-emitting diodes withAI2O3/AI cathodes AppL Phys. Lett. (1997) 71,2560
    [4] S. Tokito, T. Lijima, T. Tsuzuki, F. Sato, High-efficiency white phosphorescent organiclight-emitting devices with greenish-blue and red-emitting layers AppL Phys. Lett. (2003)83, 2459.
    [5] M. Berggren, O. lnganas, G. Gustafsson, J. Rasmusson, M. R. Andersson, Y. Hjertberg,O. Wennerstrom, Light-emitting-diodes with variable colors from polymer blends Nature(1994) 372, 444.
    [6] D. Pisignano, M. Mazzeo, G. Gigli, G. Barbarella, L. Favaretto, R. Cingolani,Controlling non-radiative energy transfer in organic binary blends: a route towards colourtunability and white emission from single-active-layer light-emitting devices J. Phys. D:Appl. Phys. (2003) 36, 2483.
    [7] T. Sbiga, H. Fujikawa, Y. Taga, Design of multi wavelength resonant cavities for whiteorganic light-emitting diodes.J. Appl. Phys. (2003) 93, 19.
    [8] M. Matusumura and t. Furukawa, Efficient electroluminescence from a rubrenesub-monolayer inserted between electron-and hole-transport layers, Jpn. J Appl. Phys(2001) 40, 3211.
    [9] R. S. Deshpande, V. Bulovic, and S. R. Forrest,White-light-emitting organiceleetroluminescent devices based on interlayer sequential energy transfer. AppL Phys.Lett., (1999) 75, 888.
    [10] Y.Kawamura, S.Yanagida and S.R.Forrest, Energy transfer in polymerelectrophosphorescent light emitting devices with single and multiple doped luminescentlayers, J. Appl. Phys., 92(2002)87.
    [11] S.W.Pyo, Y.M.Kim and J.H.Kim, et al. An organic electrophosphorescent devicedriven by all-organic thin-film transistor using photoacryl as a gate insulator. CurrentApplied Physics (2002) 2:417-419
    [12]Carmen Bartic, Henri Jansen and Andrew Campitelli, et al. Ta205 as gate dielectricmaterial for low-volttage organic thin-film transistors. Organic Electronics (2002) 3:65-72
    [13] Leszek Artur Majewski, Raoul Schroeder and Martin Grell, et al. Low-voltage,high-performance organic field-effect transistors with an ultra-thin TiO2 layers as gateinsulator. AdV Funct.Mater (2005) 15:1017-1022
    [14] Gilles Horowitz, Mohsen E.Hajlaoui and Riadh Haijiaoli. Temperature and gatevoltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors.J.AppLPhys. (2000) 87:4456
    [15] Kannan Seshadri and Daniel Frisbie. Potentiomertry of an operating organicsemiconductor field-effect transistor. Appl.Phys.Lett. (2001) 78:993
    [16] Kanan P.Puntambekar, et al. Surface potential profiling and contact resistancemeasurements on operating pentacene thin-film transistors by Kelvin probe forcemicroscopy. AppLPhys.Lett. (2003) 83:5539
    [17] Hagen Klauk, GOnter Schmid, Wolfgang Radik, et al. Contact resistance in organicthin film transistors. SolidState Electronics (2003) 47: 297- 301
    [18] Paoul Schroeder, Leszek A. Majewski, and Martin Grell. Improving organictransistor performance with Schottky contacts. Appl.Phys.Lett 84, 1004-1006 (2004)
    [19] G..Horowitz. Organic Field-Effect Transistors. Adv. Mater. (1998) 10: 365.
    [20] S. F. Nelson, and Y Y Lin, et al. Temperature-independent transport in high-mobilitypentacene transistors. AppL Phys. Lett. (1998) 72: 1854.
    [21] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, and H. E. Katz. Chargetransport in oligothiophene field-effect transistors. Phys. Rev B. (1998) 57: 2271.
    [22] Hagen Klauk, and Mathias Bonse, et al. A reduced complexity process for organicthin-film Transistors. AppLPhys.Lett. (2000) 76:1692
    [23] R. Parashkov, E. Becker and S. Hartmann, et al. Vertical channel all-organic thin-filmtransistors. Appl. Phys. Lett. 2003 82:4579-4580
    [24] Liping Ma and Yang Yang. Unique architecture and concept for high-performanceorganic transistors. AppL Phys. Left. 2004 85:5084-5086
    [25] M.Kitamura, T.lmada and Y.Arakawa. Organic light-emitting diodes driven bypentacene-based thin-film transistors. AppL Phys. Lett. (2003)83:3410-3412
    [26] Barry P. Rand, Diana P. Burk, and Stephen R. Forrest, Offset energies at organicsemiconductor heterojunctions and their influence on the open-circuit voltage of thin-filmsolar cens Phys.Rev.B (2007) ,75,115327
    [27] Rhonda F. Bailey-Salzman, Barry P. Rand, and Stephen R. Forrest, Semitransparentorganic photovoltaic cells AppI.Phys.Lett. (2006),88,233502
    [28] Kouji Suemori, Masaaki Yokoyama, and Masahiro Hiramoto ,Electrical shorting oforganic photovoltaic films resulting from metal migration, Appl. Phys. Lett. (2004), 85,5757
    [29] Seunghyup Yoo, BenoiI Domercq, Seth R. Marder, Neal R. Armstrong, and BernardKippelen, Modeling of organic photovoltaic cells with large fill factor and highefficiency , Proc. SPIE (2004), 5520, 110
    [30] Jiangeng Xue, Soichi Uchida, Barry E Rand, and Stephen R. Forrest, 4.2% efficientorganic photovoltaic cells with low series resistances , Appl. Phys. Lett. (2004), 84, 3013
    [31] 高观志,黄维著,固体中的电输运,科学出版社 (1991年)
    [32]朱道本,王佛松,有机固体,上海科学出版社 (1999年)
    [33]张坚,高迁移率有机半导体材料用有机薄晶体管 (2004年)
    [34] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, Relationshipbetween electroluminescence and current transport in organic heterojunctionlight-emitting devices .J。 AppL Phys. (1996) 79, 7991.
    [35] M. Strukelj, T. M. Miller, F. Papadimitrakopoulos, S. Son, Effects of polymerictransporters and the structure of poly(p-phenylenevinylene) on the performance oflight-emitting diodes, J. Am. Chem. Soe. (1995) 117, 11976.
    [36] P. W. Blom, M. J. Mdejong, J. J. Vieggaar, Height of the energy barrier existingbetween cathodes and hydroxyquinoline-aluminum complex of organicelectroluminescence devices Appl. Phys. Lett. (1996) 68, 3308.
    [37] I.H.Campbell, P.S.Davids, D.L.Smith, N.N.Barashkov , J.P.Ferraris, The schottkyenergy barrier dependence of charge injection in organic light-emitting diodes, Appl. Phys.Lett. (1998) 72, 1863.
    [38] U.Wolf, S.Barth, H.Bassler, Electrode versus space-charge-limited conduction inorganic light-emitting diodes, Appl. Phys. Left. (1999) 75, 2035.
    [39] Boguslavskii, Lozhkin, and Margulis, "Surface state and limiting currents on ananthracene electrode", Soviet Electrochem. 4, 62-64 (1968).
    [40] Vannikov, Lozhkin, and Boguslavskii, "Study of the surface state of anthracenesingle crystals using low-energy electron pulses", Soviet Phys. Solid State 12, 426-429(1970).[41 ] M. Pope, H. Kallmann and P. J. Magnante, Electroluminescence in organic crystals. JChem. Phys. (1963) 38, 2042.
    [42] P. S. Vincett, W. A. Barlow and R. A. Hann, et ah Electrical conduction and lowvoltage blue electroluminescence in vacuum-deposited organic films, Thin Solid Film,(1982) 94, 171.
    [43] S.A.Vanslyke, C.W.Tang, U.S.Patent-4, (1985) 539, 507.
    [44] C. W. Tang and S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett(1987) 51, 913.
    [45] C. Adachi, S. Tolito and T. Tsutsui, et al. Organic electroluminescence device with athree-layer structure, Jpn.J AppL Phys. (1988) 27, L713.
    [46] J. H. Barroughes, D. D. C. Bradley and A. R. Brown et. al. Light-emitting diodesbased on conjugated polymers, Nature, (1990) 347 539.
    [47] D. Braun and A. J. Heeger, Visible light emission from semiconducting polymerdiodes, Appl. phys. Lett, (1991) 58 1982.
    [48] G. H. Heilmeier, and L. A. Zanoni, Surface studies of phthalocyanine-copper films, .ZPhys. Chem. Solids, (1964) 25,603-611
    [49] A. Tsumura, H. Koezuka, and T. Ando, Macromolecular electronic device:Field-effect transistor with a polythiophene thin film, Appl. Phys. Lett. (1986) 49,1210-1212
    [50] Y. Y. Lin, D. J. Gundlach and S. F. Nelson, et al, Stacked pentacene layer organic thinfilm transistors with improved characteristics, IEEE Electron Device Lett. (1997) 18,606-608
    [51] Antonio Facchetti, Semiconductors for organic transistors, Materials today, (2007)vol. 10, 28-37
    [52] J. H. Burroughes, C. A. Jones and R. H. Friend. New Semiconductor Device Physicsin Polymer Diodes and Transistors. Nature, (1988) 335:137.
    [53] C. Clarisse, M. T. Riou, M. Gauneau, and M. Le Contellec. Field-EffectTransistor with Diphthalocyanine Thin Film. Electron. Let. (1988) 24: 674.
    [54] A. Assadi, C. Svensson, M. Willander and O. lnganas. Field-Effect Mobility ofPoly(3-hexylthiophene). Appl. Phys. Lett. (1988) 53:195-197.
    [55] J. Paloheimo, E. Punkka, H. Stubb and P. Kuivalainen. Proceedings of NATO ASI,Spetses. Greece, R. M. Mertzger, Ed., Plenum Press, New York, 1989.
    [56] Gilles Horowitz, Denis Fichou and Xuezhou Peng, et al. A Field-Elect Transistorbased on Conjugated Alpha-Sexithienyl", Solid State Commun.(1989) 72:381-384.
    [57] Xuezhou Peng, Gilles Horowitz, and Denis Fichou, et al. All-organic thin-filmtransistors made of alpha-sexithienyl semiconducting and various polymeric insulatinglayers. Appl. Phys. Lett. (1990) 57: 2013-2015.
    [58] G. Guillaud, M. A. Sadound and M. Maitrot. Field-effect transistors based onintrinsic molecular semiconductors. Chem. Phys. Lett. (1990) 167:503-506
    [59] D.M.Taylor, H.L.Gomes and A.E.Underhill, et al. Effect of oxygen on the electricalcharacteristics of field effect transistors formed from electrochemically deposited films ofPoly(3-methylthiophene). J.Phys.D:Appl.Phys. (1991) 24:2032-2038
    [60] G. Horowitz, X. Peng, D. Fichou, and F. Gamier, Role of the semiconductor/insulatorinterface in the characteristics of n-conjugated- oligomer-based thin-film transistors.Synth. Met. (1992) 51:419-424
    [61] C.D.Dimitrakopoulos and D.J.Mascaro. Organic thin-film transistors: A review ofrecent advances. IBM J.RES. & DEV. (2001) 45:11-27
    [62] F. Gamier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Delofre, B. Servet, S. Ries, and P.Alnot. Engineering of Organic Semiconductors: Design of Self-Assembly Properties inConjugated Thiophene Oligomers. J. Am. Chem.Soc. (1993) 115: 8716
    [63] H.Fuchigami, A.Tsumura and H.Koezuka. Polythienylenevinylene thin-filmtransistor with high carrier mobility. Appl. Phys. Lett. (1993) 63:1372-1374.
    [64] F. Gamier, R. Hajlaoui, and A. Yassar, et al. All-Polymer Field-Efect TransistorsRealized by Printing Techniques. Science (1994) 256: 1648.
    [65] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp. Molecular Beam Deposited ThinFilms of Pentacene for Organic Field Effect Transistor Applications. J.Appl. Phys. (1996)80: 2501.
    [66] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M.Fleming.C60 thin film transistors. Appl. Phys. Lett. (1995) 67:121-123.
    [67] Z. Bao, A. J. Lovinger and A. Dodabalapur. Organic Field-Effect Transistors withHigh Mobility Based On Copper Phthalocyanine. Appl.Phys.Lett. (1996) 69:3066-3068
    [68] Z.Bao, A.Dodabalapur and A. J. Lovinger. Soluble and Processable RegioregularPoly(3-hexylthiophene) for Thin Film Field-Effect Transistor Applications with HighMobility. Appl. Phys. Lett. (1996) 69:4108-4110.
    [69] C.D.Dimitrakopoulos, B.K.Furman and T.Graham, et al. Field-Effect TransistorsComprising Molecular Beam Deposited α-ω-di-hexyl- hexathiophene and PolymericInsulators. Synth.Met. (1998) 92:47
    [70] Y. Y. Lin, D.J.Gundtach, and T. N. Jackson. High Performance Pentacene OrganicThin-Film Transistors, 54'11 Annual Device Research Conference Digest, 1996, 80.
    [71] H. Sirringhsus, R. H. Friend, X. C. Li, S. C. Morati, A. B. Holmes, and N.Feeder.Bis(dithienothiophene) Organic Field Effect Transistors with HighON/OFF Ratio. Appl.Phys. Lett. (1997) 71:3871
    [72] H. Sirringhaus, N. Tessler, and R. H. Friend. Field-Efect Integrated OptoelectronicDevices Based On Conjugated Polymers. Science (1998) 280:1741.
    [73] H.E.Katz, A.J.Lovinger, and J.Cx Laquindanum.α-ω-dihexyl- quaterthiophene: ASecond Thin Film Single-Crystal Organic Semiconductor. Chem. Mater. (1998) 10: 475.
    [74] Z. Ban, A. J. Lovinger, J. Brown. New Air-Stable n-Channel Organic Thin Filmtransistors. J. Am. Chem. Soc. (1998) 120:207-208
    [75] S.F.Nelson, Y.Y.Lin, D.J.Gundlach and T.N.Jackson. Temperature-independenttransport in high-mobility pentacene transistors. Appl. Phys. Lett. (1998) 72:1854
    [76] D. J. Gundlach, C. C. Kuo, S. F. Nelson and T. N. Jackson. Organic Thin FilmTransistors with Field Elect Mobility > 2cm2/Vs. 57th Device Research ConferenceDigest, June 1999 164-165.
    [77] A. Faccheti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H.Friend,Angew. Chem., Int. Ed. 2000, 39, 4547.
    [78] E R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L Kosbar, T. O.Graham,A. Curioni, W. Andreoni. N-type organic thin-film transistor with high field-efect mobilitybased on a NN'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivate. Appl. Phys.Lett. (2002) 80:2517-2519.
    [79] T. Kelley, L. D. Boardman, T. D. Dunbar, D. V Muyres,M. J. Pellerite, and T. P.Smith.High-performance OTFTs using surface-modified alumina dielectrics. J.Phys. Chem. B(2003) 107: 5877-5881.
    [80] A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen. High-performance,Solution-processed organic thin film transistors from a novel pentacene precursor. J. Am.Chem. Soc. (2002) 124:8812-8813
    [81] V Podzrov, S. E. Sysoev, E. loginova, V M. Pudalov, and M. E. Gershenson.Single-crystal organic field efect transistors with the hole mobility -8cm2/Vs. Appl. Phys.Lett. (2003) 83: 3504-3506.
    [82] S. Kobayashi, T. Takenobu and S. Mori. Fabrication and characterization of C60 thinfilm transistors with high field-efect mobility. Appl. Phys. Lett. (2003) 82: 4581-4583.
    [83] G Wang, J. Swensen, D. Moses, and A. J. Heeger. Increased mobility fromregiorregutar poly(3-hexylthiophene) field efect transistors. J. Appl. Phys. (2003) 93:6137-6141.
    [84] M. Halik, H. Klauk, and U. Zschieschang, et al. Relationship between molecularstructure and electrical performance of oligothiophene organic thin film transistors.Adv.Mater. (2003) 15: 917-922.
    [85] V. C. Sundar, J. Zaumseil, and V. Podzorov, et al. Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals. Science (2004) 303:164
    [86] J. Zhang, J. Wang, H. Wang, and D. Yan. Organic thin-film transistors insandwich configuration. Appl. Phys. Lett. (2004) 84: 142-144.
    [87] Marcus Ahles, Roland Schmechel and Heinz von Seggenm. N-type organicfield-effect transistor based on interface-doped pentacene. Appl. Phys. Lett. (2004) 85:4499-4501.
    [88] Hisashi Fukuda, Yasuaki Yamagishi and Masafumi lse, et al. Gas sensing propertiesof poly-3-hexylthiophene thin film transistors. Sensors and Actuators B (2005) 108:414-417
    [89] Joshua N.Haddock, Xiaohong Zhang and Benoit Domercq, et al. Fullerene basedn-type organic thin-film transistors. Organic Electronics (2005) 6:182-187
    [90] D.J.Gundlach, K.P.Pernstich, and G.Wilckens, et al. High mobility n-channelorganic-thin-film transistors. J.Appl.Phys. (2005) 98:064502
    [91] Tsumora, H. Koezuka and T. Ando. Polythiophene Field-Efect Transistor: ItsCharacteristics and Operation Mechanism. Synth. Met. (1988) 25:11-23.
    [92] H.Akimichi, K.Waragai, S.Hota, H.Kano and H. Sakaki. Field-effect Transistorsusing alkyl substituted oligothiophenes. Appl. Phys. Lett. (1991) 58(14): 1500-1502.
    [93] F.Garnier, R.Hajlaoui, A.Yassar, P.Srivastava. All-polymer field-effect transistorRealized by printing techniques. Scinece (1994) 265:1684-1686.
    [94] Y. Y. Lin, D.J. Gundlach, et al. 1997 Electron. Device Lett. 18 606-608.
    [95] Dodabalapur, H. E. Katz, L. Torsi, and R.C. Haddon. Organic HeterostructureField-Effect Transistors. Science (1995) 269:1560-1562
    [96]A.R. Brown, C.P. Jarrett, et al. Field-efect transistors made from solution-processedorganic semiconductors, Synthetic Metals 88 (1997) 37-55
    [97] J. G Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur. Morphologicalorigin of high Mobility in Pentacebe Thin-Film Transistors. Chem. Mater. (1996) 8:2542-2544.
    [98] G Horowitz, F. Gamier, and A. Yassar, et al. Field-Efect Transistor Made with aSexithiophene Single Crystal. Adv. Mater. (1996) 8(1): 52-54.
    [99] A. Tsumura, H. Koezuka, et al. Macromolecular electronic device: Fieldefecttransistor with a polythiophene thin film, Appl. Phys. Let. ( 1986)49, 1210
    [100] A. R. Brown, C. P Jarrett, D. M. De Leeuw, and M. Matters. Field-effect transistorsmade from solution-processed organic semiconductors. Synth. Met. (1997) 88: 37-55.
    [101] Y. Y. Lin, D. J. Gundlach and S. F. Nelson, et al, Stacked pentacene layer organicthin film transistors with improved characteristics, IEEE Electron Device Lett. (1997) 18,606-608
    [102] Dodabalapur, Z. Bao, and A. Makhijia, et al. Organic smart pixels. Appl. Phys. Lett.(1998) 73(2): 142-144.
    [103] C. J. Drury C. M. J. Mutsaers, abd C. M. Hart, et al. Low-cost all-polymerintegrated circuits. Science (1998) 73 ( 1): 108-110.
    [104] W A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk. Intrinsic charge transportproperties of an organic single crystal determined using a multiterminal thin-filmtransistor. Apph Phys. Lett. (1998) 73(26): 3884-3886.
    [105] C. D. Dimitrakopoulos, S. Purushothaman, and J Kymissis, et ah Low-VoltageOrganic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators.Scinece (1999) 283: 822.
    [106]R. Parashkov, E.Becher, et al, Vertical channel all-organic thin-film transistor, Appl.Phys. Let. 2003, 4579-4580
    [107]周琴,汪茫,杨士林,有机半导体材料中的电荷转移,高等学校化学学报,2002, Vo121, 1312-1317
    [108] Crone, A. Dodabalapur, and Y-Y Lin, et al. Large-scale complementary integratedcircuits based on organic transistors. Nature (2000) 430: 521-523.
    [109] J. A. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija, IEEE Electron DeviceLetters (2000) 21(3):100
    [110] H.E.A Huitema, G.H.Gelinck and J.B.P.H. vander Puten, et al. Polymer electronics:Plastic transistors in active-matrix displays. Nature (2001) 414:599[111 ] T. Kelley, L. D. Boardman, et al,"High-performance OTFTs using surface-modifiedalumina dielectrics", J Phys. Chem. B, 2003, 107, 5877-5881.
    [112] E. J. MEIJER, D. M. DE LEEUW, and S. SETAYESH, et al. Solution-processedambipolar organic field-elect transistors and
    [113] Jun Wang, Xuanjun Yan, et alnverters. Nature materials (2003) 2: 678."Organic thin-film transistors havinginorganic/arganic double gate insulators", Applied Physics Letters, Vol. 85, No. 22, pp.5424-5426, 3 February 2004.[l14]邱勇,胡远川,懂桂芳,王立择,谢俊峰 马亚宁等,“柔性全有机薄膜场效应晶体管制备和性能”,科学通报48卷 第九期
    [115]张素梅,石家纬,李靖“有机EL器件的研究及产品开发”液晶与显示 2004年01期.
    [116]Wang Wei, Shi Jia-Wei, et al, "Ambipolar thin-film field-effect transistor based onpentacene" Chinese Physics Letters Vol. 22, No. 2, February 2005.
    [117] H.E.A Huitema, G.H.Gelinck and J.B.P.H. vander Puten, et al. Polymer electronics:Plastic transistors in active-matrix displays. Nature (2001) 414:599
    [118] C. D. Sheraw, L. Zhou and J. R. Huang, et al. Organic thin-film transistor-drivenpolymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys.Lett. (2002) 80:1088
    [119] Dodabalapur, Z. Bao, and A. Makhijia, et al. Organic smart pixels. Appl. Phys. Lett.(1998) 73(2): 142-144.
    [120] J. A. Rogers, Z. Ban, A. Dodabalapur, and A. Makhija, IEEE Electron DeviceLetters (2000) 21(3):100[12l] Henning Sirringhaus, Nir Tessler and Richard H.Friend. Integrated OptoelectronicDevices Based on Conjugated Polymers. Science (1998) 280: 1741-1744
    [122] T.Kodzasa, M.Yoshida and S.Uemura, et al. Memory effects of pentacene MFS-FET.Synth. Met. (2003) 137:943-944
    [123] K.N.Narayanan Unni, Remi de Bettignies and Sylvie Dabos-Seignon, et al. Anonvolatile memory element based on an organic field-effect transistor. Appl. Phys. Lett.(2004) 85:1823
    [124] Raoul Schroeder, Leszek A. Majewski and Martin Grell. All-organic permanentmemory transistor using an amorphous spin-cast ferroelectric-like gate insulator. Adv.Mater. (2004) 16(7): 633-636
    [125] Zheng-Tao Zhu, et al. Humidity sensors based on pentacene thin-film transistors.Appl. Phys. Lett. (2002) 81:4643
    [126] Grzegorz Darlinski, Ulrich Bottger and Rainer Waser. Mechanical force sensorsusing organic thin-film transistors. J.AppI.Phys. (2005) 97:093708
    [127] A. Dodabalapur, J. Laquindanum, and Z. Bao. Complementary circuits with organictransistors. Appl. Phys. Lett. (1996) 69:4227
    [128] C. J. Drury, C. M. J. Mutsaers, and C. M. Hart, et al. Low-cost all-polymerintegrated circuits. Appl. Phys. Lett. (1998) 73: 108
    [129] G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw. High-performance all-polymerintegrated circuits. Appl. Phys. Lett. (2000) 77:1487
    [130] Henning Sirringhaus, Nir Tessler and Richard H.Friend. Integrated OptoelectronicDevices Based on Conjugated Polymers. Science (1998) 280:1741-1744
    [131] H.E.A Huitema, G.H.Gelinck and J.B.P.H. vander Puten, et al. Polymer electronics:Plastic transistors in active-matrix displays. Nature (2001) 414:599
    [132] Lisong Zhou, Alfred Wanga and Sheng-Chu Wu, et al. All-organic active matrixflexible display. Appl. Phys. Lett. (2006) 88:083502
    [133] A. R. Brown, A. Pomp, C. M. Hart, and D. M. de Leeuw. Logic Gates Made fromPolymer Transistors and Their Use in Ring Oscillators. Science (1995) 270:972
    [134] A. Dodabalapur, J. Laquindanum, and Z. Bao. Complementary circuits with organictransistors. Appl. Phys. Lett. (1996) 69:4227
    [135] C. J. Drury, C. M. J. Mutsaers, and C. M. Hart, et al. Low-cost all-polymerintegrated circuits. Appl. Phys. Lett. (1998) 73:108
    [136] Y. Y. Lin, A. Dodabalapur andR. Sarpeshkar, et al. Organic complementary ringoscillators. Appl. Phys. Lett (1999) 74:2714
    [137] Crone, A. Dodabalapur, and Y-Y Lin, et al. Large-scale complementary integratedcircuits based on organic transistors. Nature (2000) 430: 521-523.
    [138] M. G. Kane, J. Campi and M. S. Hammond, et al. Analog and Digital Circuits UsingOrganic Thin-Film Transistors on Polyester Substrates. IEEE Electron Device Leters.(2000) 21:534
    [139] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. lnbasekaran, W. Wu,and EP. Woo. Reports High-Resolution lnkjet Printing of All-Polymer Transistor Circuits.Science (2000) 290:212
    [140] Takeshi Yasuda, Takeshi Goto and Katsuhiko Fujita, et al. Ambipolar pentacenefield -effect transistors with calcium source-drain electrodes. Appl. Phys. Lett. (2004) 85:2098
    [141] Eriko Mizuno, Masateru Taniguchi and Tomoji Kawai. Ambipolar organic field-effect transistors using gate insulator hysteresis. Apph Phys. Lett. (2005) 86:143513
    [142] Aline Hepp Heil, Wieland Weise and Marcus Ahles, et al. Light-emitting field-effecttransistor based on a tetracene thin film. Physical review letters (2003) 91:157406
    [143] Constance Rost, Siegfried Karg and Walter Riess. Ambipolar light- emitting organicfield -effect transistors. Appl. Phys. Lett. (2004) 85:1613
    [144] Michael D.Austin and Stephen Y.Chou. Fabrication of 70 nm channel lengthpolymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett.(2002) 81:4431
    [145] Yueh-Lin Loo, and Robert, et al. Additive, nanoscale patterning of metal films witha stamp and a surface chemistry mediated transfer process: Applications in plasticelectronics. AppZ Phys. Lett. (2002) 81:562
    [1] Y.Y.Lin, D.J.Gundlach and S.F.Nelson, et al. Stacked pentacene layer organic thin-filmtransistors with improved characteristics. IEEE Electron Device Letters, (1997) 19(12),606-608
    [2] Hagen Klauk, Marcus Halik and Ute Zschieschag, et al. High-mobility polymer gatedielectric pentacene thin film transistors, J.Appl.Phys. (2002) 92, 5259-5263
    [3] Yusaku Kato, Shingo lba and Ryohei Teramoto, et al. High mobility of pentacenefield-effect transistors with polyimide gate dielectric layers, Appl. Phys. Lett. (2004) 84,3789-3791
    [4] Nobuhide Yoneya, Makoto Noda and Nobukazu Hirai, et al. Reduction of contactresistance in pentacene thin-film transistors by direct carrier injection intoa-few-molecular-layer channel. Appl. Phys. Lett. (2004) 85, 4663-4665
    [5] S.Yaginuma, J.Yamaguchi and K.ttaka, et al. Pulsed laser deposition of oxide gatedielectrics for pentacene organic field-effect transistors. Thin Solid Films. (2005) 486,218-221
    [6] F.De Angelis, S.Cipolloni and L.Mariucci, et al. High-field-effect-mobility pentacenethin-film transistors with polymethylmetacrylate buffer layer. Appl.Phys.Lett. (2005) 86:203505
    [7] Barbara Stadlober, Martin Zikl and Michael Beutl, et al. High-mobility pentaceneorganic field-effect transistors with a high-dielectric-constant fluorinated polymer filmgate dielectric. Appl.Phys.Lett. (2005) 86:242902
    [8] V.Y.Butko, X.Chi and D.V.Lang, et al. Field-effect transistors on pentacene singlecrystal. Appl.Phys.Lett. (2003) 83:4773-4775
    [9] Guanzhong Wang, Yi Luo and Peter H.Beton. High mobility organic transistorsfabricated from single pentacene microcrystals grown on a polymer film. AppLPhys.Lett.(2003) 83:3108-3110
    [10] C.Goldmann, S.Haas and C.Krellner, et al. Hole mobility in organic single crystalsmeasured by a "flip-crystal" field-effect technique. J.Appl.Phys. (2004) 96:2080-2086
    [11] Oana D.Jurchescu, Jacob Baas and Thomas T.M.Palstra, Effect of impurities on themobility of single crystal pentacene. Appl.Phys.Lett. (2004) 84:3061-3063
    [12] Jae-Hoon Shim, Lae-Young Jung and Sang-Woo Pyo, et al. Organic thin-filmtransistors with ODPA-ODA polyimide as a gate insulator through vapor depositionpolymerization. Thin Solid Film. (2003) 441:284-286
    [13] Takeshi Yasuda, Takeshi Goto and Katsuhiko Fujita, et al. Ambipolar pentacenefield-effect transistors with calcium source-drain electrodes, Appl.Phys.Lett. (2004) 85:2098-2090
    [14] Y.S.Lee, J.H.Park and J.S.Choi. Electrical characteristics of pentacene-basedschotkty diodes. Optical Materials (2002) 21:433-437
    [15] 《光电功能超薄膜》,黄春辉,李富友,黄岩宜,北京大学出版社,(2001)
    [16] By.R.B.Campbell, J.Monteath Robertson and J.Trotter. The crystal and molecularstructure of pentacene. Acta Crystal. ( 1961 ) 14:705
    [17] G. B. Blanchet, C. R. Fincher, and Michael Lefenfeld, Contact resistance in organicthin film transistors, Appl. Phys. Lett. (2004) 84:296-299
    [18] E V. Neeliudov, M. S. Shur, D. J. Gundlach, T. N. Jackson, Contact resistanceextraction in pentaeene thin film transistors, Solid-state Electronics (2003) 47:259-262
    [19] 1. Yagi, K. Tsukagoshi, Y. Aoyagi, Direct observation of contact and channelresistance in pentacene four-terminal thin-film transistor patterned by laser ablationmethod, Appl. Phys. Lett. (2004) 84:813 -816
    [20] M. Nakamura, N. Goto, N. Ohashi, M. Sakai and K. Kudo, Potential mapping ofpentacene thin-film transistors using purely electricatomic-force-mieroscopepotentiometry, Appl. Phys. Lett (2005) 86:122112,1-3
    [21] F. Gamier, R. Hajlaoui, and M. E. Kassmi, Vertical device architecture by molding oforganic-based thin film transistor, Appl. Phys. Lett (1998) 73:1721-1724
    [22] Satoshi Tanaka, H. Yanggisawa, M. Zuka, M. Nakamura, and K. Kudo, Vertical- andLateral-Type Organic FET Using pentacene evaporated films, Electrical Engineering inJapan, (2004) 149:43-48
    [23] Y. Shen, M. W. Klein, D. B. Jacobs, J. Campbell Scott, and G. G. Malliaras,Mobility-Dependent Charge Injection into an Organic Semiconductor, Phy. Rew. Lett.(2001) 86:3867-3869
    [24] E V. Pesavento, R. J. Chesterfield, Christopher R. Newman, and C. D. Frisbie, Gatedfour-rpobe measurements on pentacene thin-film transistors: Contact resistance as afunction of gate voltage and temperature, J. Appl. Phys. (2004) 96:7312-7324
    [25] E V. Pesavento, K, P. Puntambekar, and C. D. Frisbie, Film and contact resistance inpentacene thin-film transistors: Dependence on film thickness, electrode geometry, andcorrelation with hole mobility, J. Appl. Phys. (2006) 99:094504,1-I0
    [26] W. Kim, K. Hong, and J. Lee, Enhancement of hole injection in pentacene organicthin-film transistor of 02 plasma-treated Au electrodes, Appl. Phys. Lett. (2006)89:142117,1-3
    [27] T. Manaka, E. Lim, R. Tamura, D. Yamada, and M. Iwamoto, Probing of the electricfield distribution in organic field effect transistor channel by microscopicsecond-harmonic generation, Appl. Phys. Lett. (2006) 89:072113,1-3
    [28] R. Schroeder, L. A. Majewski, and M. Grell, Electronde specificelectropolymerization of ethylenedioxythiophene: Injection enhancement in organictransistors, Appl. Phys. Lett. (2005) 87:113501,1-3
    [29] K. Waragai, and H. Akimichi, et al. Charge transport in thin films of semiconductingoligothiophenes. Phys. Rev. B. (1995) 52: 1786.
    [30] M. C. J. M. Vissenberg and M. Maters. Theory of the field-efect mobility inamorphous organic transistors. Phys. Rev. B. (1998)57: 12964.[31 ] (3. Paasch, T. Lindner and S. Scbeinert. Variable range hopping as possible origin of auniversal relation between conductivity and mobility in disordered organicsemiconductors. Synthetic Metals. (2002) 132: 97-104
    [32] W. Warta, and N. Karl. Hot holes in naphthalene: High electric-field-dependentmobilities. Phys. Rev. B. (1985) 32:1172.
    [33] N. Karl, et al. High-field saturation of charge carrier drill velocities in ultrapurifiedof ganic photoconductors. Synth. Met (1991 ) 42: 2473.
    [34] J. H. Schon, and C. Kloc, et al. Electrical properties of single crystals of rigid rodlikeconjugated molecules. Phys. Rev. B. (1998) 58: 12952.
    [35] J. H. Schon, C. Kloc, B. Batlogg. Charge transport in oligothiophene single crystals.Synthetic Metals, (2002) 155: 75-78.
    [36] J. H. Schon, S. Berg, C. KIoc, B. Batlogg. On the intrinsic limits of pentacenefield-effect transistors. Science. (2000) 287:1022
    [37] G..Horowitz. Organic Field-Effect Transistors. Adv. Mater. (1998) 10: 365.
    [38] P. (3. Le Comber. Electronic Transport In Amorphous Silicon Films. Phys.Rev.Let.(1970) 25:509
    [39] S. E Nelson, and Y "( Lin, et al. Temperature-independent transport in high-mobilitypentacene transistors. AppL Phys. Lett (1998) 72:1854.
    [40] L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. E Fung, and H. E. Katz. Chargetransport in oligothiophene field-effect transistors. Phys. Rex B. (1998) 57: 2271.
    [41] H. Sirringhaus, P. J. Brown and R. H. Friend, et al. Tow-dimensional charge transportin self-organized, high-mobility conjugated polymer. Nature. (1999) 401: 685.
    [42] G. Horowitz, M. E. Hajlaoui. Mobility in Polycrystalline Oligothiophene Field-EffectTransistors dependent on Grain Size. Adv. Mater (2000) 12:1046
    [43] J. H. Schon, and B. Batlogg. Modeling of the temperature dependence of thefield-effect mobility in thin film devices of conjugated oligomers. AppL Phys. Lett. (1999)74: 260.
    [44] T. W. Kelley, C. D. Frisbie. Gate Voltage Dependent Resistance of a Single OrganicSemiconductor Grain Boundary.J. Phys. Chem. B. (2001) 105:4538
    [45] G. Horowitz. Tunneling Current in Polycrystalline Organic Thin-Film Transistors.Adv. Fund Mater. (2003) 13: 53.
    [46] F. Dinelli, M. Murgia, P. Levy, M. Cavallini, and F. Biscarini, Spatially CorrelatedCharge Transport in Organic Thin Film Transistors, Phy. Rew. Lett. (2004) 92:116802,1-3
    [47] D. Knipp, R. A. Street, A. volkel, and J. Ho, Pentacene thin film transistors oninorganic dielectrics: Morphology, structural properties, and electronic transport. J. Appl.Phys. (2003) 93:347-355
    [48] N. J. Watkins, Li Yan, and Yongli Gao, Electronic structure symmetry of interfacesbetween pentaeene and metals, Appl. Phys. Lett. (2002) 80:4384-4387
    [49] Shih-Fang Chen, Cbing-Wu Wang, Influence of the hole injection layer on theluminescent performance of organic light-emitting diodes, AppL Phys.Lett. (2004) 85,765.
    [50] Eun-Mi Han, Lee-Mi Do, Masamichi Fujihira, Hiroshi Inada, Yasuhiko Shirota,Scanning force microscopy of organic thin-film amorphous hole transport materials, J.Appl. Phys. (1996) 80, 3297.第三章
    [1] Gilles Horowitz, Riadh Hajlaoui, Denis Fichou, and Ahmed E1 Kassmi, Gate voltagedependent mobility of oligothiophene field-effect transistors, J. Appl. Lett. (1999) 85:3202-3206
    [2] R. A. Street and A. Salleo, Contact effects in polymer transistors, Appl. Phys. Lett.(2002) 81:2887-2890
    [3] A. Bolognesi, A. Di Carlo, and P. Lugli, Influence of carrier mobility and contactbarrier height on the electrical characteristics of organic transistors, Appl. Phys. Lett.(2002) 81 : 4646-4649
    [4] L. Burgi, H. Sirringhaus, and R. H. Friend, Noncontact potentiometry of polymerfield-effect transistors, Appl. Phys. Lert. (2002) 80:2913-2916
    [5] J. A. Nichols, D. J. gundlach, and T. N. Jackson, Potential imaging of pentaceneorganic thin-film transistors, Appl. Phys. Lett. (2003) 83:23662369
    [6] L. A. Majewski, R. Schroeder, and M. Grell, Organic field-effect transistors withelectroplated platinum contacts, Appl. Phys Lett. (2004) 85:3620-3623
    [7] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, Contact resistance in organic thinfilm transistors, Appl. Phys. Lett. (2004) 84:296-299
    [8] N. Yoneya, M. Noda, N. Hirai, Kazumasa Nomoto, M. wada, and J. Kasahara,Reduction of contact resistance in pentacene thin-film transistors by direct carrierinjection into a-few-molecular-layer channel, Appl. Phys. Lett. (2004) 85:4663-4666
    [9] 1. Yagi, K. Tsukagoshi, and Y. Aoyagi, Direct observation of contact and channelresistance in pentacene four-terminal thin-film transistor patterned by laser ablationmethode, Appl. Phys. Lett. (2004) 84:813-816
    [10] M. Nakamura, N. Goto, N. Ohashi, M. Sakai, and K. Kudo, Potential mapping ofpentacene thin-fiom transistors using purely electric atomic-force-microscopepotentiometry, Appl. Phys. Lett. (2005) 86:122112 1-3
    [11] Raoul Schroeder, L. A. Majewski, and Martin Grell, Improving organic transistorperformance with Schottky contacts, Appl. Phys. Lett. (2004) 84:1004-1006
    [12] Y. Abe, T. Hasegawa, Y. Takahashi, T. Yamada, and Y. Tokura, Control of thresholdvoltage in pentacene thin-film transistors using carrier doping at the charge-transferinterface with organic acceptors, Appl. Phys. Lett. (2005) 87:153506,1-3
    [13] X. "fang, J Wang, H. Wang, H. Wang and D. Yan, Improved n-type organic transistorsby introducing organic heterojunction buffer layer under source/drain electrodes, AppLPhys. Lett. (2006) 89:053510,1-3
    [14] Winfried Monch, Slop parameters of the barrier heights of metal-organic contacts,Apph Phys. Lett. (2006) 88:112116,1-3
    [15] T. Manaka, E. Lim, r. Tamura, D. Yamada and M. lwamoto, Probing of the electricfield distribution in organic field effect transistor channel by microscopicsecond-harmonic generation, Appl. Phys. Lett. (2006) 89:072113,1-3[ 16] E. ltoh, K. Miyairi, lnterfacial charge phenomena at the semiconductor/gate insulatorinterface in organic field effect transistors, Thin solid films, (2006) 499, 95-103
    [17] S. Wo, B. Wang, H. Zhou, etc, Structure ofa pentacene monolyaer deposited on SiO2Role of trapped interfacial water, J. Appl. Lett, (2006) 100:093504,1-5
    [18] S. Steudel, S. D. Vusser, S. D. Jonge, P. Heremans, Influence of the dielectricroughness on the performance of pentacene transistors, Appl. Phys. Lett. (2004) 85:4400-4402
    [19] F. D. Angelis, S. Cipolloni, L. Mariucci, and G. Fortunato, High-field-effect-mobilitypentacene thin-film transistors with polymethyhnetacrylate buffer layer, Appl. Phys. Lett.(2005) 86: 203505,1-3
    [20] W. Chou, C. Kuo, H. Cheng, Y. Chen, and F. Tang, Effect of surface free energy ingate dielectric in pentacene thin-film transistors, Appl. Phys. Lett. (2006) 89:112126,1-3[2l] H. L. Cheng, W. Y. Chou, C. W. Kuo, and F. C. Tang, Electric field-induced structuralchanges in pentacene-based organic thin-film transistors studied by in situ micro-ramanspectroscopy, Appl. Phys. Lett. (2006) 86:161918,1-3
    [22] J. Lee, J. H. Kim, and S. lm, Threshold voltage change due to organic-inorganicinterface in pentacene thin-film transistors, J. Appl. Lett. (2004) 96:2301-2304
    [23] T. B. Singh, F. Meghdadi, S. Gunes, and N. S. Sariciftci, High-performanceAmbipolar pentacene organic field-effect transistor on poly(vinyl alcohol) organic gatedielectric, Adv. Mater. (2005) 17:2315-2320
    [24] J. Park, J. S. Choi, Study on the characteristics of metal-organic interface for organicthin-film transistors, Synthetic Metals, (2005) 155:657-661
    [25] S. Y. Park, Y. l-I. Noh, and H. H. Lee, Introduction of an interlayerbetwen metal andsemiconductor for organic thin-film transistors, Appl. Phys. Lett. (2006) 88:113503,1-3
    [26] A. r. Brown, A. Pomp, D. M. de Leeuw, D. B. M. Klaassen and E. E. Havinga,Precursor route pentacene metal-insulator-semiconductor field-effect transistors, J. Appl.Phys. (1996) 79:2136-2138
    [27] S. J. Kang, M. Noh, D. S. Park, H. J. Kim and C. N. Whang, lnflence ofpostannealing on polycrystalline pentacene thin film transistor, J. Appl. Phys. (2004) 95:2293-2296
    [28] Y. Jin, Z. Rang, M. 1. Nathan and P. Paul Ruden, Pentacene organic field-effecttransistor on metal substrate with spin-coated smoothing layer, Appl. Phys. Lett. (2004)85:4406-4408
    [29] D. Knipp, R. A. Stree, A. Volkel, and J. Ho, Pentacene thin film transistors oninorganic dielectrics: Morphology, structural properties, and electronic transport, J. Appl.Phys, (2003) 93:347-355
    [30] A. R. Volkel, R. A. Street, and D. Knipp, Carder transport and density of statedistributions in pentacene transistors, Phys. Rev. B (2002) 66:195336,1-8
    [31] S. F. Nelson, Temperature-independent transport in high mobility pentacenetransistors, Appl. Phys. Lett. (1998) 72:1854-1856
    [32] R. Tromp, F. LeGoues, and P. Ho, lnterdiffusion at the polyimide-Cu interface, J. Vac.Sci. Technol. A. (1985) 3:782
    [33] Y. Hirose and A. Kahn et, Chemistry and electronic properties of metal-organicsemiconductor interfaces: AI, Ti, In, Sn, Ag, and Au on PTCDA, Phys. Rev. B (1996) 54:13748-13758
    [34] M. Probst and R. Haight, Diffusion of metals into organic films, Appl. Phys. Lett,(1997) 70:1420-1423
    [35] P. V. Necliudov, M. S. Shur, D. J. Gundlach and T. N. Jackson, Modeling of organicthin film transistors of different designs, J. Appl. Phys. Lett. (2000) 88:6594-6597
    [36] N. Tessler and Y. Roichman, Two-dimensional simulation of polymer field-effecttransistor, Appl. Phys. Lett. (2001) 79:2987-2989
    [37] Y. Roichman and N. Tessler, Structures of polymer field-effect transistor:Experimental and numerical analyses, Appl. Phys. Lett. (2002) 80:151-153
    [38] Peter. V. Necliudov, M. S. Shur. D. J. Gundlach, and T. N. Jackson, Contactresistance extraction in pentacene thin film transistors, Solid-state Electronics, (2003) 47:259-262
    [39] P. V. Pesavento, R. J. Chesterfield, C. R. Newman and C. D. Frisbie, Gatedfour-probe measurements on pentacene thin-film transistor: Contact resistance as afunction of gate voltage and temperature, J. Appl. Phys. (2004) 96:7312-7324
    [40] T. Li, P. P. Ruden, 1. H. Campbell and D. L. Smith, Investigation of bottom-contactorganic field effect transistors by two-dimensional device modeling, J. Appl. Phys. (2003)93:4017-4022
    [41] P. Guaino, D. Carry and G.. Hughes, Long-range order in a multiplayer organic filmtemplated by a molecular-induced surface reconstruction: Pentacene on Au(110), Appl.Phys. Lett, (2004) 85:2777-2779
    [42] P. G. Schroeder, C. B. France, J. B. Park and B. A. Parkinson, Energy level alignmentand two-dimensional structure of pentacene on Au(111) surface, J. Appl. Phys. (2002) 91:3010-3013
    [43] W. Kim, K. Hong, J. Lee, Enhancement of hole injection in pentacene organicthin-film transistor of 02 plasma-treated Au electrodes, Appl. Phys. Lett. (2006) 89:142117, I-3
    [44] N. Koch, A. Vollmer, Electrode-molecular semiconductor contacts:Work-function-dependent hole injection barriers versus Fermi-level pinning, Appl. Phys.Lett. (2006) 89:162107,1-3
    [45] N. J. Watkins, L. Yan and Y. Gao, Electronic structure symmetry of interfacesbetween pentacene and metals, Appl. Phys. Lett, (2002) 80:4384-4386
    [46] N. Koch, A. Kahn, J. Ghijsen and J. J. Pireaux etc. Appl. Phys. Lett. (2003) 82:70-72
    [47] J. H. Cho, D. H. Kim, Y. Jang, and W. H. Lee, Effects of metal penetration intoorganic seminconductors on the electrical properties of organic thin film transistors, Appl.Phys. Lett. (2006) 89:132101,1-3
    [48] Lei Diao, C. Daniel Frisbie, Dominic D. Schroepfer and P. Paul Ruden, Electricalcharacterization of metal/pentacene contacts, J. Appl. Phys. (2007) 101, 014510, 1-8
    [49] T M Brown, R H Friend, 1 S Millard, et al. LiF/AI cathodes and the effect of LiFthickness on the device characteristics and built-in potential of polymerlight-emitting diodes. Appl. Phys. Lett., (2000) 77, 3096.
    [50] P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, and P. J. Brock, Roleof CsF on electron injection into a conjugated polymer, AppI.Phys. Lett. (2000) 77,2403.
    [51] J SKim, M Granstrom, R H Friend, N Johansson, W R Salaneck, R Daik, W JFeast, F Cacialli, Indium-tin oxide treatments for single- and double-layer polymericlight-emitting diodes: The relation between the anode physical, chemical, andmorphological properties and the device performance, JOURNAL OF APPLIEDPHYSICS 84 (1998) 12, 6859.
    [52] ] H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B.Chrisey, Indium tin oxide thin films for organic light-emitting devices, Appl. Phys.Lett. (1999) 74, 3444.
    [53] J. R. Shears, D. B. Roitman, Failure modes in polymer-based light-emittingdiodes, Synth. Met. (1998) 95, 79
    [54] Yulong Shen, Daniel B. Jacobs, George G. Malliaras,Goutam Koley, Michael G.Spencer, and Andronique loannidis, Modification of lndium Tin Oxide for ImprovedHole Injection in Organic Light Emitting Diodes, Adv. Mater. (2001) 13, 1234.
    [55] I-M Chan, T-Y Hsu and F C Hong, Enhanced hole injections in organiclight-emitting devices by depositing nickel oxide on indium tin oxide anode, Appl.Phys. Lett. (2002) 81, 1899.
    [56] W P Hu, K Manabe, T Furukawa and M Matsumura, Lowering of operationalvoltage of organic electroluminescent devices by coating indium-tin-oxide electrodeswith a thin CuOx layer, Appl. Phys. Lett. (2002) 80, 2640.
    [57] T. S. Sian and G. B. Reddy, Sol. Energy Materials and Sol. Cell, (2004) 82:375-386
    [1] R. M. Warner, B. C. Grung 著,吕长志,冯士维,张万荣等译,半导体器件电子学,电子工业出版社, 2005 年
    [2]刘文明编著,半导体物理学,吉林人民出版社, 1982年
    [3]D.A. Neamen 著, 赵毅强,姚素英,解晓东等译,半导体物理与器件,电子工业出版社, 2006 年
    [4] Yue Kuo, Thin Film Transistor, Kluwer Academic Publishers (2004).
    [5] M. Shur and M. Hack, Physics of amorphous silicon Based Alloy Field-effectTransistors, J. Appl. Phys. (1984) 55:3831

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700