不同血液净化方式对尿毒症患者外周血单核细胞源性巨噬细胞胆固醇外流影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的随着血液净化技术的不断发展,维持血液透析患者的生存率较以往有了显著提高。然而,心血管疾病(Cardiovasculardisease,CVD)仍是维持透析患者(Maintenance hemodialysispatients,MHD)主要并发症和主要死亡原因。有研究表明,高通量血液透析滤过(High-flux hemodiafiltration, HDF)有助于改善透析患者的脂质代谢紊乱,减轻炎症反应,降低维持透析患者心血管疾病发生率和死亡率。然而,HDF减轻脂代谢紊乱降低患者心血管事件发生的机制尚未完全清楚。ATP结合盒受体A1(ATP-binding cassettetransporter A1,ABCA1)、ATP结合盒受体G1(ATP-binding cassettetransporter G1, ABCG1)是胆固醇逆转运中最重要的受体,在脂代谢紊乱及动脉硬化发生和发展中起着重要作用。因此,本课题以人外周血单核巨噬细胞为研究对象,观察不同血液净化方式对尿毒症患者外周血单核巨噬泡沫细胞形态以及巨噬细胞ABCA1、ABCG1mRNA及蛋白的表达情况的影响;观察不同血液净化方式尿毒症患者外周血Treg/Th17比例变化及与ABCA1、ABCG1表达的关系。以探讨不同血液透析方式对尿毒症患者动脉粥样硬化的影响及其可能的作用机制,为尿毒症患者动脉粥样硬化的临床预防和治疗寻找更合理治疗的方法。
     方法选取重庆医科大学附属第一医院长期规律透析的慢性肾衰患者60例,按不同血液净化方式分为2组:血液透析(hemodialysis,HD)组、血液透析滤过(HDF)组,每组30例,同时选取健康体检者20例。均于透析前抽取空腹静脉血,密度梯度离心分离尿毒症患者外周血单个核细胞,巨噬细胞集落刺激因子诱导贴壁巨噬化,油红O染色、CD68免疫荧光鉴定巨噬细胞,酶法测定巨噬细胞内总胆固醇(TotalCholesterol, TC)、胆固醇酯(Cholesterol Ester, CE)和游离胆固醇(FreeCholesterol, FC)的水平;应用RT-PCR与Western blot方法测定巨噬细胞ABCA1、ABCG1mRNA及其蛋白表达。密度梯度离心法获得外周血单个核细胞,流式细胞技术检测不同血液净化方式患者外周血Treg、Th17细胞及Treg/Th17比例表达情况,ELISA法测定患者血清IL-6、TNF-α、IL-10水平,探讨Treg/Th17比例失衡对巨噬细胞ABCA1、ABCG1的影响,阐明两者的关系。
     结果1.HD、HDF组巨噬细胞内总胆固醇、胆固醇脂均较对照组增加(P <0.01);与对照组比较,HD、HDF组巨噬细胞游离胆固醇明显增加(P <0.05);HDF组较HD组巨噬细胞内总胆固醇、胆固醇脂、游离胆固醇减少(P <0.05)。
     2.与对照组比较,HD、HDF组巨噬细胞ABCA1mRNA、ABCG1mRNA的表达均显著降低(P<0.01,P <0.01),HDF组较HD组患者的ABCA1mRNA、ABCG1mRNA表达明显升高(P<0.01, P<0.05)。
     3.与对照组比较,HD组、HDF组巨噬细胞ABCA1、ABCG1蛋白表达均明显下降(P<0.01;P <0.05),HDF组与HD组比较ABCA1、ABCG1蛋白表达均升高(P<0.05)。
     4. HD、HDF组患者外周血中Treg细胞的比例明显低于对照组(P<0.05),HDF组明显高于HD组(P<0.05)。HD、HDF组患者外周血中Thl7细胞的比例明显高于对照组(P<0.05),HDF组明显低于HD组(P<0.05)。HD、HDF组患者Treg/Thl7的比值明显低于对照组(P <0.05),HDF组比HD组明显升高(P <0.05)。
     5.与对照组比较,HD、HDF组外周血单个核细胞Foxp3mRNA的表达显著降低(P <0.01,P<0.01);与HD组比较,HDF组患者的Foxp3mRNA表达明显升高(P<0.05)。与对照组比较,HD、HDF组ROR-γtmRNA的表达显著升高(P <0.01,P<0.01),与HD组比较,HDF组ROR-γt mRNA表达升高(P <0.05)。
     6.与对照组比较,HD、HDF组患者血清IL-6、TNF-α水平均增高(P<0.05),而IL-10水平减低(P <0.05);HDF组患者血清IL-6、TNF-α水平均低于HD组(P<0.05);HDF组患者血清IL-10水平高于HD组(P <0.05)。
     7.尿毒症血液透析患者Treg细胞比例与ABCA1、ABCG1mRNA呈正相关(r=0.793,P<0.05;r=0.698,P <0.05);而Th17细胞比例ABCA1、ABCG1mRNA呈负相关(r=-0.711,P <0.05;r=-0.387,P <0.05);尿毒症血液透析患者Treg细胞比例与ABCA1、ABCG1蛋白呈正相关(r=0.791,P <0.05;r=0.761,P <0.05);而Th17细胞比例ABCA1、ABCG1蛋白呈负相关(r=-0.577,P <0.05;r=-0.685,P <0.05)。
     结论血液透析患者存在巨噬细胞内胆固醇流出受体ABCA1、ABCG1功能障碍,高通量透析滤过治疗能够改善ABCA1、ABCG1的功能障碍;ABCA1、ABCG1的功能障碍与外周血Treg/Th17细胞比例失衡有关。HDF较HD能够部分纠正透析患者Treg/Th17细胞比例失衡,导致促炎性细胞因子的释放减少,抑炎性细胞因子的释放增加,增加巨噬细胞ABCA1、ABCG1的表达,进而减少动脉粥样硬化及心血管并发症的发生。
Objective With the development of blood purification technology, thesurvival rates of hemodialysis patients have been significantly improvedcompared with the past. However, cardiovascular disease (CVD) remains themajor complications and mortality of maintenance dialysis patients(MHD).It has been shown by a large number of studies that high fluxhemodiafiltration (HDF) can improve lipid metabolism, reduceinflammation, and decrease the morbidity and the mortality of thecardiovascular diseases for the maintenance dialysis patients. But, themechanism that HDF can mitigate lipid metabolism and reducecardiovascular events in patients remains unclear. ATP-binding cassettereceptor A1(ABCA1) and ATP-binding t cassette receptor G1(ABCG1)are the most important receptors in cholesterol reverse transport(RCT)andplays important roles in both lipid metabolism and atherosclerosisdevelopment. Our objective is to examine the effects and mechanism ofdifferent dialysis on the formation of foam cells and the expression of ABCA1and ABCG1in Uremia patient's peripheral blood mononuclearmacrophages. To observe different dialysis uremic patient’s peripheralblood Treg/Th17proportional change and the relationship betweenTreg/Th17proportional change and the expression of ABCA1and ABCG1.The study may provide a new theoretical foundation for Uremic patientswith atherosclerosis,as well as offer a new pathway for clinical preventionand treatment of atherosclerosis in uremic patients.
     Methods We investigated30uremia patients treated by HD,30patientstreated by HDF and20healthy volunteers. ALL patients were receivedtreatment in the department of kidney, first hospital affiliated to Chongqingmedical university. Peripheral blood mononuclear cells (PBMCs) wereisolated from venous blood before dialysis and stimulated to make themtransfer to macrophages by Macrophage colony-stimulating factor.Macrophages were identified by Oil red O dyeing and byimmunofluorescence staining of cd68. The cellular contents of totalcholesterols,Cholesterol Ester and Free Cholesterol in different groups weredetected by enzymatic colorimetry. The expression of ABCA1and ABCG1mRNA was detected by real-time fluorescent quantitative PCR, and theexpression of ABCA1and ABCG1protein was detected by Western-blot.Mononuclear cells were isolated from peripheral blood by density gradientcentrifugation,Treg and Th17cells proportion and Treg/Th17proportionwas measured by flow cytometry. The effects of Treg/Th17imbalance on the expression of ABCA1, ABCA1were investigated and to clarify therelationship between the two factors.
     Results1. Compaired with control group, total cholesterol andCholesterol ester in both HD and HDF groups increased significantly(P<0.01). Compaired with control group, free cholesterol in both HD andHDF groups increased significantly(P<0.01), total cholesterol and Chol-esterol ester in HDF group decreased (P<0.05).
     2.Real-time fluorescent quantitative PCR results are as follows:compared with controls, the expression of ABCA1mRNA and ABCG1mRNA in both HD and HDF group were significantly lower (P<0.01,P<0.01); compared with HD group, the expression of ABCA1mRNA andABCG1mRNA in the HDF group increased significantly (P<0.01, P<0.05).
     3. Compared with controls, the expression of ABCA1and ABCG1protein in both HD and HDF group was significantly lower (P<0.01,P<0.05); compared with HD group, the expression of ABCA1and ABCG1protein in the HDF group increased significantly (P<0.05, P<0.05).
     4. The percent of Treg cell in peripheral blood(CD4+CD25+Foxp3+/CD4+T cells,%) in HD and HDF group patients was remarkably higherthan that in healthy controls (P<0.05),The percent in HDF group patientswas higher than that in HD group(P<0.05)。The percent of Th17cell inperipheral blood(CD4+IL17+/CD4+T cells,%) in HD and HDF grouppatients was and remarkably higher than that in healthy controls (P<0.05), The percent in HDF group patients was higher than that in HD group(P<0.05)。The ratio of Treg/Thl7in HDF group was obviously lower thancontrol group (P<0.05), the ratio in HDF group increased significantlycompaired with HD group (P<0.05).
     5. Compared with controls, the expression of Foxp3mRNA in both HDand HDF group were significantly lower (P<0.01, P<0.01);Compaired withHD group, the expression of Foxp3mRNA in the HDF group increasedsignificantly (P<0.05). Compared with controls, the expression of ROR-γtmRNA in both HD and HDF group were significantly higher (P<0.01,P<0.01);Compaired with HD group, the expression of ROR-γt mRNA in theHDF group decreased significantly (P<0.05).
     6. The level of IL-6TNF-αin HDF and HD groups were significantlyhigher than those in control group(P<0.05), The level of IL-10in HDF andHD groups were lower than this in control group(P<0.05). The level of IL-6TNF-αin HDF groups was significantly higher than those in HD group(P<0.05), The level of IL-10in HDF groups was lower than this in HDgroup(P<0.05).
     7. The proportion of Treg cells in patients receiving hemodialysis waspositively correlated with ABCA1, ABCG1mRNA (r=0.793, P<0.05); r=0.698,P<0.05); And proportion of Th17cell with ABCA1, ABCG1mRNAshowed a negative correlation (r=-0.711, P<0.05and r=-0.387, P<0.05);Proportion of Treg cells in patients receiving hemodialysis with ABCA1, ABCG1protein was positively correlation (r=0.791, P<0.05, r=0.761,P<0.05); The proportion of Th17cell, ABCA1and ABCG1protein showeda negative correlation (r=-0.577, P<0.05and r=0.-685, P<0.05).
     Conclusion Macrophage cholesterol efflux receptors ABCA1, ABCG1of maintenance dialysis patients were down-regulated, high-fluxhemodiafiltration can improve the expression of ABCA1and ABCG1.Dysfunction of ABCA1and ABCG1associated with unbalanced proportionof Treg/Th17cells and Microinflammatory. Compared with HD,HDF canimprove dialysis patients Treg/Th17cell ratio, reduced the release ofproinflam-matory cytokines, increase the release of the suppression ofinflammatory cytokines, increased expression of ABCA1and ABCG1,thereby reducing the incidence of atherosclerosis and cardiovascularcomplications.
引文
[1] Weiner DE, Tighiouart H, Elsayed EF, et al. The relationship betweennontraditional risk factors and outcomes in individuals with stage3to4CKD. Am JKidneyDis2008;51:212(R) C223.
    [2] ParekhRS, PlantingaLC, KaoWH, etal. The association of sudden cardiac deathwith inflammation and other traditional risk factors. Kidney Int2008;74:1335(R)C1342.
    [3] De Mutsert R,Grootendorst DC,Axelsson J, et al. Excessmortality due toInteraction between protein-energy wasting, inflammation and cardiovasculardisease in chronic dialysis patients, NephrolDial Transplant2008;23:2957(R)2964.
    [4] Fouque D, Kalantar-Zadeh K, Kopple J, et al. Aproposed no menclature anddiagnostic criteria for protein-energy wasting in acute and chronic kidneydisease.Kidney Int2008;73:391(R) C398.
    [5] Kend rick J, Chonchol M B.Non traditional risk factors for cardiovascular diseasein patients with chronic kidney disease. Nat Clin Pract Nephrol2008;4:672(R)C681.
    [6] Schouwenburg I M, Gansevoort R T, Mahmoodi B K, et al. Increased risk ofarterial thromboembolism after a prior episode of venous thromboembolism: resultsfrom the Prevention of REnal and Vascular ENd stage Disease (PREVEND)Study[J]. British journal of haematology,2012,159(2):216-222.
    [7] Kovesdy C P, Anderson J E. Reverse epidemiology in patients with chronic kidneydisease who are no tyet on dialysis.Semin Dia l2007;20:566(R)C569.
    [8] Cravedi P, Sharma S K, Bravo R F, et al. Preventing renal and cardiovascular riskby renal function assessment: insights from a cross-sectional study in low-incomecountries and the USA[J]. BMJ open,2012,2(5).
    [9] Kalantar-Zadeh K, Block G, Horwich T, Fonarow G C.Reverse epidemiology ofconventional cardiovascular risk factors in patients with chronic heart failure. J AmColl Cardiol2004;43:1439(R)C1444.
    [10] Goicoechea M, de Vinuesa S G, Verdalles U, et al. Effect of allopurinol in chronickidney disease progression and cardiovascular risk[J]. Clinical Journal of theAmerican Society of Nephrology,2010,5(8):1388-1393.
    [11] Birmingham B K, Swan S K, Puchalski T, et al. Pharmacokinetic andPharmacodynamic Profile of Rosuvastatin in Patients with End-Stage RenalDisease on Chronic Haemodialysis[J]. Clinical Drug Investigation,2013:1-9.
    [12]Campese V M, Park J. HMG-CoA reductase inhibitors and the kidney[J]. Kidneyinternational,2007,71(12):1215-1222.
    [13] Pisoni R L, Bragg-Gresham J L, Fuller D S, et al. Facility-level interpatienthemoglobin variability in hemodialysis centers participating in the DialysisOutcomes and Practice Patterns Study (DOPPS): Associations with mortality,patient characteristics, and facility practices[J]. American Journal of KidneyDiseases,2011,57(2):266-275.
    [14] Lahoz C, Mostaza J M, Mantilla M T, et al. Achievement of therapeutic goals Andutilization of evidence-based cardiovascular therapies in coronary heart diseasepatients with chronic kidney disease. Am J Cardiol2008;101:1098(R)1102.
    [15] Krane V, Winkler K, Drechsler C, et al. Effect of atorvastatin on inflammation andoutcome in patients with type2diabetes mellitus on hemodialysis[J]. Kidneyinternational,2008,74(11):1461-1467.
    [16] Akiyama TE, Sakai S, Lambert G, et al. Conditional disruption of the peroxisomeproliferator-activated receptor gamma gene in mice results in lowered expression ofABCA1, ABCG1, and ApoE in macrophages and reduced cholesterol efflux. MolCell Biol.2002,22:2607–2619.
    [17] Wallace J M, Schwarz M, Coward P, et al. Effects of peroxisomeproliferator-activated receptor α/δ agonists on HDL-cholesterol in vervetmonkeys[J]. Journal of lipid research,2005,46(5):1009-1016..
    [18] Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatoryelement-binding protein-1c (SREBP-1c) by oxysterol receptors LXR-and LXR-β.Genes Dev.2000,14:2819-2830.
    [19] Hotamisligil GS, Johnson RS, Distel RJ, et al. Uncoupling of obesity from insulinresistance through a targeted mutation in aP2, the adipocyte fatty acid bindingprotein. Science.1996;274:1377–1379.
    [20] Makowski L, Boord J B, Maeda K, et al. Lack of macrophage fatty-acid–bindingprotein aP2protects mice deficient in apolipoprotein E against atherosclerosis[J].Nature medicine,2001,7(6):699-705.
    [21] JIANBIN ZHANG, GAN HUA, XIAOGANG ZHANG. Regulatory Tcells/T-helper cell17functional imbalance in ureamic patients on maintenancehaemodialysis: A pivotal link between micro inflammation and adversecardiovascular events. Nephrology2010,15(1):33-41.
    [22] Canaud B, Bragg-Gresham JL, Marshall MR et al. Mortality risk for patientsreceiving hemodiafiltration versus hemodialysis: European results from the DOPPS.Kidney Int2006;69:2087–2093.
    [23] Vincenzo Panichi, Giovanni M. Rizza, Sabrina Paoletti et al. Chronic inflammationand mortality in haemodialysis: effect of different renal replacement therapies.Results from the RISCAVID study. Nephrol Dial Transplant (2008)23:2337–2343.
    [24] Carracedo J, Merino A, Nogueras S et al. On-line hemodiafiltration reduces theproinflammatory CD14+CD16+monocyte-derived den-dritic cells: a prospective,crossover study. J Am Soc Nephrol2006;17:2315–2321.
    [1]Vinereanu D. Risk factors for atherosclerotic disease: present and future. HerzSuppl2006;3:5–24.
    [2]Hobbs R, Hoes A. Effective management of dyslipidaemia among patients withcardiovascular risk: updated recommendations on identification and follow-up. EurJ Gen Pract2005;11:68–75.
    [3] Witztum J L.The oxidation hypothesis of atherosclerosis. Lancet1994;344:793–5.
    [4]Libby P. Inflammation in atherosclerosis. Nature2002;420:868–74.
    [5]Tabas I. Consequences and therapeutic implications of macrophage apoptosis inatherosclerosis: the importance of lesion stage and phagocyticefficiency.Arterioscler Thromb Vasc Biol2005;25:2255–64.
    [6]Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors inatherosclerosis[J]. Immunobiology,2012,217(5):492-502.
    [7]Febbraio M, Podrez E A, Smith J D, et al. Targeted disruption of the class Bscavenger receptor CD36protects against atherosclerotic lesion development inmice[J]. Journal of Clinical Investigation,2000,105(8):1049-1056.
    [8]Kozarsky K F, Donahee M H, Rigotti A, et al. Overexpression of the HDL receptorSR-BI alters plasma HDL and bile cholesterol levels [J]. Nature,1997,387(6631):414-417.
    [9]Schulert G S, Allen L A H. Differential infection of mononuclear phagocytes byFrancisella tularensis: role of the macrophage mannose receptor [J]. Journal ofleukocyte biology,2006,80(3):563-571
    [10]黄长文,蔡成行,李光明,等.热应激对脾脏巨噬细胞免疫功能的影响.新医学,2009:6.
    [11]Lee K J, Kim H A, Kim P H, et al. Ox-LDL suppresses PMA-induced MMP-9expression and activity through CD36-mediated activation of PPAR-γ[J].Experimental&molecular medicine,2004,36(6):534.
    [12]Schwende H, Fitzke E, Ambs P, et al. Differences in the state of differentiation ofTHP-1cells induced by phorbol ester and1,25-dihydroxyvitamin D3[J]. Journal ofleukocyte biology,1996,59(4):555-561.
    [13]Pilling D, Fan T, Huang D, et al. Identification of markers that distinguishmonocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts [J].PLoS One,2009,4(10): e7475.
    [14]季大玺.高通量血液透析的新认识.中国中西医结合肾病杂志,2005,6(10):559-562.
    [1]Dean M, Rzhetsky A, Allikmets R.The human ATP-binding cassette (ABC)transporter superfamily. Genome Res2001;11:1156-66.
    [2] Yvan-Charvet L, Wang N, Tall A R. Role of HDL, ABCA1, and ABCG1transportersin cholesterol efflux and immune responses[J]. Arteriosclerosis, thrombosis, andvascular biology,2010,30(2):139-143.
    [3]Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease iscaused by mutations in the gene encoding ATP-binding cassette transporter1.NatGenet1999;22:352-5.
    [4]Suganuma E, Zuo Y, Ayabe N,et al.Antiatherogenic effects of angiotensin receptorantagonism in mild renal dysfunction. J Am Soc Nephrol2006;17:433-441.
    [5]Dalrymple L S, Bryan Kestenbaum MD M S, Shlipak M G, et al. Chronic kidneydisease and the risk of end-stage renal disease versus death[J]. Journal of generalinternal medicine,2011,26(4):379-385.
    [6]Vaziri ND: Dyslipidemia of chronic renal failure: the nature, mechanisms andpotential consequences. Am J Physiol Renal Physiol2006;290:262–272.
    [7]Moradi H, Yuan J, Ni Z, et al. Reverse cholesterol transport pathway in experimentalchronic renal failure[J]. American journal of nephrology,2009,30(2):147-154.
    [8]Walter M, Gerdes U, Seedorf U, Assmann G. The high density lipoprotein-andapolipoprotein A-I-induced mobilization of cellular cholesterol is impaired infibroblasts from Tangier disease subjects. Biochem Biophys Res Commun1994;205:850-6.
    [9] Voloshyna I, Reiss A B. The ABC transporters in lipid flux and atherosclerosis[J].Progress in lipid research,2011,50(3):213-224.
    [10]Humphrey L L, Chan B K, Sox H C. Postmenopausal hormone replacement therapyand the primary prevention of cardiovascular disease[J]. Annals of internal medicine,2002,137(4):273.
    [11]Suganuma E, Zuo Y, Ayabe N,et al.Antiatherogenic effects of angiotensin receptorantagonism in mild renal dysfunction. J Am Soc Nephrol2006;17:433-441.
    [12]Bro S, Bentzon JF, Falk E,et al.Chronic renal failure accelerates atherogen-esis inapolipoprotein E-deficient mice. J Am Soc Nephrol2003;14:2466-2474.
    [13]Massy ZA, Ivanovski O, Nguyen-Khoa T, et al. Uremia accelerates bothatherosclerosis and arterial calcification in apolipoprotein E knockout mice.J AmSoc Nephrol2005;16:109-116.
    [14]Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at highrisk for vascular events. N Engl J Med2008;358:1547-1559.
    [15]Zuo YY, Linton P, Fazio MF, et al.Chronic renal damage (CKD) repressesATP-binding cassette transporter A1(ABCA1) to decrease macrophage efflux andpromote foam cell formation: role of angiotensin II (AII). JASN2007,18:636A.
    [16]Kaplan M, Aviram M, Knopf C, Keidar S. Angiotensin II reduces macrophagecholesterol efflux: a role for the AT-1receptor but not for the ABC1trans-porter.Biochem Biophys Res Commun2002;290:1529-1534.
    [17]Takata Y, Chu V, Collins A R, et al. Transcriptional Repression of ATP-BindingCassette Transporter A1Gene in Macrophages A Novel Atherosclerotic Effect ofAngiotensin II[J]. Circulation Research,2005,97(9): e88-e96.
    [18]Wang Y, Chen Z, Liao Y,et al. Angiotensin II increases the cholesterol content offoam cells via down-regula ting the expression of ATP-binding cassette transporterA1. Biochem Bi ophys Res Commun2007;353:650-654.
    [19]Cardinal H, Raymond MA, Hebert MJ, Madore F. Uraemic plasma decreases theexpression of ABCA1, ABCG1and cell-cycle genes in human coronary arterialendothelial cells.Nephrol Dial Transplant2007;22:409–416.
    [20]Yamamoto S, Kon V. Mechanisms for increased cardiovascular disease in chronickidney dysfunction [J].Current opinion in nephrology and hypertension,2009,18(3):181.
    [21]王刚,刘文虎.替代治疗模式对尿毒症患者血脂代谢的影响[J].中国血液净化,2008,7(10):529-533.
    [22]季大玺.高通量血液透析的新认识.中国中西医结合肾病杂志,2005,6(10):559-562.
    [1]Dworacka M, Winiarska H, Borowska M, Abramczyk M, Bobkiewicz-KozlowskaT,Dworacki G. Pro-atherogenic alterations in T-lymphocyte subpopulations relatedto acute hyperglycaemia in type2diabetic patients. Circ J2007;71(6):962–7.
    [2]Szodoray P, Timar O, Veres K, et al. TH1/TH2imbala nce, measured by circulatingand intracytoplasmic inflammatory cytokines-immunological alterations in acutecoronary syndrome and stable coronary artery disease. Scand J Immunol2006;64(3):336–44.
    [3]Nunez J, Minana G, Bodi V, et al. Low lymphocyte co unt and cardiovasculardiseases. Curr Med Chem2011;18(21):3226–33.
    [4]Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravatesatherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation2000;102(24):2919–22.
    [5] Zhou X, Robertson AK, Rudling M, Parini P, Hansson GK. Lesion development andresponse to immunization reveal a complex role for CD4in atherosclerosis. CircRes2005;96(4):427–34.
    [6] Elhage R, Gourd y P, Brouchet L, et al. Deleting TCR alpha beta+or CD4+Tlymphocytes leads to opposite effects on site-specific atherosclerosis in femalepolipoprotein E-deficient mice. Am J Pathol2004;165(6):2013–8.
    [7] Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH. T-betdeficiency reduces atherosclerosis and alters plaque antigen-specific immuneresponses. Proc Natl Acad Sci USA2005;102(5):1596–601.
    [8] Buono C, Come CE, Stavrakis G, Maguire GF, Connelly PW, LichtmanAH.Influence of interferon-gamma on the extent and phenotype of diet-inducedatherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol2003;23(3):454–60.
    [9] Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibitionof tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockoutmice. Arterioscler Thromb Vasc Biol2004;24(11):2137–42.
    [10] Davenport P, Tipping PG.The role of interleukin-4and interleukin-12in theprogression of atherosclerosis in apolipop rotein E-de ficient mice. Am J Pathol2003;163(3):1117–25.
    [11] King VL, Cassis LA, Daugherty A. Interleukin-4does not influence develo pmentof hypercholesterolemia or angiotensinII-induced atherosclerotic lesions in mice.AmJ Pathol2007;171(6):2040–7.
    [12] Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a comprehendsive review of studies in mice. Cardiovasc Res2008;79(3):360–76.
    [13] Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9.NatRev Immunol2010;10(10):683–7.
    [14]Caruso R, Stolfi C, De Nitto D, Pallone F, Monteleone G.The dual role ofinterleukin-25in the control of immune-mediated pathologies. Curr Mol Med2011;11(1):26–30.
    [15]Binder CJ, Hartvi gsen K, Chang MK, et al. IL-5links adaptive and naturalImmunity specific for epitopes of oxidized LDL and protects from atherosclerosis.JClin Invest2004;114(3):427–37.
    [16] Sampi M, Ukkola O, Paivansalo M, Kesaniemi YA, Binder CJ, Horkko S. Plasmainterleukin-5levels are related to antibodies binding to oxidized low-densitylipoprotein and to decreased subcl inical athe rosclerosis. J Am Coll Cardiol.
    [18]Lee D,Choi JH,Dallilic MM et a1.COMPAM:visualizationof combiningpairwise alignments for multiple genomes[J].Bioinformatics,2006,22(2):242-4.
    [19]JIANBIN ZHANG, GAN HUA, XIAOGANG ZHANG. Regulatory T cells/T-helpercell17functional imbalance in ureamic patients on maintenance haemodialysis: Apivotal link between micro inflammation and adverse cardiovascular events.Nephrology2010,15(1):33-41
    [20]Pasqui AL, Di Renzo M, Bova G, et al. Pro-inflammatory/anti-inflammatorycytokine imbalance in acute coronary syndromes [J]. Clin Exp Med.2006,6:38-44.
    [21]Signorelli SS, Mazzarino MC, Di Pino L, et al. High circulating levels of cytokines(IL-6and TNFalpha), adhesion molecules (VCAM-1and ICAM-1) and selectins inpatients with peripheral arterial disease at rest and after a treadmill test [J]. VascMed.2003,8:15-9.
    [22]Wang Y, Chen Z, Liao Y,et al. Angiotensin II increases the cholesterol content offoam cells via down-regulating the expression of ATP-binding cassette transporterA1. Biochem Bi ophys Res Commun2007;353:650–654.
    [23]Cardinal H, Raymond MA, Hebert MJ, Madore F. Uraemic plasma decreases theexpression of ABCA1, ABCG1and cell-cycle genes in human coronary arterialendothelial cells.Nephrol Dial Transplant2007;22:409–416.
    [1]Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic kidney disease andthe risks of death, cardiovascula revents, and hospita lization. N Engl J Med351:1296–1305,2004.
    [2]Collins AJ, Fo ley R, Herzog C, Cha vers B, Gilbertson D, Ishani A, Kasiske B, LiuJ, Mau LW, McBea n M, et al.: Excerpts from the United States Renal DataSystem2007annual data report. Am J Kidney Dis51:S1–S320,2008.
    [3]Polonsky T S, Bakris G L. Chronic kidney disease: a coronary heart diseaseequivalent?[J]. The Lancet,2012,380(9844):783-785.
    [4]Holzmann M J, Jungner I, Walldius G, et al. Dyslipidemia is a strong predictor ofmyocardial infarction in subjects with chronic kidney disease[J]. Annals ofmedicine,2012,44(3):262-270.
    [5]Executive Summary of The Third Repor t of The Natio nal Cholesterol EducationProgram (NCEP) Exper t Panel on Detection, Evaluat ion, And Trea tment of HighBlood Cholestero l In Adults (Adul t Treatment Panel III). JAMA285:2486–2497,2001.
    [6]Liu Y, Coresh J, Eusta ce JA, Longene cker JC, Jaar B, Fink NE, Tracy RP, PoweNR, Klag MJ: Associ ation between chol esterol level and mortality in dialysispatients: role of inflam mation and maln utrition.JAMA291:451–459,2004.
    [7]Iseki K, Yamaz ato M, Tozawa M, Takishita S: Hypocholes terolemia is asignificant predictor of death in a cohort of chronic hemodialysis patients. KidneyInt61:1887–1893,2002.
    [8] Vaziri ND, Moradi H. Mechanisms of dyslipidemia of chronic renal failure.Hemodial Int2006;10:1–7.
    [9]Attman PO, Alaupovic P. Lipid and apolipoprotein profiles of uremicdyslipoproteinemia-relation to renal function and dialysis. Nephron1991;57:401–10.
    [10]Quaschning T, Krane V, Metzger T, Wanner C. Abnormalities in uremiclipoprotein metabolism and its impact on cardiovascular disease. Am J Kidney Dis2001;38:S14–9.
    [11] Vaziri ND, Deng G, Liang K. Hepatic HDL receptor, SR-B1and Apo A-Iexpression in chronic renal failure. Nephrol Dial Transplant.1999,14:1462-6.
    [12] Bagdade J, Casaretto A, Albers J. Effects of chronic uremia, hemodi-alysis, andrenal transplantation on plasma lipids and lipoproteins in man. J Lab Clin Med1976;87:38–48.
    [13]Zoccali C, Mallamac i F, Tripepi G: Novel cardi ovascular risk factors in end-stagerenal disease. J Am Soc Nephrol15(S uppl.1):S77–S80,2004.
    [14] Randomise d trial of chol esterol lowering in4444patients with coronary heartdisea se: the Scandinavian Simv astatin Survival Study (4S). Lancet.344:1383–1389,1994.
    [15]Nishizawa Y, Shoji T, Ishimura E, Inaba M, Morii H. Paradox of risk factors forcardiovascular mortality in uremia: is a higher cholesterol level better foratherosclerosis in uremia? Am J Kidney Dis2001;38:S4–7.
    [16]Liu Y, Coresh J, Eustace JA, et al. Association between cholesterol level andmortality in dialysis patients: role of inflammation and malnutrition. JAMA2004;291:451–9.
    [17]Seliger SL, Weiss NS, Gillen DL, Kestenbaum B, Ball A, SherrardDJ,Stehman-Breen CO: HMG-CoA reduc tase inhibitors are associated withreduced mortality in ESRD patients. Kidney Int61:297–304,2002.
    [18]Mason NA, Bailie GR, Sataya thum S, Bragg-Gresham JL, Akiba T,Akizawa T,Combe C, Rayner HC, Saito A, Gillespie BW, et al. HMG-coenzy me a reduc taseinhibitor use is associa ted with mortali ty reduction in hemodial ysis pati ents.Am J Kidn ey Dis45:119–126,2005.
    [19] Coca SG, Krumhol z HM, Garg AX, Parikh CR: Underrepr esentation of renaldisease in ran domized contro lled trials of cardiovascula r dis-ease.JAMA296:1377–1384,2006.
    [20] Seliger SL, Weiss NS, Gillen DL, et al. HMG-CoA reductase inhibitors areassociated with reduced mortality in ESRD patients.Kidney Int2002;61:297–304.
    [21]Andreucci VE, Fissell RB, Bragg-Gresham JL, et al. Dialysis Outcomes andPractice Patterns Study (DOPPS) data on medications in hemodialysis patients.Am J Kidney Dis2004;44:61–7.
    [22] Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type2diabetesmellitus undergoing hemodialysis. N Engl J Med2005;353:238–48.
    [23] Shepherd J, Kaste lein JJ, Bittner V, Deedwania P, Breazna A, Dobson S, WilsonDJ, Zucker man A, Weng er NK: Intensive lipi d lower ing with atorvastatin inpatients with coronary heart disease and chron ic kidney disease: the TNT (Treating to New Targets) study. J Am Coll Cardiol51:1448–1454,2008.
    [24]Svensson M, Schmidt EB, Jorgensen KA, Christensen JH. N-3Fatty Acids asSecondary Prevention Against Cardiovascular Events in Patients Who UndergoChronic Hemodialysis: a randomized, placebo-controlled intervention trial. Clin JAm Soc Nephrol2006;1:780–6.
    [25]Fellstrom BC, Holdaas H, Jardine AG. Why do we need a statin trial inhemodialysis patients? Kidney Int2003;63Suppl: S204–6.
    [26]Baigent C, Landry M. Study of Heart and Renal Protection (SHARP). Kidney Int2003;63Suppl:S207–10.
    [27]Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM: Th e elephant in uremia:oxidant stress as a unifying concept of cardiovascula r disea se in uremia.KidneyIn t62:1524–1538,2002.
    [28] Steinberg D, Parthasar athy S, Carew TE, Khoo JC, Witztum JL:Beyond cholesterol modificat ions of low-density lipopr otein that increase its atheroge nicity.N Engl J Med320:915–924,1989.
    [29]Tsimikas S, Brilaki s ES, Mill er ER, McConnel l JP, Len non RJ,Kornman KS,Witztum JL, Berger PB: Oxidi zed phospholipids,Lp(a) lipopr otein, and coronar yartery disea se. N Engl J Med353:46–57,2005.
    [30]Liu J, Rosner MH: Lipid abnor malities associa ted with end-stage renaldisease.Semin Dial19:32–40,2006.
    [31]Heinecke JW: The role of myeloperoxidas e in HDL oxidation and atherogenesis.Curr Atheroscler Rep9:249–251,2007.
    [32]Williams KJ, Feig JE, Fisher EA: Cellular and molecular mec hanisms for rapidregre ssion of atherosclerosi s: from bench top to potentially achievable clinicalgoal.Curr Opin Lipidol18:443–450,2007.
    [33]Benedetto FA, Tripepi G, Mallamaci F, Zoccali C: Rate of atheros clerotic plaqueformation predicts cardi ovascular events in ESRD. Jam Soc Nephrol19:757–763,2008
    [34]Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM,Kastelein JJ,Bittner V, Frucha rt JC: HDL cholesterol, very low levels of LDL cholesterol, andcardiovascular events.N Engl J Med357:1301–1310,2007
    [35] Friedewald WT, Levy RI, Fredrickso n DS: Estimation of the concentr a-tion oflow-density lipopr otein cholesterol in plasma, without use of the preparativeultracentrifug e. Clin Chem18:499–502,1972.
    [36] Bairaktari E, Elisaf M, Tzallas C, Kara bina SA, Tselepi s AD,Siamopoul os KC,Tsolas O: Evaluatio n of five meth ods for deter mining low-density lipoproteincholesterol (LDL-C) in hemodial ysis patients (1).Clin Biochem34:593–602,2001.
    [37] Shoji T, Nishizaw a Y, Kawagis hi T, Kawasaki K, Taniwaki H, Tabata T, Inoue T,Morii H: Intermediate-de nsity lipoprotei n as an indepen-dent risk factor foraortic atherosclerosi s in hem odialysis pati ents.Ja Soc Nephrol9:1277–1284,1998.
    [38] Jeyarajah EJ, Cromwell WC, Otvos JD: Lipoprotei n particle analysis by nuclearmagne tic resona nce spectroscopy. Clin Lab Med26:847–870,2006.
    [39] Otvos JD, Coll ins D, Freed man DS, Shalaurov a I, Schae fer EJ,McNamara JR,Bloomfield HE, Robi ns SJ: Lo w-density lipoprotein and high-density lipoproteinparticle subcla sses predict coronary events and are favorably changed bygemfibrozil therapy in th e Vetera ns Affairs High-Den sity Lipoprotein Intervention Trial. Circulation113:1556–1563,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700