复合孔碳酸盐/有机杂化材料的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔材料在当前的材料科学中是发展非常迅速的一种多功能材料,特别是那些孔径在纳米量级的多孔材料,因其特殊的孔结构而具有许多独特的性能和广泛的应用性,在世界范围内的科学界以及工商界都引起了重视,涉及到的应用领域有化工、医药、环境保护等。多级复合孔材料是随着多孔材料的发展而产生的一种不同于单一孔材料的新型多孔材料,由于这种复合孔材料具有两种或两种以上的不同孔径的孔结构,并且按孔径逐级分布,故而它的各方面性质更优越,比如它具有更大的比表面积,更高的选择性及更优良的吸附能力等,从而其应用性更强。另外,在复合孔材料的特殊结构基础上,具有复合孔结构的无机/有机杂化材料由于其结合了有机和无机成分潜在的物理性质和化学性质,引起了现代科学研究的高度重视。
     本论文主要工作是利用无毒性、操作简单的绿色合成方法制备了一些具有特殊形貌碳酸盐/多糖复合孔杂化材料,并研究了其在药物负载运输和废水处理中的潜在应用。首先介绍了复合孔材料的研究现状,并概述了无机/有机杂化材料的概念、特点和应用。最后介绍了本论文的研究背景、研究内容以及本论文的特点。
     在本论文的选题中,我们选择了以具有广泛药理活性的食用菌多糖为有机物基质,其中主要尝试了香菇多糖。在选定的多糖基质作用下,室温条件下,以CaCl_2为钙源,用一种简单的方法在较短的时间内合成了具有复合孔结构的碳酸钙/多糖微球并研究了其在药物负载运输和废水处理中的潜在应用。此外,还以可溶性淀粉为基质,室温下简易合成了具有复合孔结构的梭形空壳状碳酸钡/淀粉材料,并从原料的用量、浓度及反应时间等各方面做了系统性研究。同时,还利用扫描电子显微镜(SEM),场发射扫描电子显微镜(FESEM),高倍透射电镜(HRTEM),X射线粉末衍射(XRD),热重差热分析(TG-DTA),傅里叶转换红外光谱(FT-IR)等手段,对所得杂化复合孔材料的形貌、大小及其组成等做了检测。另外,紫外可见分光光度仪(UV-vis)及原子吸收光谱(AAS)对所得碳酸钙材料在药物负载运输和废水处理中的潜在应用进行了检测。
     所得结果如下:利用此种方法所得到的碳酸钙颗粒为1~2μm的球状,并具有复合孔结构。通过在药物运输方面的实验结果发现,负载有盐酸阿霉素这种药物的碳酸钙/多糖杂化复合孔材料不同pH值的介质中,对所负载药物的释放量是随着pH值的降低而增加的,这说明此体系对pH值的变化具有很强的敏感性,故而对具有弱酸性的癌细胞有着选择性的药物释放,在药物载体方面有着一定的应用前景。此外,通过其对几种重金属离子的吸附结果发现,碳酸钙/多糖杂化复合孔材料对大浓度及微量金属离子的吸附效果均很强。而碳酸钡/淀粉杂化复合孔产品则随反应物浓度及反应时间的变化分别得到梭形,花生,花枝,球状等形貌。
     本论文以香菇菌多糖及淀粉为有机基质,在室温条件下利用简单绿色的方法得到了具有优良性能的碳酸盐/多糖杂化复合孔材料,这对无机/有机复合孔杂化材料的研究提供了一种新的实验依据,也对研究复合孔杂化材料合成的机理提供了重要的借鉴和指导作用。
Porous material has been developed rapidly in modern material science as a kind of multifunctionalmaterial, especially the ones the pore size of which is around nanometer. Because of the particular porousstructure, the materials are of many special characteristics and applied widely, which arouses greatattentions in the field of science as well as industrial and commercial circles. Its applications involvechemical, pharmaceutical, environmental protection and so on. With the development of porous materials,composite-pore material emerges as a new style different from those porous materials with single pore size.It has two or more than two kinds of pore sizes and different sized pores are arranged regularly, so itpossesses more wonderful functions and would be applied more widely. In addition, on the basic ofcomposite-pore material, organic/inorganic hybrid materials with composite-pores have special constituentand also have attracted much attention because of the specific physical and chemical properties.
     In this article, we simply synthesized carbonate/polysaccharose hybrid porous materials with specialmorphologies successfully through a facil and nontoxic method and studied its potential applications indrug loading and transportation as well as the waste water treatment. First of all, we introduced theclassification, characteristics and applications of porous materials and then discussed more about theconcept, features as well as applications of composite-pore material. Finally, the research content andcontext and features of this dissertation were also presented.
     In the selection of this article, we chose polysaccharide extracted from edible fungi with extensivepharmacological activities as organic matrix and lentinan was mainly tried. Calciumcarbonate/polysaccharide hybrid porous microsphere was synthesized through a facile method in a shorttime and its capability in drug load and transportation and waste water treatment was studied. Furthermore,barium carbonate/soluble starch was prepared in room temperature using soluble starch as matrix. Theeffect of several factors such as the amount and concentration of raw material and reaction time werestudied systematically. Samples was characterized by scanning electron microscopy(SEM), field emissionscanning microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscope (TEM),Thermogravmetric/Differential Thermal Analyzer (TG-DTA), Fourier Transform Infrared Spectrometer (FT-IR), High resolution transmission electron microscope (HRTEM), morphology, size and components ofhybrid porous complexes were tested. Furthermore, Ultraviolet-Visible Spectrometer (UV-VIS) and atomicabsorption spectrophotometer (AAS) were also applied to analyze the application of calcium carbonate indrug load and transportation and waste water treatment.
     The results are as follows: calcium carbonate particles we received are complex porous spheres withdiameter of1-2μm.Through drug transportation experiments we discovered that drug released amount ofcarbonate/polysaccharide complex porous materials loaded with Doxorubicin varied with pH value ofsystem. The amount of drug release ascend with reduce of pH value, which demonstrates that complexsystem are sensitive to pH value of surrounding environment. So it would release drugs selectively to theweakly acidic cancer cells and will be a promising material as drug carrier. From the results of adsorptionof heavy metal ion, carbonate/polysaccharide complex porous materials show excellent performance ofadsorption of high concentration or trace metal ion. Morphology of Barium carbonate/starch hybrid porouscomplex varied with concentration of reactants and reaction time, such as spindle shape, peanut shape,spray shape or sphere shape.
     In this dissertation, using polysaccharide extracted from edible fungi and soluble starch as organicmatrix, carbonate/polysaccharide hybrid porous materials with excellent performance were producedthrough facile method, which will be a guide for the research of synthesis mechanism of hybrid porousmaterials.
引文
[1] P. Hubert Mutin, Gilles Guerrero, André Vioux. Hybrid materials from organophosphorus couplingmolecules [J]. J. Mater. Chem.,2005,15:3761-3768
    [2] Tian-Yi Ma, Xue-Jun Zhang, Gao-Song Shao. Ordered Macroporous Titanium PhosphonateMaterials: Synthesis, Photocatalytic Activity, and Heavy Metal Ion Adsorption [J]. J. Phys. Chem.C2008,112:3090-3096
    [3] Sanchez, C.; Soler-Illia, G. J. de A. A.; Ribot, F. Designed Hybrid Organic InorganicNanocomposites from Functional Nanobuilding Blocks [J]. Chem. Mater.2001,13(10):3061-3083.
    [4] Xiu-Zhen Lin, Tian-Yi Ma, Zhong-Yong Yuan. Titania–silica–phosphonate triconstituent hybridmesoporous materials as adsorbents in gas and liquid phases [J]. Chemical Engineering Journal,2011,166:1144–1151
    [5] Chem P C, Cheng G Y, Kou M H, etal. Nucleation and morphology of barium carbonate crystals in asemi-batch crystallizer[J]. Journal of crystal Growth,2001,226(4):458-472
    [6] Malecki A, Labus S, Oblakowski J. The role of BaCO3in high temperature synthesis of electronicmaterial[J]. Mater Res Bull,1995,30(6):731-737.
    [7] Sondi I, Matijevic E. Homogeneous precipitation ienzymecta-lyzed reactions2Strontium and bariumcarbonate[J]. Chem Mater,2003,15(6):1322-1326
    [8]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004:2-3
    [9]郭翠梨,王小丽,张金利.双介孔材料的合成与应用研究进展[J].化工进展,2010,29(3):490-493
    [10]李旭华,袁荞龙,王得宁.杂化材料的制备、性能及应用[J].功能高分子学报,2000,13(2):211-218
    [11]肖明艳,陈建敏.有机一无机杂化材料研究进展[J].高分子材料科学与工程,2001,17(5):6-10
    [12]耿丽娜,洪钏,吴燕.有机一无机杂化材料的应用研究进展[J].化学世界,2011,11:699-702
    [13]余锡宾,王华林,訾振军.无机-有机杂化材料的进展[J].材料导报,1997,11(2):49-52
    [14] Zhang, S.; Gonsalves, K. E. Influence of the chitosan surface profile on the nucleation and growth ofcalcium carbonate films[J]. Langmuir1998,14(23):6761-6766.
    [15] Falini, G.; Fermani, S.; Ripamonti, A. Crystallization of calcium carbonate salts into beta-chitinscaffold [J]. J. Inorg. Biochem2002,91(3):475-480
    [16] T. Kato. Polymer/calcium carbonate layered thin-Film composites [J].Advanced Materials2000,12(20):1543-1546.
    [17] Ayae Sugawara, Takashi Kato. Aragonite CaCO3thin-film formation by cooperation of Mg2+andorganic polymer matrices [J]. Chem. Commun.2000,(6):487-488.
    [18] T. Kato, A. Sugawara, N. Hosoda. Calcium Carbonate–Organic Hybrid Materials [J]. AdvancedMaterials2002,14(12):869-877.
    [19] Helmut C lfen. Precipitation of carbonates: recent progress in controlled production of complexshapes [J]. Current Opinion in Colloid and Interface Science2003,8(1):23-31.
    [20] Kensuke Naka, Yoshiki Chujo. Control of Crystal Nucleation and Growth of Calcium Carbonate bySynthetic Substrates [J]. Chem. Mater.2001,13(10):3245-3259.
    [21] Jiajun Wanga, Yizhuang Xub, Ying Zhaoa. Morphology and crystalline characterization of abaloneshell and mimetic mineralization [J]. J. Crystal Growth2003,252(1-3):367-371.
    [22] Kai, Ayako, Fujikawa, Katsuhiro, Miki, Toshikatsu. Vaterite Stabilization in CaCO3Crystal Growthby Amino Acid [J]. Japanese Journal of Applied Physics,2002,41(1):439
    [23] Neda Vdovi, Damir Kralj. Electrokinetic properties of spontaneously precipitated calcium carbonatepolymorphs: the influence of organic substances [J]. Colloids and Surfaces A,2000,161(3),499-505.
    [24] Po Liang, Qiang Shen, Ying Zhao. Petunia-Shaped Superstructures of CaCO3Aggregates Modulatedby Modified Chitosan [J]. Langmuir2004,20:10444-10448
    [25]金茜,朱彬,罗宿星.食用菌多糖生物活性的研究进展[J].遵义师范学院学报,2010,12(4):75-78
    [26]杜庆.食(药)用真菌多糖的研究进展[J].中国食物与营养,2011,17(5):75—77
    [27] JIANGTAO HU, TERI WANG ODOM, CHARLES M. LIEBER. Chemistry and Physics in OneDimension: Synthesis and Properties of Nanowires and Nanotubes [J]. Acc. Chem. Res.,1999,32:435–445.
    [28] J. Xu, W. X. Zhang, Z. H. Yang. Large-Scale Synthesis of Long Crystalline Cu2-xSe NanowireBundles by Water-Evaporation-Induced Self-Assembly and Their Application in Gas Sensing[J].Adv. Funct. Mater.,2009,19:1759–1766.
    [29] F. C. Meldrum, H. C lfen. Controlling mineral morphologies and structures in biological andsynthetic systems [J].Chem. Rev.,2008,108:4332–4432.
    [30] T. X. Wang, J. Mitchell, H. B rner. BaCO3mesocrystals: new morphologies using peptide–polymerconjugates as crystallization modifiers [J]. Phys. Chem. Chem. Phys.,2010,12:11984–11992.
    [31] A. Fahmi, T. Pietsch, M. Bryszewska. Fabrication of CdSe-Nanofibers with Potential for BiomedicalApplications [J]. Adv. Funct. Mater.,2010,20:1011–1018.
    [32] M. Law, J. Goldberger, P. D. Yang. Semiconductor nanowires and nanotubes [J]. Annu. Rev. Mater.Res.,2004,34:83–122.
    [33] H. C lfen and S.Mann, Higher-Order Organization by Mesoscale Self-Assembly and Transformationof Hybrid Nanostructures [J]. Angew. Chem., Int. Ed.,2003,42:2350–2365.
    [34] S. Mann. The Chemistry of Form [J].Angew. Chem., Int. Ed.,2000,39(19):3392–3406.
    [35] Xiaoming Ma, Huifeng Chen, Lin Yang. Construction and Potential Applications of a FunctionalizedCell with an Intracellular Mineral Scaffold [J]. Angew. Chem., Int. Ed.,2011,50:7414–7417.
    [36] Y. N. Xia, P. D. Yang, Y. G. Sun. One-Dimensional Nanostructures: Synthesis, Characterization, andApplications [J]. Adv. Mater.,2003,15(5):353–389.
    [37] X. G. Peng, L. Manna, W. D. Yang. Shape control of CdSe nanocrystals [J]. Nature,2000,404(2):59–61.
    [38] J. H. Adair, E. Suvaci. Morphological control of particles [J]. Curr. Opin. Colloid Inter. Sci.2000,5(1-2):160–167.
    [39] M. P. Pileni, B. W. Ninham, T. Gulik-Krzywicki. Direct Relationship Between Shape and Size ofTemplate and Synthesis of Copper Metal Particles [J]. Adv. Mater.,1999,11(16):1358–1362.
    [40] Temer S. Ahmadi, Zhong L. Wang, Travis C. Green. Shape-Controlled Synthesis of ColloidalPlatinum Nanoparticles [J]. Science,1996,28:1924–1926.
    [41] Jia Li, Yu Shi, Qiang Cai. Patterning of Nanostructured Cuprous Oxide by Surfactant-AssistedElectrochemical Deposition [J]. Cryst. Growth Des.,2008,8(8):2652–2659.
    [42] Haiyan Zhang, Jianming Hong, Yonghong Ni. Microwave-assisted synthesis of BaCO3crystals withhigher-order superstructures in the presence of SDS [J]. CrystEngComm,2008,10:1031–1036.
    [43] Baoyou Geng, Jiahui You, Fangming Zhan. Controllable Morphology Evolution andPhotoluminescence of ZnSe Hollow Microspheres [J]. J. Phys. Chem. C,2008,112(30):11301–11306.
    [44] Charlotte M. Zaremba, Daniel E. Morse, Stephen Mann. Aragonite Hydroxyapatite Conversion inGastropod (Abalone) Nacre [J]. Chem. Mater.,1998,10(12):3813–3824.
    [45] L. Addadi, D. Joester, F. Nudelman. Mollusk Shell Formation: A Source of New Concepts forUnderstanding Biomineralization Processes [J]. Chem. Eur. J.,2006,12(4):980–987.
    [46] M. Niederberger, H. C lfen. Oriented attachment and mesocrystals: Non-classical crystallizationmechanisms based on nanoparticle assembly [J]. Phys. Chem. Chem. Phys.,2006,8(28):3271–3287.
    [47] Xiaoming Ma, Liping Li, Lin Yang. Preparation of highly ordered hierarchical CaCO3hemisphereand the application as pH value-sensitive anticancer drug carrier [J]. Mater. Lett.,2011,65:3176–3179.
    [48] Xiaoming Ma, Huayan Yang, Huifeng Chen. Protein-directed self-assembly of CaCO3nanoparticlesinto hierarchical superstructures [J]. Journal of Crystal Growth,2011,327(1):146–153
    [49] Huayan Yang, Wenguang Yao, Lin Yang. The self-assembly of CaCO3crystals in the presence ofprotein [J]. Journal of Crystal Growth,2009,311(9):2682–2688.
    [50] T. Kato, A. Sugawara, N. Hosoda. Calcium Carbonate–Organic Hybrid Materials [J]. AdvancedMaterials,2002,14(12):869–877.
    [51] S. W. Weiner, L. Addadi. Design strategies in mineralized biological materials [J]. J. Mater. Chem.,1997,7(5):689–702.
    [52] S.H. Yu, H. C lfen, A.W. Xu. Complex Spherical BaCO3Superstructures Self-Assembled by aFacile Mineralization Process under Control of Simple Polyelectrolytes [J].Cryst. Growth Des.,2004,4(1):33–37.
    [53] I. Sondi, E. Matijevi. Homogeneous Precipitation by Enzyme-Catalyzed Reactions.2. Strontium andBarium Carbonates [J].Chem. Mater.,2003,15(6):1322–1326.
    [54] S. H. Yu, H. C lfen, K. Tauer. Tectonic arrangement of BaCO3nanocrystals into helices induced by aracemic block copolymer [J].Nat. Mater.,2005,4(1):51–55.
    [55] L.L. Li, Y. Chu, Y. Liu. Microemulsion-based synthesis of BaCO3nanobelts and nanorods [J].Mater.Lett.,2006,60(17-18):2138–2142.
    [56] N.W. Zheng, Q.S. Wu, Y.P. Ding. Synthesis of BaCO3Nanowires and Nanorods in the Presence ofDifferent Nonionic W/O Microemulsions [J].Chem. Lett.,2000,29(6):638–639.
    [57] L.M. Qi, J.M. Ma, H.M. Cheng. Reverse Micelle Based Formation of BaCO3Nanowires [J].J. Phys.Chem. B,1997,101(18):3460–3463.
    [58]高远浩,牛和林,陈乾旺. BaCO3单晶纳米线的制备和表征[J].无机化学学报,2003,19(1):37-40.
    [59] H. C lfen. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactantsand Crystal Growth Modifiers [J].Macromol. Rapid Commun.,2001,22(4):219–252.
    [60] S. H. Yu,H. C lfen. Bio-inspired crystal morphogenesis by hydrophilic polymers[J].J. Mater. Chem.,2004,14:2124–2147.
    [61] T. X. Wang, A. W. Xu, H. C lfen. Formation of Self-Organized Dynamic Structure Patterns ofBarium Carbonate Crystals in Polymer-Controlled Crystallization [J]. Angew. Chem., Int. Ed.,2006,45(27):4451–4455.
    [62] F. C. Meldrum. Calcium carbonate in biomineralisation and biomimetic chemistry[J].Int. Mater. Rev.,2003,48(3):187–224.
    [63] S. H. Yu, H. C lfen, K. Tauer. Tectonic arrangement of BaCO3nanocrystals into helices induced by aracemic block copolymer [J].Nat. Mater.,2005,4(1):51–55.
    [64] S. Lv, P. Li, J. Sheng. Synthesis of single-crystalline BaCO3nanostructures with differentmorphologies via a simple PVP-assisted method [J]. Mater. Lett.,2007,61(21):4250–4254.
    [65] Caiyu Peng, Qinghe Zhao, Changyou Gao.Sustained delivery of doxorubicin by porous CaCO3andchitosan/alginate multilayers-coated CaCO3microparticles [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects2010,353:132–139
    [66] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer. Polymeric systems for controlled drug release [J]. Chem.Rev.1999,99:3181–3198.
    [67] F.Y. Qu, G.S. Zhu, H.M. Lin. A controlled release of ibuprofen by systematically tailoring themorphology of mesoporous silica materials, J. Solid State Chem.179(2006)2027–2035.
    [68]田威,范晓东,陈卫星.药物控制释放用高分子载体的研究进展[J].高分子材料科学与工程,2006,22(4):19-23
    [69] Carolina Simóa, Alejandro Cifuentesa, Alberto Gallardob. Drug delivery systems: polymers anddrugs monitored by capillary electromigration methods [J]. J Chromatogr B,2003,797(1-2):37–49.
    [70] Zhiyao Hou, Piaoping Yang, Hongzhou Lian. Multifunctional Hydroxyapatite Nanofibers andMicrobelts as Drug Carriers [J]. Chem Eur J2009,15:6973–6982.
    [71] Jae Hyung Park, Gurusamy Saravanakumar, Kwangmeyung Kim. Targeted delivery of low moleculardrugs using chitosan and its derivatives [J]. Adv Drug Deliv Rev.,2010,62(1):28–41.
    [72] Haizheng Zhao, Hoang Hanh, Phuoc Duong. Folate-Conjugated Polymer Micelles with pH-TriggeredDrug Release Properties [J]. Macromol Rapid Commun.2010,31(13):1163–1169.
    [73] Michael A. Rauschmann, Thomas A. Wichelhaus, Volker Stirnal. Nanocrystalline hydroxyapatite andcalcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in boneinfections [J]. Biomaterials,2005,26(15):2677–2684.
    [74] Yufang Zhu, Jianlin Shi, Weihua Shen. Stimuli-Responsive Controlled Drug Release from a HollowMesoporous Silica Sphere/Polyelectrolyte Multilayer Core–Shell Structure [J]. Angew Chem2005;117:5213–7.
    [75] Vladimir Torchilin Antibody-modified liposomes for cancer chemotherapy [J]. Expert Opin DrugDeliv2008,5(9):1003–1025.
    [76] Wei Wei, Guang-Hui Ma, Gang Hu. Preparation of Hierarchical Hollow CaCO3Particles and theApplication as Anticancer Drug Carrier [J]. J Am Chem Soc.2008,130(47):15808–15810.
    [77] Xiaoming Ma, Liping Li, Lin Yang. Preparation of highly ordered hierarchical CaCO3hemisphereand the application as pH value-sensitive anticancer drug carrier [J]. Materials Letters,2011,653176–3179
    [78] Schwarzenbach RP, Escher BI, Fenner K. The challenge of micropollutants in aquatic systems [J].Science2006,313:1072–1077.
    [79] D.R. Baldwin, W.J. Marshall. Heavy metal poisoning and its laboratory investigation [J]. Ann. Clin.Biochem.1999,36:267–300.
    [80] D. Mohan, K.P. Singh. Single-and multi-component adsorption of cadmium and zinc using activatedcarbon derived from bagasse–an agricultural waste [J]. Water Res.2002,36(9):2304–2318.
    [81] X.M. Zhao, D.M. Dong, X.Y. Hua. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V)in soil zones derived from moderately contaminated farmland in Northeast [J]. J. Hazard. Mater.2009,170:570–577.
    [82] S. Dai, M.C. Burleigh, Y.H. Ju. Hierarchically imprinted sorbents for the separation of metal ions [J].J. Am. Chem. Soc.2000,122(5):992–993.
    [83] V. Antochshuk, M. Jaroniec.1-Allyl-3-propylthiourea modified mesoporous silica for mercuryremoval [J]. Chem. Commun.2002:258–259.
    [84] S.Z. Qiao, H. Djojoputro, Q.H. Hu. Synthesis and lysozyme adsorption of rod-like large-poreperiodic mesoporous organosilica [J]. Prog. Solid State Chem.2006,34:249–256.
    [85] A. Vinu, V. Murugesan, M. Hartmann. Adsorption of lysozyme over mesoporous molecular sievesMCM-41and SBA-15: influence of pH and aluminum incorporation [J]. J. Phys. Chem. B2004,108(22):7323–7330.
    [86] S. Dai, M.C. Burleigh, Y. Shin. Imprint coating: a novel synthesis of selective functionalized orderedmesoporous sorbents [J]. Angew. Chem. Int. Ed.1999,38:1235–1239.
    [87] L. Mercier, T.J. Pinnavaia. Heavy metal ion adsorbents formed by the grafting of a thiol functionalityto mesoporous silica molecular sieves: factors affecting Hg(II) uptake [J]. Environ. Sci. Technol.1998,32:2749–2754.
    [88] R.C. Schroden, M. Al-Daous, S. Sokolov. Hybrid macroporous materials for heavy metal ionadsorption [J]. J. Mater. Chem.2002,12:3261–3267.
    [89] X.J. Zhang, T.Y. Ma, Z.Y. Yuan. Titania–phosphonate hybrid porous materials: preparation,photocatalytic activity and heavy metal ion adsorption [J]. J. Mater. Chem.2008,18(17):2003–2010.
    [90] A.M. Liu, K. Hidajat, S. Kawi. A new class of hybrid mesoporous materials with functionalizedorganic monolayers for selective adsorption of heavy metal ions [J]. Chem. Commun.2000:1145–1146.
    [91] J. Brown, L. Mercier, T.J. Pinnavaia. Selective adsorption of Hg2+by thiol functionalized nanoporoussilica [J]. Chem. Commun.1999:69–70..
    [92] Xiaoming Ma, Liping Li, Lin Yang. Adsorption of heavy metal ions using hierarchicalCaCO3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies [J].Journal of Hazardous Materials,2012,209–210:467–477
    [93] X.M. Ma, H.F. Chen, L. Yang. Construction, potential applications of a functionalized cell with anintracellular mineral scaffold [J]. Angew. Chem. Int. Ed.2011,50:7414–7417.
    [94] G.B. Cai, G.X. Zhao, X.K. Wang. Synthesis of polyacrylic acid stabilized amorphous calciumcarbonate nanoparticles and their application for removal of toxic heavy metal Ions in water [J]. J.Phys. Chem. C2010,114(30):12948–12954.
    [95]. Yavuz, R. Guzel, F. Aydin. Removal of cadmium and lead from aqueous solution by calcite [J].Pol. J. Environ. Stud.2007,16(3):467–471.
    [96] S.L. Stipp, M.F. Hochella, J.G.A. Parks. Cd2+uptake by calcite, solid-state diffusion, and theformation of solid-solution: interface processes observed with near-surface sensitive techniques (XPS,LEED, and AES).[J]. Geochim. Cosmochim. Acta1992,56:1941–1954.
    [97] Y.S. Al-Degs, M.I. El-Barghouthi, A.A. Issa. Sorption of Zn(II), Pb(II), and Co(II) using naturalsorbents: equilibrium and kinetic studies [J]. Water Res.2006,40:2645–2658.
    [98] M. Shirvani, M. Kalbasi, H. Shariatmadari. Sorption–desorption of cadmium in aqueous palygorskite,sepiolite, and calcite suspensions: isotherm hysteresis [J]. Chemosphere2006,65:2178–2184.
    [99] H.A. Aziz, M.N. Adlan, K.S. Ariffin. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal fromwater in Malaysia: post treatment by high quality limestone [J]. Bioresour. Technol.2008,99:1578–1583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700