杉木苯酚液化产物及树脂的结构与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用杉木为原料,苯酚为反应试剂,浓硫酸为催化剂进行液化反应,研究了催化剂含量、液固比及液化时间对液化效率的影响;通过红外光谱、X射线衍射、扫描电镜等方法表征液化产物的结构,通过动态力学分析DMA、热重分析TGA的方法表征液化溶解物的性能,探讨了液化工艺对液化产物的结构及性能的影响;对不同条件的液化产物设定相同的树脂化工艺参数,进行树脂化试验,通过粘度、DMA、TGA等表征树脂的流变学特性,探讨液化工艺对树脂结构及性能的影响。主要结论如下:
     1.在一定范围内,液化效率随着液固比、液化时间、催化剂含量的增加而升高。
     2.木材经苯酚液化后,其产物的结晶状态变化如下:17。与22.5。处的衍射峰消失了,结晶形态发生改变;结晶度显著降低,且随液固比、催化剂含量的增大而降低。
     3.液化产物在测试温度-120~100℃内产生了玻璃态转化温度Tg;在0-50。C范围内观测到α`松弛过程,50~100℃范围内观测到一个α``松弛过程;E`随着催化剂含量的增加而升高;活化能随着液化时间的增加而升高。
     4.与杉木相比,液化残渣的结构变化如下:(1)22.5°处X射线衍射峰峰强显著增大,结晶区宽度降低,结晶度显著高于杉木的结晶度;(2)FTIR吸收峰的差异主要在2900 cm-1,1696 cm-1及750~818 cm-1附近。
     5.液化条件对液化物树脂的流变学特性的影响如下:(1)树脂的粘度随液化反应中的液固比的增加而迅速降低,随催化剂含量的升高而增大;(2)存储模量随温度的升高而降低;(3)液化工艺对树脂的热稳定性影响不大。
In this research, Chinese fir was liquefied with phenol as reagent and sulfuric acid as catalyst. Effect of catalyst content, time and liquid ratio on liquefaction efficiency were studied. Structure of liquefied products was characterized using FTIR, XRD and SEM. Properties of acetone-soluble wood liquefaction were characterized using DMA and TGA. Effect of liquefaction factors on structure and properties of liquefied product were discussed. Resinfication research is done under same parameters using different liquefaction conditions products. Rheology properties were characterized with viscosity, DMA and TGA. Effect of liquefaction factors on structure and rheology properties of wood liquefied resin were discussed. The results are as follows:
     1. Within limits, liquefaction efficiency increases with the increase of catalyst content, time and liquid ratio.
     2. After liquefaction, some changes happened to the crystal state of acetone-soluble wood liquefaction:X-ray diffractogram peaks at 17°and 22.5°disappeared and crystal state changes, degree of crystillinity decreases dramatically with the increase of liquid ratio and catalyst content.
     3. Tg occurs to acetone-soluble liquefied wood at-120~100℃;α" relaxation peak exists between 50~100℃,α' relaxation peak exists between 0~50℃; E' increases as catalyst content increasest, activity energy increases as the liquefaction time increases.
     4. Changes between the structure of wood residue and that of Chinese fir are:a. X-ray diffractogram peak at 22.5°gets stronger, width of crystal area decreases, degree of crystillinity decreases dramatically. b. The differences in FT1R are around 2900 cm-1,1696 cm-1 and 750~818 cm-1.
     5. Effect of liquefaction parameters on rheology properties of wood liquefied resin is:a. Viscosity of resin decreases quickly with the increase of liquid ratio, while increases with the increase of catalyst content, b. E' decreases with the increase of temperature and decreases more quickly under higher temperature. c. TGA curves of resin are almost parallel, difference of weight loss rate among the three stages is not obvious.
引文
[1]陈勤,刘国习,黎剑锋,魏霞.影响丙烯酸树脂粘度的工艺研究[J].上海涂料探索与研究,2000,4
    [2]杜敏娟,付长禄,丁国东.酚醛树脂结合剂粘度控制[J].科技信息,2007,12
    [3]董艳春,沈一丁.丙烯酸树脂的无皂乳液聚合及增稠性能[J].精细石油化工,2005,11(6)
    [4]傅深渊,赵广杰等.竹材液化物酚醛树脂胶固化及固化动力学研究.生物质化学工程,2009,43(4):33~37
    [5]顾继友,朱丽滨.脲醛树脂化学构造与胶接性能、甲醛释放量及固化特性关系的研究[J].中国胶黏剂,2003,13(3)
    [6]洪啸吟等.涂料化学[M].北京:科学出版社,1997:31-43,170-174
    [7]华毓坤主编.人造板工艺学.北京:中国林业出版社,2002
    [8]李兵,洪旭辉,王晓蔚.室温贮存对树脂粘度和加压点的影响[J].航空材料学报,1995,
    [9]吕冬,杜中杰,张晨,励杭泉.聚氨酯/聚(甲基丙烯酸甲酯—甲基丙烯酸丁酯)互穿聚合物网络聚合物的阻尼性能[J].石油化工,2006,35(10):994-997
    [10]李改云,秦特夫,黄洛华.酸催化下苯酚液化木材的制备与表征[J].木材工业,2005,19(2):28-31
    [11]李坚,江泽慧,刘君良.水溶性低分子量酚醛树脂的合成[J].木材工业,2001,15(4)
    [12]李坚主编.木材波谱学.北京:科学出版社,2003
    [13]刘君良.木材流变学研究综述.吉林林学院学报,1998,14(1):48-52
    [14]刘新才,周宏伟等.可控交联聚醚醚酮的动态力学性能.高等学校化学学报,2005,26(3):580-582
    [15]马天旗.核桃壳液化及其与甲醛反应能力的研究.四川林业科技,2007,28(1):19-22
    [16]秦特夫,罗蓓,李改云.人工林木材的苯酚液化及树脂化研究Ⅱ液化木基酚醛树脂的制备和性能表征.木材工业,2006,20(5):8-10
    [17]任英杰,魏安岭等.煤加氢液化残渣的流变特性研究.燃料化学学报,2007,35(3):262-267
    [18]吴刚.材料结构表征及应用[M].北京:化学工业出版社,2002
    [19]谢满华,赵广杰.化学处理过程中木材的分子构造变化与化学流变学特性.林业科学,2005,41(3):158-163
    [20]薛振华.蒙脱土/木材复合材料的构造与流变学特性.北京:北京林业大学,2006
    [21]余煜.材料结构分析基础[M],北京:科学出版社,2000.9:170~239
    [22]杨淑蕙.植物纤维化学[M].3版.北京:中国轻工业出版社,2001:103-105.
    [23]张晨霞,黄金田.两种沙生灌木的液化及其产物的FT-IR分析.生物质化学工程,2006,40(4):15-18
    [24]赵才贤,张平,袁军等.PA6/SiO2纳米复合材料的动态力学性能研究.湘潭大学自然科学 学报,2005,27(1):106-111
    [25]朱丽滨,顾继友.利用动态热机械分析仪对低毒脲醛树脂性能的研究.林产工业,2006,33(5):36-38
    [26]朱立新,许家瑞.改性聚乙二醇修饰高交联度不饱和聚酯网络结构的动态力学分析.高等学校化学学报,2004.5,25(5):948-951
    [27]詹满军,郑志锋,张宏健.液化反应条件对核桃壳液化产物成胶特性的影响.粘接,2008,29(5):1~5
    [28]张求慧.木材的苯酚液化及其生成物的树脂化.北京:北京林业大学,2005
    [29]张求慧,赵广杰,何静.三倍体毛白杨及杉木苯酚液化物的结构分析.北京林业大学学报,2006,28(3):139-144
    [30]张文明,孙岩峰等.秸秆液化物环氧树脂胶粘剂的制备与表征.高分子材料科学与工程,2009,25(6):139~142
    [31]邹献武,杨智,秦特夫.木材正辛醇液化产物的红外光谱分析.光谱学与光谱分析,2009,29(6):1545-1548
    [32]张佐光,隋刚等.电子束辐射固化环氧树脂的动态力学分析——树脂化学结构、分子量及其分布的影响.高分子学报,2002(4):426-431
    [33]郑志锋,邹局春等.核桃壳液化产物制备木材胶粘剂的研究.中山大学学报(自然科学版),2007,46(增刊):139~140
    [34]白石信夫.木材力塑化[J].木材学会蒜,1986,32(10):755—762.
    [35]白石信夫,田村靖夫等.木材の溶液相催化および接着剂化(2)[J].木材工业,1988,43(1):2-6.
    [36]夫世进,白石信夫.木材の液化[c],日本木材学会.第37回日本木材学会研究表要旨集,1987:239.
    [37]田中诚之,寺前纪夫,寺外分光法.日本:共立出版株式会社,1993
    [38]Alma. M.H. Crystallinity of cellulose residue remaining after the phenolation of cellulose. Holz als Roh und Werkstoff,59(2002):363
    [39]Alma M H, Altay B. H., Digrak M. New polyurethane-type rigid foams from liquefied wood powders[J]. Journal of Materials Science and Letters.2003,22(17):1225—1228
    [40]Alma M. H., M. Yoshioka, Y. Yao, N. Shiraishi. Preparation and characterization of the phenolated wood using hydrochloric acid (HCI) as a catalyst[J]. Wood Science and Technology,30 (1995) 39-47
    [41]Byung-Dae Park, Jae-Woo Kim. Dynamic Mechanical Analysis of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde-to-Urea Molar Ratios. Wiley InterScience; 2008.2,2045~ 2051
    [42]Glasstone S., Laidler K.J. and Eyring H. The theory of rate processes. Mcgraw Hill, New York and London,1941,544-551
    [43]Hui Pan, Todd F. Shupe, Chung-Yun Hse. Characterization of novolac type liquefied wood/phenol/formaldehyde (LWPF) resin. Eur. J. Wood Prod.2009.5
    [44]Hui Pan, Todd F. Shupe, Chung-Yun Hse. Synthesis and Cure Kinetics of Liquefied Wood/Phenol/Formaldehyde Resins. Wiley InterScience (www.interscience.wiley.com),2008,29:1837~ 1844
    [45]Jiali Jiang, Jiandong Lu. Anisotropic characteristics of wood dynamic viscoelastic properties. Forest Products Journal.2009,59(7/8):59~64
    [46]Kitazawa,G. Relaxation of Wood under Constant Strain. State College Forestry at Syracuse University,1947,64
    [47]LI Gai-yun,QIN Te-fu et al. Preparation of phenol formaldehyde resin from phenolated wood. Journal of Forestry Research,2004,15(3):211-214
    [48]Lin, L., Hse, C. Y. Holzforschung 2005,59,285.
    [49]M. Schwanningera, J.C. Rodriguesc,et al.Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy,2004,36:23~40
    [50]Manabe S., Fujioka R. Thermal molecular motion from 150 to 350 K for regenerated cellulose solids [J]. Polym. J.,1996,28:860-866
    [51]Masahiko Kobayashi,Toshiyuki Asano et al.Analysis on residue formation during wood liquefaction with polyhydric alcohol[J]. Wood Science,2004,50:407~414
    [52]Mason,S. G. The Rheology of Paper. Canda,1948,49 (3):207~214
    [53]Morooka T., Norimoto M., Yamada T. et al. Viscoelastic properties of (cellulose oligo-oxymethylene ether) acelates Ⅱ.1986,72:12-26
    [54]Nielsen, L.E. Mechanical Properties of Polymers and Composites. Marcel Dekker, New York, 1974
    [55]Shiraishi N. Plasticization of wood in Japanese. Mokuzai Gakkaishi,1986,32:755~762
    [56]Sugiyama M., Obataya E., Normoto M. Viscoelastic properties of the matrix substance of chemically treated wood. Journal of materials science,1998,(33),3505-3510
    [57]Wenhua LU, Guangjie ZHAO. Structure and characterization of Chinese fir (Cunninghamia lanceolata) wood/MMT intercalation nanocomposite (WMNC). Front For China,2008,3(1):121-126
    [58]Wenjie DANG, Yongming SONG et al.Improvement in compatibility and mechanical properties of modified wood fiber/polypropylene composites.Front. For. China,2008,3(2):243-247
    [59]Yamashiki T., Matsui T., Kowsaka K., et al. New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method [J]. Appl. Polym. Sci.,1992;44:691-698
    [60]Yao Y., Yoshioka M., Shiraishi N. Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent. Mokuai Gakkaishi,1993,39(8):930~938
    [61]Yucheng Peng, Sheldon Q Shi, Moon G Kim. Effect of temperature on the dynamic mechanical properties of resin film and wood. Forest Products Journa,; Dec 2008; 58,12
    [62]Yoshioka M., Shiraishi N. Combined liquefaction of wood and starch in a polyethylene glycol/glycerin blended solvent. Mokuai Gakkaishi,1993,39(8):930~938
    [63]Zhang Qiuhui, Zhao Guangjie, Jie Shujun. Effects of Phosphoric Acid on Liquefaction of Wood in Phenol and Optimum Liquefaction Processing Parameters[J]. Forestry Studies in China,2004,6(3):50-54
    [64]Zhang Y. C., Ikeba A., Hori N. et al. Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresource Technology,2006,
    [65]Zhang, Y., Ikeda, A., Hori, N., Takemura, A.; Ono, H.; Yamada, T. Bioresour Technol 2006,97, 313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700