金属盐改性石英砂的制备及其吸附重金属性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属离子是一种危害极大的污染物,为了提高石英砂对重金属离子的吸附性能,采用改性剂对石英砂表面进行改性,提高其对重金属离子的吸附效果。
     本试验以石英砂为载体,以氯化铝和氯化镁为改性剂,采用碱性沉积法制备了铝盐改性石英砂和镁盐改性石英砂。通过改性前后石英砂比表面积的测定、扫描电子显微镜的观察和拍照以及X射线衍射仪的鉴定,对改性前后石英砂的表面特性进行了表征和分析。结果表明,与石英原砂相比,铝盐改性砂和镁盐改性砂的比表面积显著增大,分别是石英原砂的9.38倍和6.12倍。改性后的石英砂表面粗糙度明显增大,孔隙密而多,铝盐改性砂表面主要成分为Al(OH)_3,镁盐改性砂表面的主要成分为Mg(OH)_2。以含Zn~(2+)、Cd~(2+)的废水为处理对象,考察了改性前后石英砂对Zn~(2+)、Cd~(2+)的吸附性能。试验结果表明,pH值是影响吸附性能的主要因素,在pH中性条件下,铝盐、镁盐改性石英砂和石英原砂的Zn~(2+)去除率分别为68%、54%和41%,随着pH值增加,吸附效果提高,当pH值接近9时,铝盐、镁盐改性砂的Zn~(2+)去除率均在95%左右。铝盐改性石英砂、镁盐改性石英砂和石英原砂,在pH中性条件下,Cd~(2+)去除率分别为59%、47%和39%,随着pH值增加,吸附效果提高,当pH值接近9时,铝盐、镁盐改性砂的Cd~(2+)去除率分别为71%和67%。利用制备好的两种改性石英砂,对电镀镀锌废水进行了动态试验研究。结果表明,改性石英砂对锌的去除效率有较大的提高。铝盐改性的石英砂在前5个小时之内,一直保持70%左右的去除效率,但是在5小时之后,去除效率下降较快。镁盐改性石英砂对锌的高去除率有效时间稍短,为3小时左右,去除率大约保持在60%左右。
     根据两种改性砂吸附Zn~(2+)、Cd~(2+)的试验数据,对改性石英砂吸附重金属离子的机理、吸附等温线和吸附动力学行为进行了初步分析和探讨。分析结果表明,两种改性砂对Zn~(2+)、Cd~(2+)的吸附以化学吸附为主。对Zn~(2+)、Cd~(2+)的吸附均符合Langmuir吸附等温式,吸附过程更好的符合准二级反应动力学模型。
Heavy metal ion is a severe pollutant. In order to improve the heavy metal ion adsorption capability of quartz sands, the quartz sands are modified by applying relevant modifier. In this experiment, two kinds of modified filter material were prepared, in which quartz sand was chosen as a carrier to be coated with aluminium chloride and magnesium chloride by the deposition process at alkaline condition, respectively. By comparing the pre-modified and post-modified physical characteristics of quartz sands surface, through specific surface area test, SEM (Scanning Electron Microscope) inspection, XRD (X-Ray Diffractometer) and etc, the results reveals that the specific surface areas of aluminium chloride and magnesium chloride modified sands were increased to 9.38 and 6.12 times compared to the original quartz sands. What’s more, the surface roughness of modified sands was also improved obviously and the surface porosity was greatly denser than that of original one. The major components of the two modified sands surface were Al(OH)_3 and Mg(OH)_2.
     Additionally, by analyzing the possible influences of modifying condition to wasted water containing Zn~(2+)、Cd~(2+), the research shows that the pH value was an important factor on the heavy metal removal by the modified sands. The removal rates of Zn~(2+) by aluminium chloride、magnesium chloride modified sands and original quartz sands were 68%、54% and 41% under the condition of pH value with 7.00. It was also found the removal efficiency was enhanced with the increase of pH value, and the removal rates of Zn~(2+) by the two modified sands were both above 95% under the condition of 9.0. In the same way, when pH value equal 7.00, the removal rates of Cd~(2+) by aluminum chloride、magnesium chloride modified sands and original quartz sands were 59%、47% and 39%. The removal efficiency was also enhanced with the increase of pH value. When pH value was near 9.0, the removal rates of Cd~(2+) by aluminum chloride、magnesium chloride modified sand were 71% and 67%.
     The continuous experimental study on the treatment of galvanized wastewater using the two modified quartz sands was also conducted. It was shown that the removals of Zn~(2+) improved a lot. In the first 5 hours of the filtration,the removal rate of Zn~(2+) of aluminum chloride modified sands was kept of 70%, nevertheless, after 5 hours, it reduced quickly. In contrast, the removal rate of Zn~(2+) by magnesium chloride modified sands was about 60% in the first 3 hours.
     Ultimately the experimental data and research on theory and kinetics of heavy metal adsorption capability demonstrate that the adsorption of the two modified sands was dominated by chemical reaction. The adsorption isotherms of Zn~(2+) and Cd~(2+) both have the high consistency with Langmuir adsorption mode. Furthermore, the analysis of the two modified sands adsorption kinetics of Zn~(2+) and Cd~(2+) discovers that two modified sands adsorption reaction is more likely to satisfy Lagergren kinetic rate equationⅠ.
引文
[1]盂样和,胡国飞.重金属废水处理[M].北京:化学工业出版社, 2000, 5-12.
    [2]安成强,崔作兴.电镀三废治理技术[M].北京:国防工业出版社, 2002, 53-76.
    [3]王绍文,姜有凤.重金属废水治理技术.北京:冶金工业出版社,1993, 5.
    [4]张永锋,许振良.重金属废水处理最新进展[J].工业水处理, 2003, 23(6): 1-5.
    [5]易小萍,邓慧萍.改性滤料在水处理中的应用及机理探讨[J].净水技术, 2000, 18(1): 25-27.
    [6]韩磊,张恒东.《铅、镉的毒性及其危害》.职业卫生与病伤. 2009, 24(3).
    [7]魏筱红,魏泽义.《镉的毒性及其危害》.公共卫生与预防医学. 2007, 18(4).
    [8]王夔.生命科学中的微量元素[M].北京:中国计量出版社, 1992: 354-356.
    [9]金银龙. GB5749-2006《生活饮用水卫生标准》释义.中国标准出版社, 2007.
    [10]奚旦立.《环境监测》(第三版).高等教育出版社. 1996.
    [11]张学洪,王敦球,程利等.铁氧体法处理电解锌厂生产废水[J].环境科学与技术, 2003, 26(1): 36-37.
    [12]严瑞宣.水处理剂应用手册[M].化学工业出版社, 2000: 42-45.
    [13]唐受印,王大军.废水处理工程[M].化学工业出版社, 1998: 207-225.
    [14]问一波.发展适合中国国情的城市污水处理技术[J].环境保护. 1999(5): 26-27.
    [15]李明春,姜恒,侯文强等.酵母菌对重金属离子吸附的研究[J].菌物系统, 1998, 17(4): 367-373.
    [16]赵玲,尹平河, Qiming Yu等.海洋赤潮生物原甲藻对重金属的富集机理[J].环境科学, 2001, 22 (4): 42-45.
    [17]王国惠.一株生物絮凝剂产生菌的筛选及絮凝活性研究[J].微生物学通报, 2006. 5.
    [18]况金蓉.生物吸附技术处理重金属废水的应用[J].武汉理工大学学报(交通科学与工程版), 2002, 26(3): 400~403.
    [19]马士军.微生物絮凝剂的开发及应用[J].工业处理, 1997, 12(1): 7-10.
    [20]陈天,汪士新.利用壳聚糖为絮凝剂回收工业废水中蛋白质、染料以及重金属离子[J].江苏环境科学, 1996(1): 45-46.
    [21]许德芝.风眼莲在不同种类的污水中的吸附能力的研究[J].贵州环保科技, 1995, 1(1): 20-21.
    [22]叶志鸿,陈桂珠.宽叶香蒲净化塘系统净化铅锌矿废水效应研究[J].应用生态学报, 1992, 13(2): 190-194.
    [23]温志良,徐海宇,毛友发.香蒲植物在环境保护中的开发利用[J].环境保护, 1999, 10:39-42.
    [24]周青,黄晓华,施国新,徐雁,戴玉锦.镉对5种常绿树木若干生理生化特性的影响[J].环境科学研究, 2001. 3.
    [25]韩志萍,张建梅,姜叶琴,计兵,熊愈辉,张维纲.植物整治技术在重金属废水处理中的应用[J].环境科学与技术, 2002. 3.
    [26]周从章,李明愉,曾庆轩.离子交换纤维对重金属的吸附研究[J].环境污染治理技术与设备, 2003, 4(7): 26-28.
    [27]郭嘉,陈延林,罗晔,许魁.新型离子交换纤维的应用研究及展望[J].高科技纤维与应用, 2005.6.
    [28]谢辉玲,叶红齐,曾坚贤.膜分离技术在重金属废水处理中的应用[J].化学与生物工程, 2005(5): 41-52.
    [29]傅献彩,沈文霞,姚天阳.《物理化学》(第四版).高等教育出版社, 1998.
    [30]李江,甄宝勤.吸附法处理重金属废水的研究进展[J].应用化工, 2005.10.
    [31] Dabrowski A. Adsorption from theory to practice. Advances in Colloid and Interface Science, 2001, 93(1): 135-224.
    [32] Dabrowski A.Adsorption from theory to practice.Advances in Colloid and Interface Science, 2001, 93(1): 135-224.
    [33] Ho Y S. Removal of copper ions from aqueous solution by tree ferm [J]. Water. Research, 2003, 37: 2323-2330.
    [34]吴涓,李清彪,邓旭等.重金属生物吸附的研究进展.离子交换与吸附, 1998, 14(2): 180-187.
    [35] Wu S H, Pendleton P. Adsorption of Anionic Surfactant by Activated Carbon: Effect of Surface Chemistry, Ionic Strength, and Hydrophobicity. J Colloid Interface Sci, 2001, 243(2): 306-315.
    [36] Wu F C, Tseng R L, Juang R S. Kinetics of color removal by adsorption from water using activated clay. Environmental Technology, 2001, 22(6): 721-729.
    [37]李树猷,何淑敏,郑宇等.活性氧化铝吸附法饮水除砷研究.卫生研究, 1990, 19(3): 13-1.
    [38]潘兆橹,《结晶学及矿物学》上、下册.地质出版社, 1984.
    [39] Y.S.托鲁基安, W.R.贾德, R.F.罗伊等著.《岩石与矿物的物理性质》.石油工业出版社, 1990.
    [40]李满,赵磊,钟振堃.改性石英砂滤料在水处理中的应用[J].水科学与工程技术, 2007, (3): 62-64.
    [41]高乃云,徐迪民,范瑾初等.氧化铝涂层改性石英砂过滤性能研究.中国给水排水, 1999, 15(3): 1-4.
    [42] Kuan W.H, Lo S.L, Wang M.K, et al. Removal of Se (IV) and Se(VI) from water by aluminum oxide coated sand. Water Res, 1998, 32(3): 915-923.
    [43]盛力,马军,高乃云.金属氧化物改性滤料过滤去除水中残余铝的效能与机理研究.中国给水排水, 2007, 33(5): 129-132.
    [44] C.H.Laietal, Eva Luating an Iron-Coated Sand for Removing Copper from Water[J], 1994, 30(9): 175-182.
    [45] V.Susie Stenkamp and Mark M.Benjamin. Effect of Iron Oxide Coating on Sand Filtration, J.AWWA[J], 1994, 86(8): 37-50.
    [46] Marc Edwards, Mark M. Benjamin. Adsorptive filtration using coated sand:a new approach for treatment of metal-bearing wastes[J], WPCFM1989M61(9): 1523-153.
    [47] Benjamin B.M, Sletten R.S, Bailey R.P, et al. Sorption and filtration of metals using iron-oxide-coatet- sand. Water Res, 1996, 30(11): 2609-2620.
    [48] Bailey R.P, Bennett T. Benjamin M.M. Sorption onto and recover of Cr(VI) using iron-oxide-sand. Water Sci Technol, 1992, 26: 1239-1244.
    [49] Satathy J.K, Chaudhuir M. Treatment of Cadmium-plating and Chromium plating by iron oxide-coated sand. Water Environ Res, 1995, 67(5): 788-790.
    [50] Al-Degs Y, Khraisheh A.M, Tutunji M.F. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res, 2001, 35(15): 3724-3728.
    [51] Knocke W.R, Hamon J.R, Thompson C.P. Soluble manganese removal on oxide-coated filter media. J. AWWA, 1988, 80(12): 65-70.
    [52] Baijpi S, Chaudhuri M. Removal of arsenic from ground water by manganese dioxide coated sand. J. Environ Eng, 1999, 125(8): 782-784.
    [53] Thirunavukkarasu O.S, Viraraghavan T, Subramanian K.S. Arsenic removal from drinking water using iron oxide coated sand. Water Air & Soil Pollution, 2003, 142(1-4): 95-111.
    [54] Maeda S, Ohki A, Tsurrusaki Y. et al. Selective adsorption of Arsenic(V) ion by use of iron(III) hydroxide-loaded coral limestone. Sep Sci Technol, 1990, 25(5): 547-555.
    [55]王琳,施永生.改性滤料表面结构特性的研究[J].有色金属设计, 2005, 32(3): 53-57.
    [56] Kuan Wenhui et al. Removal of S(eVI)andS(eVI)from Water byAluminum oxide-coated Sand. Water Rearch. No. 3. 1998.
    [57] [美]A.W.亚当森著,顾惕人译.《表面物理化学》.科学出版社, 1984.
    [58] Srivastava A, Srivastava P.C. Adsorption–desorption behaviour of zinc(II) at iron(III) hydroxide–aqueous solution interface as influenced by pH and temperature. Enviorn Pollut, 1990, 68(1-2): 171-180.
    [59]汤鸿霄,薛汉斌等.粘土矿物吸附镉污染物的基本特征.环境科学学报, 1981, 1(2): 140-148.
    [60] Murray J.W. The surface chemistry of hydrous manganese dioxide J. Colloid Interface Sci, 1974, 46(3): 357-371.
    [61] Fu G, Allen H.E, Cowan C.E. Adsorption of cadmium and copper by manganese dioxide. Soil Sci, 1991, 152(2): 72-81.
    [62]于天仁,季国亮,丁昌璞等著.可变电荷土壤的电化学.北京:科学出版社, 1996.
    [63]汤鸿宵,《工业用水废水化学基础》.中国建筑工业出版社. 1979.
    [64] Randall S.R, Sherman D.M, Raganarsdottir K.V. An extended X-ray Adsorption Fine Structure Spectroscopy investigation of cadmium sorption on cryptomelane (KMn8O16). Chemical Geology, 1998, 151(1-4): 95-106.
    [65]徐迪民,高乃云等.氧化铝涂层砂变性滤料的除锌效果研究[J].给水排水. 2000, 26(3): 32-36.
    [66]高乃云,严敏,林乐生.饮用水强化处理技术[M].化学工业出版社, 2005.
    [67]杨亚提,张一平.离子强度对恒电荷土壤胶体吸附Cu~(2+)和Pb~(2+)的影响.环境化学, 2001, 20(6): 566-571.
    [68]小沃尔特.J.韦伯著.上海市政工程设计院译,水质控制物理化学方法[M].中国建筑工业出版社, 1980.
    [69] Langmuir I. The constitution and fundamental properties of solids and liquids.JAm Chem Soc, 1916, 38: 2221-2295.
    [70] Freundlich H.M.F. Uber die adsorption in lasungen. Z Phys Chem, 1906, 57: 385-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700