等离子体助磁载TiO_2光催化剂制备方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮体系纳米TiO2光催化剂具有比表面积大,催化活性高的特点而成为一种应用广泛的光催化剂,但存在着催化剂与催化体系的分离难题。为此,将TiO2负载在空心玻璃球、沸石、活性炭等载体上制备负载型光催化剂,而由于上述载体较小的比表面积,降低了TiO2的负载量和光催化活性。另一方面,TiO2的太阳光利用效率也限制了其在工业生产中的应用。纳米磁性颗粒因其具有较大的比表面积和良好的分离回收特性,将其作为光催化剂的载体可解决悬浮体系中纳米TiO2颗粒难以分离回收的困扰,较之其他载体,磁载TiO2光催化剂已成为新的研究热点。为了进一步提高TiO2光催化剂的光催化活性,拓宽其光谱响应范围,人们通过各种手段对TiO2光催化剂进行改性处理,取得了较大进展。其中等离子体技术在材料制备和改性中的应用,开辟了等离子体材料工艺的新领域。
     本文采用化学共沉法制备CoFe2O4磁粒子,用TiCl4水解法制备了CoFe2O4/TiOX复合粒子,在100℃烘干,350℃焙烧2小时,制备了负载牢固的核壳型CoFe2O4/TiO2光催化剂,在紫外光源照射下所制备的CoFe2O4/TiO2光催化剂显示出较高的甲基橙降解能力,利用外加磁场很容易将CoFe2O4/TiO2光催化剂和所处理的污水分离,并可循环使用。在解决了纳米TiO2颗粒分离回收难的问题基础上,为进一步拓宽光催化剂可见光谱响应范围、提高太阳光利用率,引入低温等离子体技术修饰CoFe2O4/TiOX制备了CoFe2O4/TiO2纳米复合光催化剂。运用振动样品磁强计(VSM)技术对样品磁性能进行研究,结果表明:等离子体修饰后的光催化材料仍具有较高的饱和磁化强度,在外加磁场作用下可实现催化剂在水中的分离与回收;并利用X射线衍射仪(XRD)、透射电镜(TEM)、扫描电镜(SEM)、紫外/可见分光光度计(UV-Vis)和傅里叶变换红外光谱仪(FTIR)对所制备样品的物理化学性能进行表征,分析结果表明:等离子体修饰后的复合材料有锐钛矿型TiO2存在;TEM谱图显示磁核CoFe2O4的平均粒径约为20nm,CoFe2O4/TiOX复合粒子的粒径约为30-40nm,TiO2包覆层的厚度为5-10nm。与纯TiO2相比等离子体修饰后CoFe2O4/TiO2样品对光的吸收拓展到整个紫外-可见区,扩大了光谱响应范围;制备出的光催化材料对甲基橙溶液降解的光催化活性评价研究表明:经等离子体修饰后CoFe2O4/TiO2纳米复合光催剂的光催化活性明显提高。
In the degradation of organic pollutants, nano TiO2–photocatalyst is a widely used photocatalyst due to its higher specific surface area and high photocatalytic activity. However it is difficult to separate the photocatalyst from treated system. Therefore, TiO2 was be loaded on hollow glass microbeads、zeolite、activated carbon etc, prepared laden photocatalyst, however, the activity of TiO2 photocatalyst was reduced because of the smaller surface area of carrier and the decreases of laden photocatalysts. In addition, the low efficiency of sunlight also greatly limits its practical applications. The nano-magnetic particles were applied to solve the difficulty of photocatalyst separation from the treated water by applying an external magnetic field. Comparing with other carriers, TiO2 magnetic photocalalyst has become a new hotspot. To further enhance photocatalytic activity of the TiO2 photocatalyst, develop the range of spectral, many methods had been used to modify TiO2 photocatalyst, and had made great progress. One of them, plasma technology was applicated in preparation and modification of materials, and opened up the new areas of material technics.
     In this paper, the core-shell CoFe2O4/ TiO2 magnetic nano-photocatalysts were prepared by hydrolysis of titanium tetrachloride precursor in the presence of the CoFe2O4/TiO2 magnetic photocatalysts. The core-shell structure of the CoFe2O4/TiO2 magnetic photocatalysts were dried at 100℃and calcined at 350℃for 2h. The prepared photocatalysts were easy to be separated from polluted water by using an external magnetic field and showed high catalytic activity for the degradation of methyl orange in water under UV, and could be recycled. In order to broaden spectral response range of visible light about the catalyst’s response and improve the use ratio of sunlight. In this paper, a core-shell CoFe2O4/TiO2 magnetic nano-photocatalyst was prepared by hydrolysis of titanium tetrachloride in the presence of the CoFe2O4 magnetic particles and modified by cold plasma. The magnetic property of the samples was characterized by Vibrating Sample Magnetometer (VSM) analysis. The CoFe2O4/TiO2 magnetic nano-photocatalyst has fairly good magnetic property. The X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scan electron microscopy (SEM), Ultraviolet–visible (UV–Vis) technique and Fourier transform infrared spectrometer (FTIR) were used to analyze the phase structure, size and spectrum response range of the samples. The XRD indicated the anatase TiO2 was formed when CoFe2O4/TiOX modified by plasma. The size of CoFe2O4 particles was about 20 nm. The diameter of CoFe2O4/TiO2 particles is in the range of 30-40 nm. So the shell of TiO2 enwraps closely around the core and the thickness is in the range of 5-10 nm. The UV–Vis spectrum revealed a red shift of the absorption edge to the visible-light region than that of the pure TiO2. Methyl orange was used to investigate the photo-degradation activity of the nano-photocatalysts. The results showed that the photocatalytic activity of CoFe2O4/TiOX modified by plasma is better than that without plasma.
引文
[1] (美)莫里森(Morrison,S.R.)著.吴辉煌译.半导体与金属氧化膜的电化学.北京:科学出版社,1988.3.
    [2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J].Nature.1972,238:37-38.
    [3] M.B.Hugenschmidt, L.Gamble, C.T.Campbell. The Interaction of H2O with a TiO2(110) Surface[J].Surface Science.1994,302:329-340.
    [4] Akhter, S. M.A.Henderson, Mitchell, G.E. et al.coadsorption of hydrocarbonvfragments with Co on Ni(100) and Ru(001)[J]. Langmuir.1987,4(2):246-249.
    [5] Chambers, S.A. Gao, Y.M.A.Henderson.et al. Geometric and electronic structure of epitaxial NbxTi1-xO2 on TiO2(110)[J].Surface Science.1996,365(3):625-637.
    [6] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surface[J]. Nature. 1997,388:431-432.
    [7] J.H.Carey, J.Lawrence, H.M. Tosine. Photodechlorination of PCB’S in the presence of titanium dioxide in aqueous suspensions[J]. Bull Environ Contam Toxical.1976,16:697-701.
    [8] D.Y. Goswami. Areview of engineering development of aqueous phase solar photocatalytic detoxification and disinfection processes[J].Journal of solar Engery Engineering.1977, 119(3):101-107.
    [9] Andrew Mills, Stephen Le Hunte, An overview of semiconductor photocatalysis[J]. Journal of photochemistry and photobiology A:Chemistry.1997,118:1-35.
    [10] A.L.Linsebigler. Photocatalysis on TiO2 surface: principles, mechanisms and selected result[J].Chemrev.1995,95(3):735-758.
    [11] Hagfeldt A, Gratzel M.Light-Induced reactions in nanocrystalline systems[J]. Chem.Rev. 1995,95(1):49-68.
    [12] Frank S N,Bard A J. Heterogeous photocatalytic oxidation of cyanide ion in aqueous Solution at TiO2 powder[J].J Am Chem Soc.1977,99(3):303-310.
    [13] Frank S N,Bard A J. Heterogeous photoeatalytic oxidation of cyanide and sulfite in aqueous solution at semieonduetor Powder[J]. J Phys Chem.1977,81(4):1484-1492.
    [14] Chen-Yung Hsiao, Chung-Li Lee, David F.et al. Heterogeneous photocatalysis: Degradation of dilute solutions of dichloromethane(CH2Cl2), chloroform(CHCl3),and carbon tetrachloride(CCl4) with illuminated TiO2 photocatalyst [J].Article Joumal of Catalysis. 1983(82):418-423.
    [15]蔡乃华,董庆才.悬浮体系中的半导体光催化及其应用[J].化学通报.1991,(7):9-13.
    [16] Ollis D F, Pelizzeetti E, Serpone N.Phtotocatalyzed destruction of water contaminants[J]. Environment Science Technology.1991,25(9):1523-1528.
    [17] Goswami D Y. A review of engineering developments of aqueous phase solar photocataltic detoxification and disinfection processes[J].Journal of Solar Energy Engineering. 1997,119(3):101-107.
    [18] Kenji H,Teruaki H, Keiichi Tanaka. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions[J]. Water Res. 1990,24:1415-1417.
    [19]曾庆福.水溶性染料的光催化脱色研究[J].染整技术.1999,21(2):1-4.1999,21(3):5-9.
    [20] Wang Chen-chi,ZHang Zhi-biao,JACKIE Y Y. Photocatalytic decomposition of halogenated organics over nanocrystalline titania[J]. Nano Structured Mater.1997,9:583-586.
    [21] Calza P, Minero C,Pelizzetti E. Photocatalytic transformations of chlorinated methanes in the presence of electron and holes scavengers[J]. Journal of The Chemical Society-Faraday Transactions.1997,93(2):3765-3771.
    [22] Fan Jin-fu, Yates Jr. Mechanism of photooxidation of trichloroethylene on TiO2: detection of intermediates by infrared spectroscopy[J]. J Am Chem Soc.1996,(118): 4686-4692.
    [23] Ku Y, Leur M, Lee K C. Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide[J]. Wat Res.1996,30(11):2569-2578.
    [24] Stanfford U, Gray K A, Kamat P V. Photocatalytic degradation of 4-Chlorophenol: the effects of verified TiO2 concentration and light wave length[J]. J Catal.1997,(167):25-32.
    [25]赵进才,张丰雷.二氧化钛微粒存在下表面活性剂光催化分解机理的研究[J].感光科学与光化学.1996,14(3):269-273.
    [26]肖邦定,胡凯,刘剑彤等.非离子表面活性剂在人工光源辐照下的光催化降解[J].中国环境科学.1999,19(1):9-13.
    [27]王怡中,符雁,汤鸿霄.二氧化钛悬浆体系太阳光催化降解甲基橙研究[J].环境科学学报.1999,19(1): 63-67.
    [28]王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解[J].催化学报. 2000,21(4): 327-331.
    [29]王伯勇,魏丰华,刘娅琳等. TiO2、ZnO和CdS的光催化甲基橙脱色比较[J].工业水处理. 2002,22(4): 40-42.
    [30]吴凤清,阮圣平,李晓平等.纳米TiO2的制备、表征及光催化性能的研究[J].功能材料. 2001,32(1): 69-71.
    [31] Wooseok Nam, Jimin Kim, Guiyoung Han. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor[J].Chemosphere. 2002,(47):1019-1024.
    [32] Walter Z. Tang, Huren An. UV/TiO2 photocatalytic oxidation of commercial dy in aqueous solution. Pergamon.1995,31(9):4157-4170.
    [33] C.Hachem1, F.Bocquillon, O.Zahraa,et al. Decolourization of textile industry wastewater by the photocatalytic degradation process[J]. Dyes and Pigments. 2001,(49):117-125.
    [34] Hinda Lachheb, Eric Puzenat, Ammar Houas, et al. Photocatalytic degradation of various types of dyes(Alizarin S,Crocein Orange G,Methyl Red,Congo Red, Methylene Blue)in water by UV-irradiated titania[J]. Applied Catalysis B: Enviromen-Tal.2002,(39):75-90.
    [35] Zhenshi Suna, Yingxu Chena, Qiang Kea, et al Photocatalytic degradation of cationic azodye by TiO2/bentonite nanocomposite[J]. Journal of Photochemistry and Photobiology A:Chemistry. 2002,149:169-174.
    [36] Cristian Lizama, Juanita Freer, Jaime Baeza, et al. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions[J]. Catalysis Today. 2002,76:235-246.
    [37]尹晓红,张敏莉,张艳芳等.二氧化钛悬浆体系光催化降解4BS染料的研究[J].工业水处理.2000,20(10):15-18.
    [38]毛立群,杨建军,郭泉辉等.活性艳红X-3B水溶液的光化学与光催化协同脱色反应[J].催化学报. 2001,22(2):181-184.
    [39]石建敏,李巧玲,周仁贤等.二氧化钛光催化降解水溶性分散染料的研究[J].水处理技术. 2002,28(2):105-07.
    [40]孙尚梅,赵莲花,康振晋.农药厂生产废水的光催化处理[J].延边大学学报.1998,24(4): 77-79.
    [41]包南,王吉顺,王宇.水中呋吗唑酮的固定化光催化氧化[J].大连铁道学院学报.1998,19(2): 14-18.
    [42]张新荣,杨平,赵梦月.玻璃微球负载复合光催化剂降解有机磷农药[J].郑州工业大学学报. 1999,20(1):39-41.
    [43]陈士夫,梁新,陶跃武.空心玻璃微球负载TiO2光催化降解有机磷农药[J].感光科学与化学.1999,17(1):85-91.
    [44] Iwata T, Ishikawa M, Ichino R, et al. Photocatalytic reduction of Cr(VI)on TiO2 film formed by anodizing[J]. Surf.Coat.Technol.2003,169:703-706.
    [45] Bhakta D, Shukla S S, Chandrasdeharaiah M S. A novel photocatalytic method for detoxification of cyanide wastes[J]. Environ.Sci.Technol. 1992,26:625-635.
    [46] Serpone N, Borgarello E, Barben M, et al. A decade of hetrogeneous photocatalysis in our laboratory: pure and applied studies in procuction and environmental detoxification[J]. J.Photochem.Photobiol.A-Chem. 1987,36:373-388.
    [47] Serpone N, Ah-You Y K, Tran T P. AMI simulated sunlight photoreduction and elimination of Hg(Ⅱ) and CH3Hg(Ⅱ) chloride salts from aqueous suspensions of titanium dioxide[J]. Solar Energy.1987,39:491-498.
    [48]戴遐明,陈永华,李庆丰等.半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究[J].环境科学.1996,17(6): 34-36.
    [49] Fu H X, Lu G X, Li S B. Adsorption and photo-induced reduction of Cr(Ⅵ) ion in Cr(Ⅵ)-4CP(4-chlorophenol) aqueous system in the presence of TiO2 as photocatalyst[J]. Journal of Photochemistry and Photobiology A: Chemistry.1998,114:81-89.
    [50]付宏祥,吕功煊,张宏等. Cr(VI)离子在TiO2表面的吸附与光催化还原消除[J].环境科学.1998 (2): 80-83.
    [51]付宏祥,吕功煊,杨瑞琴等. TiO2催化Cr(VI)-氯代苯酚共存体系中Cr(VI)的光致还原[J].分子催化.2000,14(3): 214-218.
    [52] Zhang Y, Crittenden J C, Hand D W .et al. J. of Solar Energy Engineering. 1996(118):123-129.
    [53]袭著革,李官贤,张华山等.复合纳米TiO2净化典型室内空气污染物的初步研究[J].解放军预防医学杂志.2003,21(5):316-318.
    [54]靳超.甲醛危害及其清除技术[J].科技与企业. 2002 (6):56.
    [55] Michael K.H. Leung, S.M. Tang a, Ringo C.W Lam, et al. Parallel-plate solar photocatalytic reactor for air purification: Semi-empirical correlation, modeling, and optimization[J].Solar Energy.2006,80:949-955.
    [56] Huili Yu, Kaili Zhang, Carole Rossi. Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst[J]. Journal of Photochemistry and Photobiology A: Chemistry. 2006,188:65-73.
    [57] Liping Yang, Zhenyan Liu, Jianwei Shi, et al. Degradation of indoor gaseous formaldehyde by hybrid VUV and Ti02/UV processes[J]. Separation and Purification Technology. 2007,54:204-211.
    [58] Raupp G.B, Alexiadis A, Hossain M.M,et al. First-principles modeling,scaling laws and design of structured photocatalytic oxidation reactors for air purification[J] Catal.Today. 2001,69:41-49.
    [59] Kikuchi Y, Sunada K, Iyoda T, et al .Photocatalytic bactericidal effect of Ti02 thin films: dynamic view of the active oxygen species responsible for the effect[J]. J.Photochem Photoboi A:Chem. 1997,106:51-57.
    [60] Ramanathan K, Avnir D, Modestov A, et al.Sol-gel derived ormosil-exfoliated graphite-TiO2 composite floating catalyst: Photodeposition of copper[J]. Chem.Mater.1997,9: 2533-2540.
    [61] Keleher J, Bashant J.N, Heldt M, et al. Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications[J]. World J.Microbio.Biotechnol.2002,18: 133-139.
    [62] Yu J.G, Zhao X.J, Zhao Q.N. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method[J].Mater.Chem.Phys.2001,69: 25-29.
    [63] Misono M, Inui T. New catalytic technologies in Japan[J]. Catal.Today. 1999,51:369-375.
    [64] Watanabe A, Nakajima R, Minabe R,et al. Thin Solid Films 351(1999)260-263.
    [65] Fujishima A, et al.Behavior of tumor cells on photoexcited semiconductor surface[J]. Photomed Photobiol. 1986(8):45-50.
    [66] Ruar J M. Biocompatiblility evaluation bitro part I: Morphology expression and proliteration in human and rat cstecblasts[J].J Central South University of Technology. 2001 (8):1-8.
    [67] R.Cai, K.Hashimoto, K.Itoh, et al. Photokilling of malignant cells with ultra-fine TiO2 power[J]. Bull Chem .Soc. Jpn.1991,64:1268-1273.
    [68] R.Cai, Y.Kubota, T.Shuin, et al.Induction of cytotoxicity by photoexcited TiO2 particles[J]. Cancer Res.1992,52:2346-2348.
    [69] Misono M, Inui T. New catalytic technologies in Japan[J]. Catal.Today 1999,51:369-375.
    [70] Tryk D A, Fujishima A , Honda K. Recent topics in photoelectrochemistry: achievements and future prospects[J].Electrochimica Acta.2000,45:2363-2376.
    [71] Watanabea T, Nakajima A, Wanga R. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass [J].Thin Solid Film.1999 ,351(1/2) : 260-263.
    [72]金建国,张文丽,邱继军等.TiO2光催化剂的应用及其光催化技术[J].陶瓷学报.2001,22(4):276-279.
    [73] ZHANG Qing-hong, GAO Lian, GUO Jin-kun. Effectofcalcinationon the photocatalytic properties of nanosized TiO2 powders prepared by TiCl hydrolysis[J].Applied Catalysis B: Environmental. 2000,26:207-215.
    [74]邹敏,王琪琳,马光强等.纳米TiO2改善钢结构防火涂料的性能研究[J].四川大学学报. 2006,8(43):864-867.
    [75]葛军,丁辉.纳米二氧化钛的应用与市场研究[J].材料导报.2004,2(18):65-68.
    [76]赵东元,余承忠.Chinese Chemical World,2000,Supplement:10-14.
    [77] Hoffman A J, Yee H, Hills G, et al. Photoinitiated polymerization of methyl methacrylate using Q-sized ZnO colloids [J].J Phys Chem. 1992 ,96(13):5540-5546.
    [78] Hoffman A J, Hills G, Yee H, et al. Q-sized CdS: Synthesis ,characterization and efficience of photoinitiation of polymerization of several vinylic monomers[J].J Phys Chem. 1992,96(13):5546-5552.
    [79] Karaktisou K E, Verykios X E. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt2Ru/TiO2 catalysts[J]. J Catal.1995,152(2):360-367.
    [80] Armor N J .The multiple roles for catalysis in the production of H2[J ] .Applied Catalysis, A:General.1999,176(2):159-176.
    [81] Takata T,Tanaka A ,Hara M.et al. Recent progress of photocatalysts foroverall water splitting[J].Catalysis Today. 1998,44:17-26.
    [82] Michael R H, Martin S, Choi W Y. Environmental application of Semiconductor Photocatalytic[J]. Chem Reviews. 1995,95(1): 69-96.
    [83] Zhao J, Yang X. Photocatalytic oxidation for indoor air purification[J]. Buiding and Envrionment. 2003,38:645-654.
    [84] Burdett J K. Electronic Control of the Geometry of Rutile and Related Structures[J]. Inorganic Chemistry. 1985, 24:2244-2253.
    [85]高濂,郑珊,张青红.纳米氧化钛催化材料及应用[M].化学工业出版社:北京,2002.12
    [86]高俊宁.纳米磁载TIO2光催化剂的制备与性能研究(硕士研究生论文).西北工业大学:环境工程学院.2007.3.
    [87] Sclafani A, Palmisano L, Schiavello M. Influence of the Preparation Methods of Ti02 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion [J].Journal of Physical Chemistry.1990, 94: 829-832.
    [88]黄婉霞,孙作凤,吴建春.纳米二氧化钦光催化作用降解甲醛的研究[J].稀有金属.2005, 29(1):34-38.
    [89]陈建华,龚竹青.二氧化钛半导体光催化材料离子掺杂[M].科学出版社:北京,2006.12.
    [90] R.W.Matthews. Water Res, Purification of water with near-u.v. illuminated suspensions of titanium dioxid e[J].Water Research.1990,24(5): 653-660.
    [91] R.W.Matthews. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide[J]. J.Catal.1998,111(2):264-272.
    [92] Coronado J.M, Maira A.J, Martínez-Arias A, et al. EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. J.Photochem.Photobiol.A-Chem. 2002,150:213-221.
    [93] Cho M, Chung H, Choi W, et al. Linear correlation between inactivation of E.coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res.2004,38:1069-1077.
    [94] Raja P, Bozzi A, Mansilla H, et al. Evidence for superoxide-radical anion,singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-4 -hydroxyphenylmethylcarbinol). J.Photochem.Photobiol.A-Chem.2005,169: 271-278.
    [95] Anpo M, Shima T, Kodama S, et al.ll-Particle TiO,: Size Quantization Effects and Reaction Intermediates[J]. J. Phys. Chem. 1987,91:4305-4310.
    [96] Antonaraki S, Androulaki E, Dimotikali D, et al. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2[J]. J.Photochem.Photobiol.A-Chem.2002, 148:191-197.
    [97] Chhor K, Bocquet J.F, Colbeau-Justin C. Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen[J].Mater.Chem.Phys. 2004,86:123-131.
    [98] Assabane A, Yahia A.I, Tahiri H, et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania.Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid(1,2,4-benzene tricarboxylic acid)[J]. Appl.Catal. B-Environ.2000,24:71-87.
    [99] Ishibashi K.I, Fujishima A., Watanabe T, et al. Quantum yields of active oxidative species formed on TiO2 photocatalyst Photochem[J].Photochem.Photobiol.A-Chem. 2000,134:139-142.
    [100] El-morsi T.M, Budakowski W.R, Abd-el-Aziz A.S, et al. Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO2:A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals[J].Environ.Sci.Technol.2000,34:1018-1022.
    [101] Fernandez A, Lassaletta G, Jimenez V.M, et al. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports[J]. Appl.Catal.B-Environ. 1995,7:49-63.
    [102] Wang R, 8 Hashimoto K, Fujishima A, et al.. Photogeneration of Highly Amphiphilic TiO2 Surfaces[J]. Adv. Mater, 1998,10(2):135-138.
    [103] Sampath S, Uchida H, Yoneyama H. Photocatalytic Degradation of Gaseous Pyridine over Zeolite-Supported Titanium Dioxide[J]. J.catal,1991,149(1):189-194.
    [104] Tokeda N, Torimoto, Sampath S, et al. Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde[J]. J.Phys.Chem. 1995,99:9986-9991.
    [105]敖燕辉,徐晶品,沈迅伟.负载型活性炭/TiO2光催化降解苯酚的研究[J].环境科学报. 2006,26(7): 1111-1115.
    [106]李慧,陈勇,冯裕钊.水处理纳米光催化材料研究进展[J].西南给排水.2007,29(6): 38-42.
    [107] Rosenberg I, Brock J R, Heller A. Collection Optics of TiO, Photocatalyst on Hollow Glass Microbeads Floating on Oil Slicks[J]. J.phys.Chem. 1992,96:3423-3428.
    [108] Yamazaki S, Matsunaga S, Hori K. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets[J]. Water Res.2001,35:1022-1028.
    [109]方佑龄,赵文宽,尹少华等.纳米TiO2在空心陶瓷球上的固定化及光催化及光催化分解辛烷[J].应用化学.1997,14:81-83.
    [110]黄惠莉,黄妙良,蔡阿娜等. TiO2光催化薄膜在陶瓷器具上抗菌效果的研究[J].应用化学.2002, 19(1):48-52.
    [111] Torimoto T, Ito S, Kuwabata S. et al. Effects of Adsorbents Used as Supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide[J]. Enrivon.Sci.Technol. 1996,30:1275-1281.
    [112]王怡中,胡春.有机物多相光催化降解反应中催化剂的固定化技术研究[J].环境科学.1998,19:40-43.
    [113] M.R.Parker.The Physics of Magnetic Separation[J]. J. Contemp Phys.1997,18(3): 279-285.
    [114]沈晓鲤,沈菁,姜永年.高磁分离处理重金属废水的应用[J].环境科学与技术.1988(1): 37-40.
    [115] Chen, F, Zhao, J. Preparation and photocatalytic properties of a novel kind of loaded photocatalyst of Ti02/Si02/γ-Fe203[J]. Catal.Lett.1999,58 :245-247.
    [116]刘子全,高原等.可磁分离光催化剂的磁载材料的研究进展[J].无机盐工业.2008,40 (5):9-12.
    [117]陈金媛,彭图治.磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能[J].化学学报. 2004,62(20):2093-2097.
    [118]刘惠涛,高原.TiO2/γ-Fe2O3磁分离光催化剂的制备及其催化性能研究[J].兰州大学学报.2003,39(6):107-108.
    [119]孙秀云,王连军,王见等.磁性光催化剂TiO2/Fe3O4的制备和表征[J].光谱学与光谱分析.2007,27(4):777-780.
    [120]付乌有,杨海滨,刘冰冰等.锐钛矿型TiO2/MnFe2O4核壳结构复合纳米颗粒的制备及其光催化特性[J].复合材料学报.2007,24(3):136-140.
    [121] Rana S, Srivastava R S, Sorenss on M M. Synthesis and character ization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2-NiFe2O4 system[J].Materials Science and Engineering B.2005,119(2):144-151.
    [122]包淑娟,张校刚,刘献明等. TiO2/SiO2/Fe3O4的制备及其光催化性能[J].应用化学.2004,21(3): 261-65.
    [123]李云辉,刘晓秋,任敏等.磁分离光触媒的制备及其在污水处理中的应用[J].材料科学与工艺. 2006,14(3):326-329.
    [124] Xu Shihong, Shangguan Wenfeng, Yuan Jian, et al.Preparations and photocatalytic degradation of methyl orange in water on magnetically separable Bi12 TiO20 supported on nickel ferrite[J]. Sciences and Technology of Advanced Materials. 2007,15(2):190-195.
    [125] Wuyou Fu,Haibin yang,Minghua Li,et al. Anatase TIO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst[J].Materials Letters. 2005 ,59: 3530-3534.
    [126] Wuyou Fu,Haibin yang,Lianxia Chang,et al.AnataseTi02 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst [J].Colloids and Surfaces A: Physicochem.Eng. Aspects. 2006,289:47-52.
    [127] Wuyou Fu, Halbin Yang, Minghua Li , et al. Preparationand photocatalytic characteristics of core-shell structure Ti02/Ba Fe12O19 nanoparticles[J]. Materials Letters.2006,60:2723-2727.
    [128] S. Watson, D. Beydoun, R. Amal. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized Ti02 crystals onto a magnetic core [J]. Journal of Photochemistry and Photobiology A: Chemistry. 2002(148):303-313.
    [129] Feng Chen, Yinde Xie, Jincai Zhao, et al. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation [J]. Chemosphere, 2001,44:1159-1168.
    [130] Yuan Gao, Baohua Chen, Hulin Li, et al. Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties [J].Materials Chemistry and Physics. 2003,80:348-355.
    [131] Donia Beydoun, Rose Amal, Gary Low, et al. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. Journal of Molecular Catalysis A: Chemical. 2002,180:193-200.
    [132]廖振华,陈建军,姚可夫等.磁性纳米Ti02/Si02/Fe304光催化剂的制备及表征[J].无机材料学报.2004 (19):749-754.
    [133]赵华侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社;1993.02.
    [134]陈艳,何翔,孔中华等.脉冲等离子体微弧氧化法制备TiO2薄膜及膜层的性能研究[J].腐蚀与防护. 2004,25(8)332-335.
    [135] Li Y-L,Ishigaki T. Controlled one-step synthesis of nanocyrstalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation[J]. J. Phys. Chem. B. 2004,108:15536-15542.
    [136]朱新河,严立,徐久军.常压非平衡等离子体辅助TiO2纳米粉的制备[J].大连海事大学学报.2003,29(2):78-81.
    [137] Masahiko Maeda, Teruyoshi Watanabe. Evaluation of photocatalytic properties of titanium oxide films prepared byplasma-enhanced chemical vapor deposition[J]. Thin Solid Films. 2005,489: 320-324.
    [138]郑国梁,程如烟.常压微波等离子体气相法制取纳米二氧化钛[J].钛工业进展.2001,5:22-24
    [139] Asahi R, Morikawa T, Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxide. Science. 2001,293:269-271.
    [140] Khan S U M, Al-Shahry M, Ingler W B Jr. Efficient photochemical water splitting by a chemically modified n-Ti02. Science. 2002,297:2243-2245.
    [141] Kenji Yamada, Hiroyuki Nakamura, Shigenori Matsushima,et al. Preparation of N-doped TiO2 particles by plasma surface modification[J]. C R Chimie. 2006,9:788-793.
    [142] Chung-Kyung Jung, I-S Bae, Y-H Song, et al. Plasma surface modification of TiO2 photocatalysts for improvement of catalytic efficiency[J]. Surf & Coatings Tech. 2005, 200:1320-1324.
    [143]邹吉军.等离子体处理制备高效催化剂的基础研究[D].天津:天津大学,2005.
    [144]孔令红,熊予莹,符斯列等.用ECR氮等离子对纳米TiO2薄膜光谱响应改性的研究[J].功能材料与器件学报.2004,10(3):379~382.
    [145] Jun-Bo Han, Nian Wang, Guo-Ping Yu,et al. Effect of Ar plasma treatment on the photo-electrical properties of nanocrystal TiO2 films [J]. Solar Energy Mater & Solar Cells. 2005,88:293-299.
    [146]黄波.固体材料及其应用[M].广州:华南理工大学出版社,1995.
    [147]石晓波,李春根,王德先.铁酸锌纳米微粒的制备及其催化性能[J].化学世界.2002,43:451- 456.
    [148]刘辉,魏雨.纳米级铁酸盐粉体材料合成的进展[J].功能材料.2000,31:124-126.
    [149]刘辉,魏雨,张艳峰.纳米铁酸盐的制备研究:低温催化相转化法合成纳米级铁酸锌及表征[J].无机材料学报.2002,17:56-60.
    [150]刘辉,张艳峰,贾振斌等.催化相转化法制备纳米铁酸镍及性质研究[J].功能材料.2003,34:509–510.
    [151]杨丽珍,吴静芝,都燕萍.共沉淀一酸蚀法制备铁酸钻磁性液体[J].功能材料.2006,37(1):133-135.
    [152]毛立群,杨建军,郭辉.活性艳红X-3B水溶液的光化学与光催化协同脱色反应[J].催化学报.2001,22(2):181-184.
    [153]安太成,何春,朱锡海.三维电极电助光催化降解直接湖蓝水溶液的研究[J].催化学报.2001,22(2):193-197.
    [154]吴树新,尹燕华,马智.超声水解法制备的纳米二氧化钛光催化性能的研究[J].分子催化.2005,19(3):167-171.
    [155] Kim T K, Lee M N, Lee S H,et al. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification[J].Thin Solid Films.2005,V475:171–177.
    [156]郭洪蕾,顾德恩,杨邦朝.光催化活性TiO2薄膜的研究进展[J].电子元件与材料,2006,25(3):1-4.
    [157]魏刚,黄海燕,熊蓉春.纳米二氧化钛的光催化性能及其在有机污染物降解中的应用[J].现代化工.2003,23(1):20–23.
    [158] Snejana Bakardjieva, Jan Subr, Vaclav Stengl,et al. Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase[J]. Appl Catal B: Environmental.2005,58(1):193–202.
    [159]李晓菁,乔冠军,陈杰荣.等离子体修TiO2及其响应光谱红移[J].化学进展. 2007, 19(2/3):220-224.
    [160] Anpo M , Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. CATALYSIS. 2003,216(1/2): 505-516.
    [161]陈琳,雷乐成.低温等离子体技术应用于二氧化钛光催化剂制备与改性[J].水处理技术.2007,33(9):1-5.
    [162] GAO Shuai,LI Zhong-yi,ZHANG Xiu-ling.Preparation and characterization of a novel core-shell structure CoFe2O4/TiO2 magnetic nano-photocatalyst[J].JOURNAL OF FUNCTIONAL MATERIALS AND DEVICES.2009,15(2):201-205.
    [163]李晓菁,乔冠军,陈杰.射频等离子体修饰二氧化钛氧空位的光降解机理[J].硅酸盐学报.2006, 34(12):1466-1469.
    [164]孙秀云,李欣,段传玲等.N掺杂可见光化催化剂的研究[J].无机化学学报.2007,23(3):517-522.
    [165]傅鑫,王悦,栗保明.大气压下低温表面等离子体发射光谱实验研究[J].南京理工大学学报(自然科学版). 2008,32(2):237-240
    [166]任庆磊,林麒.低温等离子体的光谱测量研究[J].光谱实验室. 2007,24(5):839-843

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700