聚酰亚胺/碳纳米复合电极上光电转换、催化材料的制备及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本硕士学位论文利用电化学原子层沉积(EC-ALD)、循环伏安法(CV)和电流时间法(i-t)等技术在聚酰亚胺(PI)与碳纳米管(CNTs)、石墨烯(GE)等复合材料表面制备了具有光电转换和催化性能的薄膜材料。然后利用形貌、结构与性能等多种表征手段,分析了所制备的材料。主要内容如下:
     1. PI/COOH-CNTs导电基底上半导体光电转换材料CuSe的EC-ALD法制备及性能研究
     成功制备了PI与羧基化碳纳米管(COOH-CNTs)的导电复合电极材料,然后利用EC-ALD沉积技术,在PI/COOH-CNTs复合电极上制备了具有光电转换性能的半导体纳米CuSe薄膜材料。在通过CV分别确定Cu、Se沉积电位的基础上,采用电流时间曲线法交替沉积了Cu和Se原子层最终获得CuSe化合物;由X射线衍射(XRD)分析结果得知CuSe沉积择优发生在(112)面;扫描电子显微镜(SEM)和能量色散光谱(EDS)数据证明所制备CuSe具有纳米级的棒状结构、Cu:Se比例接近于1:1;由紫外透射数据计算的CuSe半导体带隙为2.0eV,通过开路电位技术(OCP)研究表明CuSe晶体具有p型半导体性质。
     2. PI/COOH-CNTs导电基底上半导体光电转换材料In2Te3的EC-ALD和脉冲沉积制备及光电性能研究
     分别利用EC-ALD过程(电流时间技术)和脉冲沉积过程(三脉冲电流技术),在PI/COOH-CNTs复合电极上制备了具有光电转换性能的半导体纳米In2Te3薄膜材料。首先采用CV法分别确定In、Te沉积电位,然后用EC-ALD法和脉冲沉积过程实现了In2Te3半导体化合物的沉积;由XRD和EDS的研究结果说明,由EC-ALD法所制备的In2Te3薄膜具有多晶性质,而利用脉冲沉积过程制备的In2Te3薄膜则为无定型态;通过在光照和黑暗下条件下的开路电位技术(OCP)研究表明,用EC-ALD法和脉冲沉积过程制备的In2Te3薄膜均为p型半导体。
     3. PI/COOH-CNTs和PI/GE复合导电基底上Pd纳米颗粒的制备及其催化性能研究
     利用电化学方法分别在PI/COOH-CNTs和PI/GE电极材料表面制备了Pd纳米催化剂。CV法研究结果得出Pd2+离子在两种电极上的电化学行为基本一致,且在PI/GE电极上的电流密度较大;通过XRD和SEM数据发现,在相同的沉积条件下,两种电极材料上的Pd纳米催化剂均为面心立方晶体,且形貌都是均一的花状结构;通过对甲酸的电化学催化行为研究发现,负载于PI/COOH-CNTs和PI/GE电极材料表面的纳米Pd对甲酸均有明显的催化氧化性能。
In this master's paper, several thin films material possessed photoelectric conversion and catalytic performance is researched and prepared on polyimide (PI) and carbon nanotubes (CNTs), graphene (GE) composite membrane by means of cyclic voltammeter (CV), Amperometric i-t, differential pulse voltammetry (DPV) technology, and so on. The structure, surface morphology, composition and performance of the as-prepared thin films are characteried by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) with an energy dispersive X-ray (EDS) analyzer, and some spectrophotometer. The main contents are as follows:
     1. Electrochemical atomic Layer deposition (EC-ALD) of nanosemiconductor CuSe on PI/COOH-CNTs composition membrane and photoelectric property researches
     The CuSe thin films were successfully prepared on PI/COOH-CNTs membrane by EC-ALD technology. Through the electrochemcial study of cyclic voltammetric behaviours, the deposition potential of Cu and Se were determined; The Cu and Se atomic layer were alternately deposited by amperometric methods (i-t); According to XRD results, it can be seen that the preferred planes of the as-prepared CuSe thin film is at (112) plane; SEM and EDS analysis indicate that the CuSe film is nanoscale short rod structure, and average atom ratio of Cu:Se is close to1:1. The band gap cauclated from ultraviolet transmission data is calculated to be2.0eV, and the CuSe crystals are domenstrated to have p-type semiconductor property.
     2. EC-ALD and codeposition of nanosemiconductor In2Te3on PI/COOH-CNTs composition membrane and photoelectric property researches
     The In2Te3thin films were prepared on PI/COOH-CNTs membrane by EC-ALD (amperometric i-t technology) and codeposition (triple pulse current technology) process; Through the electrochemcial study of cyclic voltammetric behaviours to determine the deposition potential of and the underpotional of In and Te in the deposition process. Through XRD and EDS characterization, it is proved that the thin film deposited by EC-ALD is polycrystalline structure, while it is amorphous struture through codeposition process. The OCP and amperometric i-t researches under illumination and dark show that the as-prepared In2Te3thin films using these two methods are both p-type semiconductors, and it is very suitable for semiconductor material.
     3. Study of eledtrodoposition of Pd nanoparticles on PI/COOH-CNTs and PI/GE composite substrate and its catalytic performance research
     Pd nanocatalysts wree prepared respectively on the surface of PI/COOH-CNTs and PI/GE electrodes by electrochemical method. The CV results indicate that the electrochemcial behaviours of PdCl2solution on PI/COOH-CNTs and PI/GE electrodes were similar, and the current density on the PI/GE electrode is larger than that on the PI/COOH-CNTs electrode. According to XRD and SEM data, it can be observed that the Pd on two kinds of electrode materials are face centered cubic structure nanocatalysts, and the surface morphology are flower structure. Through electrochemical catalytic behavior research for formic acid, it is found that the Pd nanoparticles on the PI/COOH-CNTs/PI and PI/GE electrodes both have obvious catalytic oxidation properties for formic acid.
引文
[1]林杰,亚振国,丁国利,李佐民,真空蒸发镀膜技术的应用,煤矿机械,2000,2,24-25.
    [2]K Yamaguchi, A Heya, K Shimura et al. Effect of Targe Compositions on The Crystallinity of β-FeSi2 Prepared by Ion Beam Sputter Deposition Method. Thin Solid Films,2004,461, 17-21.
    [3]胡昌义,李靖华,化学气相沉积技术与材料制备,稀有金属,2001,25,364-367.
    [4]黄传真,艾兴,侯志刚,陈元春,溶胶-凝胶法的研究和应用现状,材料导报,1997,3,8-13.
    [5]Larry L. Hench, Jon K. West, The sol-gel process, Chemical Reviews,1990,90 (1),33-72.
    [6]王喜莲,李浴春,韩爱珍,高元恺,杨志伟,用电共沉积方法制备InGaAs薄膜,材料研究学报,2001,15(4),451-454.
    [7]Marco M. Musiani, Francesco Paolucci, and Paolo Guerriero, Electrodeposition of As-Sb Alloys, Journal of Electroanalytical Chemistry,1992,332,113-126.
    [8]Kim JY, Kim YG, Stickney JL, Cu nanofilm formation by electrochemical atomic layer deposition (ALD) in the presence of chloride ions, Journal of Electroanalytical Chemistry, 2008,621,205-213.
    [9]D. M. Kolb, M. Przasnyski, and H. Gerisher, Underpotential Deposition of Metals and Work Function Differences, Journal of Electroanalytical Chemistry,1974,54,25-38.
    [10]E.J. Calvo, and R.A. Etechenique, Chapter 12 Kinetic applications of the electrochemical quartz crystal microbalance (EQCM), Comprehensive Chemical Kinetics,1999,37, 461-487.
    [11]Brian W. Gregory, and John L. Stickney, Electrochemical Atomic Layer Epitaxy (ECALE), Journal of Electroanalytical Chemistry,1991,300,543-561.
    [12]许姣姣,司云森,余强,曾初生,电化学沉积技术分析及其应用,云南冶金,2007,36(3),49-51.
    [13]吴瑾光,近代傅里叶变换红外光谱技术及应用(第一版)[M],北京:科学技术文献出版社,1994.
    [14]薛奇,高分子结构研究中的光谱方法[M],北京:高等教育出版社,1995.
    [15]R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press,1998,272.
    [16]Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, Carbon Nanotubes-the Route Toward Applications, Science,2002,297,787-792.
    [17]D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen andR. S. Ruoff, Preparation and characterization of graphene oxide paper, Nature, 2007,448,457-460.
    [18]T. Lee, J. Lim, I. Chung, I. Kim, C. S. Ha, Preparation and characterization of polyimide/modified β-cyclodextrin nanocomposite films, Macromolecular Research,2010, 18,120-128.
    [19]J. Lee, Y. Ko, J. Kim, Effect of poly(amic acid)-treated BaTiO3 on the dielectric and mechanical properties of BaTi03/polyimide composites, Macromolecular Research,2010, 18,200-203.
    [20]Xiaowen Jiang, Yuezhen Bin,, Masaru Matsuo, Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization, Polymer,2005, 46,7418-7424.
    [21]L. W. Qu, Y. Lin, D. E. Hill, B. Zhou, W. Wang, X. F. Sun, A. Kitaygorodskiy, M. Suarez, J. W. Connell, L. F. Allard, Y. P. Sun, Polyimide-Functionalized Carbon Nanotubes:Synthesis and Dispersion in Nanocomposite Films, Macromolecules,2004,37,6055-6060.
    [22]Yizhe Hu, Liping Wu, Jianfeng Shen, Mingxing Ye, Amino-Functionalized Multiple-Walled Carbon Nanotubes-Polyimide Nanocomposite Films Fabricated by In situ Polymerization, Journal of Applied Polymer Science,2008,110,701-705.
    [23]S. M. Yuen, C. C. M. Ma, C. L. Chiang, Y. Y. Lin, C. C. Teng, Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite,J. Polym. ScL, Part A:Polym. Chem.,2007,45,3349-3358.
    [24]Gwang Yeon Kim, Myeon-Cheon Choi, Daewoo Lee, Chang-Sik Ha,2D-Aligned Graphene Sheets in Transparent Polyimide/Graphene Nanocomposite Films Based on Noncovalent Interactions Between Poly(amic acid) and Graphene Carboxylic Acid, MacromoL Mater. Eng.,2012,297,303-311.
    [25]Nguyen Dang Luonga, Ulla Hippia, Juuso T. Korhonenb, Antti J. Soininenb, Janne Ruokolainenb,Leena-Sisko Johansson0, Jae-Do Namd, Le Hoang Sinhd,Jukka Seppalaa, Enhanced mechanical and electrical properties of polyimide film by grapheme sheets via in situ polymerization, Polymer,2011,52,5237-5242.
    [26]T. Agag, T. Koga, T. Takeichi, Studies on thermal and mechanical properties of polyimide-clay nanocomposites, Polymer,2001,42,3399-3408.
    [27]A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Material,2007,6,183-191.
    [28]Duk Man Yu, Hua Jin, Sung Chul Kim, Properties of polyurethane/hectorite nanocomposite elastomer using reactive organifier, Macromolecular Research,2010,18,73-77.
    [29]Hyang Hwa So, Jae Whan Cho, Nanda Gopal Sahoo, Effect of Carbon Nanotubes on Mechanical and Electrical Properties of Polyimide/carbon Nanotubes Nanocomposites, European Polymer Journal,2007,43,3750-3756.
    [30]Bao-Ku Zhu, Shu-Hui Xie, Zhi-Kang Xu, and You-Yi Xu, Preparation and Properties of the Polyimide/multi-walled Carbon Nanotubes(MWNTs) Nanoco-mposites, Composites Science and Technology,2006,66,548-554.
    [31]Liangwei Qu, Yi Lin, Darron E. Hill, Bing Zhou, Wei Wang, Xianfeng Sun, Alex Kitaygorodskiy, Myra Suarez, John W. Connell, Lawrence F. Allard, Ya-Ping Sun, Polyimide-Functionalized Carbon Nanotubes:Synthesis and Dispersion in Nanocomposite Films, Macromolecules,2004,37,6055-6060.
    [32]L. Carrette,; K. A. Friedrich,; U. Stimming, Fuel Cells-Fundamentals and Applications, Fuel Cells,2001,1,5-39.
    [33]Brian C. H. Steele, Angelika Heinzel, Materials for fuel-cell technologies, Nature,2001,414, 345-352.
    [34]Savadogo O, Emerging Membranes for Electrochemical Systems:(I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems, J. New Mater. Electrochem. Syst.,1998,1, 47-66.
    [35]M Rikukawa,, K Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Progress in Polymer Science,2000,25,1463-1502.
    [36]Wang, F.; Hickner, M.; Ji, Q.; Harrison, W.; Mecham, J.;Zawodzinski, T. A.; McGrath, J. E., Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization, Macromol. Symp.,2001,175,387-396.
    [37]J. S. Wainrigha, J.-T. Wanga, D. Wenga, R. F. Savinella and M. Littb, Acid-Doped Polybenzimidazoles:A New Polymer Electrolyte, J. Electrochem. Soc.,1995,142, L121-L123.
    [38]Vallejo, E.; Pourcelly, G.; Gavach, C.; Mercier, R.; Pineri, M., Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane, Journal of Membrane Science,1999,160,127-137.
    [39]Litt M H, Zhang Y, Savineil R F, Wainright JS, Molecular design considerations in the synthesis of high conductivity PEMs for fuel cells, Polymer Preprints-america,1999,40: 480-481.
    [40]Xiaoxia Guo, Jianhua Fang, Tatsuya Watari, Kazuhiro Tanaka, Hidetoshi Kita, and Ken-ichi Okamoto, Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application.2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid, Macromolecules,2002,35,6707-6713.
    [41]Miyatake, K.; Zhou, H.; Uchida, H.; Watanabe, M., Highly proton conductive polyimide electrolytes containing fluorenyl groups, Chem. Commun.,2003,368-369.
    [42]T P Vinod, Xing Jin, Jinkwon Kim, Hexagonal nanoplatelets of CuSe synthesized through facile solution phase reaction, Materials Research Bulletin,2011,46,340-344.
    [43]A. Jagminasa, R. Juskenasa, I. Gailiutea, G. Statkuteb, R. Tomasiunasb, Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores, Journal of Crystal Growth,2006,294343-348.
    [44]S.R. Gosavi a,b,N.G. Deshpande a, Y.G. Gudagea, Ramphal Sharma a,*, Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature, Journal of Alloys and Compounds,2008,448,344-348.
    [45]T. D. Dzhafarov, A. Sh. Mekhtiev, M. S. Sadigov, The Effect of -Irradiation on Photoelectrical Properties of Sb-GaSe Structures, physica status solidi (a),1982,69, 643-648.
    [46]S. A. Hussein, A. T. Nagat, Characteristic Features of Electrical properties in In2Te3 Single Crystals,phys, stat. sol. (a),1989,114, K205-K209.
    [47]A.A.Zahab, M.Abd-Lefdil, M.Cadene, Effect of annealing on structure and electrical conductivity of evaporated indium telluride, Phys. Status Solidi A,1989,115,491-495.
    [48]A.A.Zahab, M.Abd-Lefdil, M.Cadene, Electrical Conductivity, Optical Absorption, and Photoconductivity Measurements of Well Oriented Indium Telluride Thin Films, Phys. Status Solidi A,1990,117, K103-K106.
    [49]P. K. Babu, H. S. Kim, J. H. Chung, E. Oldfield, and A. Wieckowski, Bonding and Motional Aspects of CO Adsorbed on the Surface of Pt Nanoparticles Decorated with Pd, Journal of Physical Chemistry B,2004,108,20228-20232.
    [50]Yimin Zhua, Zakia Khana, R.I. Masela,b,*, The behavior of palladium catalysts in direct formic acid fuel cells, Journal of Power Sources,2005,139,15-20.
    [51]Yimin Zhu1, Su Y. Ha, Richard I. Masel*, High power density direct formic acid fuel cells, Journal of Power Sources,2004,130,8-14.
    [1]Neyvasagam K, Soundararajan N, Ajaysoni, Okram GS, GanesanV, Photoluminescence study of Cupric Telluride thin films, Physical Status Solidi B,2008,245,77-81.
    [2]Ambade SB, Mane RS, Kale SS, Sonawane SH, Shaikh AV, Han SH, Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells, Applied Surface Science,2006,253,2123-2126.
    [3]Gosavi SR, Deshpande NG, Gudage YG, Sharma R, Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature, Journal of Alloys and Compound,2008,448,344-348.
    [4]Haram SK, Santhanam KSV, Spallart MN, Clement CL, Electroless deposition on copper substrates and characterization of thin films of copper (I) selenide, Materials Research Bulletin,1992,27,1185-1191.
    [5]Yang YJ, Hu SS, Galvanic synthesis of copper selenides Cu2-xSe and CuSe in alkaline sodium selenosulfate aqueous solution, Journal of Solid State Electrochemistry,2009,13, 477-483.
    [6]Bhusea VM, Hankareb,* PP, Garadkarb KM, Khomaneb AS, A simple, convenient, low temperature route to grow polycrystalline copper selenide thin films, Materials Chemistry and Physics,2003,80,82-88.
    [7]Gosavi SR, Deshpande NG, Gudage YG, Sharma R, Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature, Journal of Alloys and Compound,2008,448,344-348.
    [8]Lakshmikumar ST, Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source, Solar Energy Materials and Solar Cells,1994,32,7-19.
    [9]Abdullaev GB, Aliyarova ZA, Asadov GA, Preparation of Cu2Se Single Crystals and Investigation of their Electrical Properties, Physical Status Solidi B,1967,21,461-464.
    [10]Garcia VM, Nair PK, Nair MTS, Copper selenide thin films by chemical bath deposition, Journal of Crystal Growth,1999,203,113-124.
    [11]Vinod TP, Jin X, Kim J, Hexagonal nanoplatelets of CuSe synthesized through facile solution phase reaction, Materials Research Bulletin,2011,46,340-344.
    [12]Hankare PP, Khomane AS, Chate PA, Rathod KC, Garadkar KM, Preparation of copper selenide thin films by simple chemical route at low temperature and their characterization, Journal of Alloys and Compound,2009,469,478-482.
    [13]Haram SK, Santhanam KSV, Electroless deposition of orthorhombic copper (I) selenide and its room temperature phase transformation to cubic structure, Thin Solid Films,1994, 238,21-26.
    [14]Massaccesi S, Sanchez S, Vedel J, Cathodic deposition of copper selenide films on tin oxide in sulfate solutions, Journal of Electrochemistry Society,1993,140,2540-2546.
    [15]Tonejc A, Ogorelec Z, Mestnik B, X-ray investigation of copper selenides Cu2-xSe (2.002-x1.72), Applied Crystal,1975,8,375-379.
    [16]Vohl P, Perkins DM, Ellis SG, Addiss RR, Huis W, Noel G, GaAs thin-film solar cells, IEEE Transaction Electron Devices,1967,14,26-30.
    [17]Okimura H, Matsumae T, Makabe R, Electrical properties of Cu2-xSe thin films and their application for solar cells, Thin Solid Films,1980,71,53-59.
    [18]Malik MA, O'Brien P, Revaprasadu N, A novel route for the preparation of CuSe and CuInSe2 nanoparticles, Advanced Material,1999,11,1441-1444.
    [19]Kim JY, Kim YG, Stickney JL, Cu nanofilm formation by electrochemical atomic layer deposition (ALD) in the presence of chloride ions, Journal of Electroanalytical Chemistry, 2008,621,205-213.
    [20]Mathe MK, Cox SM, Jr BHF, Vaidyanathan R, Pham L, Srisook N, Happek U, Stickney J L, Deposition of CdSe by EC-ALE, Journal of Crystal Growth,2004,271,55-64.
    [21]Loglio F, Innocenti M, Pezzatini G, Foresti ML, Ternary cadmium and zinc sulfides and selenides:electrodeposition by ECALE and electrochemical characterization, Journal of Electroanalytical Chemistry,2004,562,117-125.
    [22]Kou HH, Zhang X, Jiang YM, Li JJ, Yu SJ, Zheng ZX, Wang CM, Electrochemical atomic layer deposition of a CuInSe2 thin film on flexible multi-walled carbon nanotubes/polyimide nanocomposite membrane:Structural and photoelectrical characterizations, Electrochimia Acta,2011,56,5575-5581.
    [23]Ye WC, Tong H, Wang CM, Study on Microcontamination of Silver onto p-Type Crystalline Silicon(111) from an Aqueous Solution Using Cyclic Voltammetry, Mikrochimica Acta,2005,152,85-88.
    [24]Huanshun Yina,b, Qiang Maa, Yunlei Zhoua, Shiyun Aia, Lusheng Zhu, Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode, Electrochim Acta,2010,55,7102-7108.
    [25]Jing F, Tong H, Wang CM, Cyclic voltammetry study of silver seed layers on p-silicon (100) substrates, Journal of Solid State Electrochemistry,2004,8,877-881.
    [26]Huang BM, Lister TE, Stickney JL, Se adlattices formed on Au(100), studies by LEED, AES, STM and electrochemistry, Surface Science,1997,392,27-43.
    [27]Riveros G, Henriquez R, Cordova R, Schrebler R, Dalchiele EA, Gomez H, Electrochemical study concerning the deposition of copper on selenium covered gold electrodes, Journal of Electroanalytical Chemistry,2001,504,160-165.
    [28]Shi XZ, Zhang X, Ma CL, Wang CM, Kinetic Studies of Underpotential Deposition of Antimony on Se-modified Au Electrode, Journal of Solid State Electrochemistry,2010,14, 93-99.
    [29]Demir U, Shannon C, Electrochemistry of Cd at ((?)3×(?)3) R30°-S/Au (111):Kinetics of Structural Changes in CdS Monolayers, Langmuir,1996,12,6091-6097.
    [30]Gomez H, Henriquez R, Schrebler R, Cordova R, Ramirez D, Riveros G, Dalchiele EA, Electrodeposition of CdTe thin films onto n-Si(100):nucleation and growth mechanisms, Electrochimica Acta,2005,50,1299-1305.
    [31]Tang J, Zheng JJ, Xu W, Tian XC, Lin JH, Synthesis of ZnO on ITO and Etched Pattern Characterization by Scanning Electrochemical Microscopy, Acta Physical-Chim. Sin., 2011,27(11),2613-2617.
    [32]Jagminasa A, Juskenasa R, Gailiutea I, Statkutebb G, Tomasiunasb R, Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores, Journal of Crystal Growth,2006,294,343-348.
    [33]Haram SK, Santhanam KSV, Electroless deposition of orthorhombic copper (I) selenide and its room temperature phase transformation to cubic structure, Thin Solid Films,1994, 238,21-26.
    [34]Zhang X, Shi XZ, Ye WC, Ma CL, Wang CM, Electrochemical Deposition of Quaternary Cu2ZnSnS4 Thin Films as Potential Solar Cell Material, Applied Physics A,2009, 94,381-386.
    [35]Guillen C, Herrero, Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors, Journal of Solar Energy Materials & Solar Cells,2002,73,141-149.
    [1]T. D. Dzhafarov, A. Sh. Mekhtiev, M. S. Sadigov, The Effect of -Irradiation on Photoelectrical Properties of Sb-GaSe Structures, physica status solidi (a),1982,69, 643-648.
    [2]S. A. Hussein, A. T. Nagat, Characteristic Features of Electrical properties in In2Te3 Single Crystals, phys. stat. soL (a),1989,114, K205-K209.
    [3]A.A.Zahab, M.Abd-Lefdil, M.Cadene, Effect of annealing on structure and electrical conductivity of evaporated indium telluride, Phys. Status Solidi A,1989,115,491-495.
    [4]A.A.Zahab, M.Abd-Lefdil, M.Cadene, Electrical Conductivity, Optical Absorption, and Photoconductivity Measurements of Well Oriented Indium Telluride Thin Films, Phys. Status Solidi A,1990,117, K103-K106.
    [5]R.R. Desaia, D. Lakshminarayanaa, P.B. Patelb, C.J. Panchal, Indium sesquitelluride (In2Te3) thin film gas sensor for detection of carbon dioxide, Sensors and Actuators B:Chemical, 2005,107,523-527.
    [6]D. Lakshminarayana, P. B. Patel, R. R. Desai, C. J. Panchal, Investigation of thermoelectric power in indium sesquitelluride(In2Te3) thin films, Journal of Materials Science:Materials in Electronics,2002,13,27-30.
    [7]A.G. Kunjomana, E.Mathai, Growth and micro-indentation studies of In2Te3 whiskers, J. Mater. Sci. Lett.,1992,11,613-615.
    [8]S. Sen, D. N. Bose, Schottky barriers on single-crystal indium telluride, Solid-State Electronics,1983,26,757-759.
    [9]R. R. DESAI, D. LAKSHMINARAYANA, P. B. PATEL, C. J. PANCHAL, Electrical and optical properties of Indium sesquitelluride (In2Te3) thin films,J MATER SCI,2006,41 2019-2023.
    [10]N.A. Hegab, A.E. Bekheet, M.A. Afifi, A.A. El-Shazly, Effect of annealing on the optical properties of In2Te3 thin films, Appllied Physics A,1998,66,235-240.
    [11]N. A. HEGAB, M. A. AFIFI, A. E. EL-SHAZLY, A. E. BEKHEET, Effect of annealing on the structural and electrical properties of In2Te3, Journal of materials science,1998,33, 2441-2445.
    [12]H. Bouzouita, N. Bouguila, S. Duchemin, S. Fiechter, A. Dhouib, Preparation and characterization of In2Se3 thin films, Renewable Energy,2002,25,131-138.
    [13]Andrew A. Gewirth, and Brian K. Niece, Electrochemical Applications of in Situ Scanning Probe Microscopy, Chemical Reviews,1997,97,1129-1162.
    [14]F. A. Moller, O. M. Magnussen, and R. J. Behm, In Situ STM Studies of Cu Underpotential Deposition on Au(100) in the Presence of Sulfate and Chloride Anions, Physical Review B, 1995,51,2484-2490.
    [15]O. M. Magnussen, R. J. Behm, Structure and Growth in Metal Epitaxy on Low-index Au Surfaces-a Comparison between Solid Electrolyte and Solid Vacuum Interfaces, Journal of Electroanalytical Chemistry,1999,467.258-269.
    [16]V. Venkatasamy, N. Jayaraju, S.M. Cox, C. Thambidurai, U. Happek and J.L. Stickney, Optimization of CdTe Nanofilm Formation by Electrochemical Atomic Layer Epitaxy (EC-ALE), Journal of Applied Electrochemistry,2006,36,1223-1229.
    [17]E. Salvietti, F. Loglio, M. Innocenti, M. Cavallini, M. Facchini, G. Pezzatini, R. Raiteri, M.L. Foresti, Patterned Growth of CdS by Combined Electrochemical Atomic Layer Epitaxy and Microcontact Printing Techniques, Electrochimica Acta,2007,52,6034-6040.
    [18]M. Innocenti, G. Pezzatini, F. Forni, and M. L. Foresti, CdS and ZnS Deposition on Ag(111) by Electrochemical Atomic Layer Epitaxy, Journal of The Electro-chemical Society,2001, 148, C357-C362.
    [19]Kris Varazo, Marcus D. Lay, Thomas A. Sorenson, John L. Stickney, Formation of The First Monolayers of CdTe on Au(111) by Electrochemical Atomic Layer Epitaxy (EC-ALE): Studied by LEED, Auger, XPS, and In-situ STM, Journal of Electroanalytical Chemistry, 2002,522,104-114.
    [20]Huanhuan Kou, Xin Zhang, Yimin Jiang, Jiajia Li, Shengjiao Yu, Zhixiang Zheng, ChunmingWang, Electrochemical atomic layer deposition of a CuInSe2 thin film on flexible multi-walled carbon nanotubes/polyimide nanocomposite membrane:Structural and photoelectrical characterizations, Electrochimica Acta,2011,56,5575-5581.
    [21]Jiajia Li, Huanhuan Kou, Yimin Jiang, Daban Lu, Zhixiang Zheng, Chunming Wang, Electrochemical deposition of nanosemiconductor CuSe on multiwalled carbon nanotubes/polyimide membrane and photoelectric property researches, Journal of Solid State Electrochemistry,2012,16,3097-3103.
    [22]Yonghwa Chung, Chi-Woo Lee, Electrochemical behaviors of Indium, Journal of Electrochemical Science and Technology,2012,3,1-13.
    [23]D. Wayne Suggs, Ignacio Villegas, Brian W. Gregory, and John L. Stickney, Formation of Compound Semiconductors by Electrochemical Atomic Layer Epitaxy, Journal of Vacuum Science & Technology A,1992,10,886-891.
    [24]Jay Yu Kim, John L. Stickney, Electrodeposition of Tellurium Atomic Layer on n-GaAs(100) Substrate, The Electrochemical Society,212th ECS Meeting, Abstract#1270.
    [25]J.Y. Yang, W. Zhu, X.H. Gao, X.A. Fan, S.Q. Bao, X.K. Duan, Electrochemical aspects of depositing Sb2Te3 compound on Au substrate by ECALE, Electrochimica Acta,2007,52, 3035-3039.
    [26]Xuemei Wang, Yonghong Ni, A facile electrochemical route for fast deposition of featherlike tellurium microstructures, RSCAdvances,2012,2,2340-2345.
    [27]Yimin Jiang, Huanhuan Kou, Jiajia Li, Shengjiao Yu, Yongling Du, Weichun Ye, Chunming Wang, Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research, Journal of Solid State Chemistry,2012,194,336-342.
    [28]J. BARDEEN, F. J. BLATT and L. H. HALL, in Proceedings of the photoconductivity conference edited by R. Breckenridze, B. Russel and T. Hahn (New York:Wiley).
    [29]M. Emziane, R. Le Ny, Synthesis and properties of In2(Se1-xTex)3 thin films:a new semiconductor compound, Appllied P hysics A,2001,72,73-79.
    [30]Huanhuan Kou, Xin Zhang, Yimin Jiang, Jiajia Li, Shengjiao Yu, Zhixiang Zheng, Chunming Wang, Electrochemical atomic layer deposition of a CuInSe2 thin film on flexible multi-walled carbon nanotubes/polyimide nanocomposite membrane:Structural and photoelectrical characterizations, Electrochimica Acta,2011,56,5575-5581.
    [31]Zhang X, Shi XZ, Ye WC, Ma CL, Wang CM, Electrochemical Deposition of Quaternary Cu2ZnSnS4 Thin Films as Potential Solar Cell Material, Applied Physics A,2009, 94,381-386.
    [32]S.S. Li, Semiconductor Physical Electronics, Springer, NewYork,2006 (Chapters3-5,9).
    [33]C. Hamaguchi, Basic Semiconductor Physics, Springer, New York,2010 (Chap-ters 3-6).
    [1]P. K. Babu, H. S. Kim, J. H. Chung, E. Oldfield,* and A. Wieckowski*, Bonding and Motional Aspects of CO Adsorbed on the Surface of Pt Nanoparticles Decorated with Pd, Journal of Physical Chemistry B,2004,108,20228-20232.
    [2]Yimin Zhua, Zakia Khana, R.I. Masela,b,*, The behavior of palladium catalysts in direct formic acid fuel cells, Journal of Power Sources,2005,139 15-20.
    [3]Yimin Zhu1, Su Y. Ha, Richard I. Masel*, High power density direct formic acid fuel cells, Journal of Power Sources,2004,130,8-14.
    [4]S. Ha, B. Adams, R.I. Masel, A miniature air breathing direct formic acid fuel cell, Journal of Power Sources,2004,128,119-124.
    [5]C. Rice, S. Ha, R.I. Masel, A. Wieckowki, Catalysts for direct formic acid fuel cells, Journal of Power Sources,2003,115,229-235.
    [6]S. Ha, R. Larsen, R.I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells, Journal of Power Sources,2005,144,28-34.
    [7]F.S. Thomas, R.I. Masel, Formic acid decomposition on palladium-coated Pt(110), Surface Science,2004,573,169-175.
    [8]M. Baldauf, D.M. Kolb, Formic Acid Oxidation on Ultrathin Pd Films on Au(hkl) and Pt(hkl) Electrodes, Journal of Physical Chemistry,1996,100,11375-11381.
    [9]Lingling Zhanga, Yawen Tanga, Jianchun Baoa, Tianhong Lua'b'*, Cun Lia'*, A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell, Journal of Power Sources,2006,162,177-179.
    [10]C. Ricea, S.Haa, R.I. Masela,*, A. Wieckowskib, Catalysts for direct formic acid fuel cells, Journal of Power Sources,2003,115,229-235.
    [11]I. I. Salame, T. J. Bandosz, Study of water adsorp -tion on activated carbons with different degrees of surface oxidation, Journal of Colloid and Interface Science,1999,210,367-374.
    [12]H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays, Carbon,2004,42,191-197.
    [13]Hyang Hwa So, Jae Whan Cho, Nanda Gopal Sahoo, Effect of Carbon Nanotubes on Mechanical and Electrical Properties of Polyimide/carbon Nanotubes Nanocomposites, European Polymer Journal,2007,43,3750-3756.
    [14]Bao-Ku Zhu, Shu-Hui Xie, Zhi-Kang Xu, and You-Yi Xu, Preparation and Properties of the Polyimide/multi-walled Carbon Nanotubes(MWNTs) Nanoco-mposites, Composites Science and Technology,2006,66,548-554.
    [15]Yueh-Chun Liao, Chia-Her Lin, Sue-Lein Wang, Direct White Light Phosphor:A Porous Zinc Gallophosphate with Tunable Yellow-to-White Luminescence, Journal of American Chemical Society,2005,127,9986-9987.
    [16]Liangwei Qu, Yi Lin, Darron E. Hill, Bing Zhou, Wei Wang, Xianfeng Sun, Alex Kitaygorodskiy, Myra Suarez, John W. Connell, Lawrence F. Allard, Ya-Ping Sun, Polyimide-Functionalized Carbon Nanotubes:Synthesis and Dispersion in Nanocomposite Films, Macromolecules,2004,37,6055-6060.
    [17]J. G. Smith Jr, J. W. Connell, D. M. Delozier, P. T. Lillehei, K. A. Watson, Y. Lin, B. Zhou, Y.-P. Sun, Space Durable Polymer/carbon Nanotube Films for Electrostatic Charge Mitigation, Polymer,2004,45,825-836.
    [18]Xin Zhang, Xuezhao Shi, and Chunming Wang, Electrodeposition of Pt Nanoparticles on Carbon Nanotubes-modified Polyimide Materials for Electrocatalytic applications, Catalysis Communications,2009,10,610-613.
    [19]Changwei Xu, Hong Wang, Pei Kang Shen, and San Ping Jiang, Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells, Adv. Mater.,2007,19,4256-4259.
    [20]Feng Ping Hu, Zhenyou Wang, Yongliang Li, Changming Li,Xin Zhang, Pei Kang Shen*, Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells, Journal of Power Sources,2008,177,61-66.
    [21]Sun, Yugang, Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors, Applied Physics Letters,2007,90,213107-213107-3.
    [22]San Hua Lima,Ji Weia,Jianyi Lina,Qiutian Lib,Jin KuaYouc, A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode, Biosensors and Bioelectronics,2005,20,2341-2346.
    [23]Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst, Chem Mater,2001,13,733-737.
    [24]Liu ZL, Lin XH, Lee JY, Zhang WD, Han M, Gan LM. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cell. Langmuir,2002,18,4054-4060.
    [25]Li WZ, Liang CH, Qiu JS, Zhou WJ, Han HM, Wei ZB, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon,2002,40(5),791-794.
    [26]T.D. Jarvi, E.M. Stuve, in:J. Lipkowski, P.N. Ross (Eds.), Fundamental Aspects of Vacuum and Electrocatalytic Reactions of Methanol and Formic Acid on Platinum Surfaces, Wiley, New York,1998 (Chapter 3).
    [27]N. Markovic, H. Gasteiger, P. Ross, X. Jian, I. Villegas, M. Weaver, Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces, Electrochim. Acta,1995, 40,91-98.
    [28]Jiajia Li, Huanhuan Kou, Yimin Jiang, Daban Lu, Zhixiang Zheng, Chunming Wang, Electrochemical deposition of nano-semiconductor CuSe on multi-walled carbon nanotubes/polyimide membrane and photoelectric property researches,J Solid State Electrochem,2012,16,3097-3103.
    [29]R. Hoyer, L.A. Kibler*,1, D.M. Kolb1, The initial stages of palladium deposition onto Pt(l 1 1), ElectrochimicaActa,2003,49,63-72.
    [30]T. J. Schmidt, N. M. Markovic, V. Stamenkovic, P. N. Ross, G. A. Attard, D. J. Watson, Surface characterization and electrochemical behavior of well-defined Pt-Pd(111) single-crystal surfaces:A comparative study using Pt(111) and palladium-modified Pt(111) electrodes, Langmuir,2002,18,6969-6975.
    [31]M. Arenz, V. Stamenkovic, T. J. Schmidt, K. Wandelt, P. N. Ross, N. M. Markovic, The effect of specific chloride adsorption on the electrochemical behavior of ultrathin Pd films deposited on Pt(111) in acid solution, Surface Science,2003,523,199-209.
    [32]L. A. Kibler, M. Kleinert, R. Randler, D. M. Kolb, Initial stages of Pd deposition on Au(hkl)-Part I:Pd on Au(111), Surface Science,1999,443,19-30.
    [33]H. Naohara, S. Ye, K. Uosaki, Electrochemical deposition of palladium on an Au(111) electrode:Effects of adsorbed hydrogen for a growth mode, Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,154,201-208.
    [34]I. A. Pasti, S. V. Mentus, Halogen adsorption on crystallographic (111) planes of Pt, Pd, Cu and Au, and on Pd-monolayer catalyst surfaces:Firstprinciples study, Electrochimica Acta, 2010,55,1995-2003.
    [35]Rongfang Wanga, Shijun Liaoa,*, Shan Jib, High performance Pd-based catalysts for oxidation of formic acid, Journal of Power Sources,2008,180,205-208.
    [36]Zaihua Wang, Yongling Du, Fengyuan Zhang, Zhixiang Zheng, Yuzhen Zhang, Chunming Wang, High electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cells, J Solid State Electrochem,2013,17,99-107.
    [37]S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Direct formic acid fuel cells with 600mA cm-2 at 0.4V and 22 ℃, Fuel Cells,2004,4,337-343.
    [38]T. Yang, S. Pyun, Y. Yoon, Hydrogen transport through Pd electrode:current transient analysis, Electrochim. Acta,1997,42,1701-1708.
    [39]Yimin Zhua, Zakia Khana, R.I. Masela,b,*, The behavior of palladium catalysts in direct formic acid fuel cells, Journal of Power Sources,2005,139,15-20.
    [40]S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Direct formic acid fuel cells with 600mA cm-2 at 0.4V and 22 ℃, Fuel Cells,2004,4,337-343.
    [41]T. Yang, S. Pyun, Y. Yoon, Hydrogen transport through Pd electrode:current transient analysis, Electrochim. Acta,1997,42,1701-1708.
    [42]Yimin Zhua, Zakia Khana, R.I. Masela,b,*, The behavior of palladium catalysts in direct formic acid fuel cells, Journal of Power Sources,2005,139,15-20.
    [43]Gabor Samjeske', Atsushi Miki, Shen Ye, Masatoshi Osawa*, Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy,J. Phys. Chem. B,2006,110, 16559-16566.
    [44]G. Samjeske', A. Miki, S. Ye, A. Yamakata, Y. Mukouyama, H. Okamoto, M. Osawa, Potential Oscillations in Galvanostatic Electrooxidation of Formic Acid on Platinum:A Time-Resolved Surface-Enhanced Infrared Study,J. Phys. Chem, B,2005,109, 23509-23516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700