基于二元光学的阵列位相环的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统是伴随纳米加工技术发展起来的新型科技,在微纳米加工的这项新型的技术应用的过程中,利用激光的特点进行加工,会有很多的特点,为加工更小的微型器件,提供了新的方法。比如说在利用激光进行的利用掩膜版进行的光刻和利用激光的特点进行直写实验过程中,激光系统的能量输入掩模面,在输出面上能量分布均匀是否,这都将影响到输出面上的光的能量的分布,这样在加工的过程中,能量的均匀分布的特性,就会影响加工制作元件的质量。因为激光光束的振幅在横向上呈高斯分布,能量并非均匀分布这个原因,这就需要把高斯光束整形为能量均匀分布的平顶光束,因此曝光系统中光能分布均匀性是很重要的。
     本文在分析现在常用的几种激光整形的方法后,针对实验室内的脉冲半导体固体激光器的特点和实际用途,,提出以二元光学理论为基础,利用实验室微纳米器件的加工技术,设计并且制作了脉冲半导体固体激光的波面整形的阵列位相环匀光片。
     论文首先从理论上证明了二元光学元件的衍射效率,在此基础上,说明对激光波面的整形作用设计的关键就是利用相位恢复进行设计的问题。在此思想基础上,利用GS算法,对设计进行分析和优化,在设计的初期,首先利用MATLAB软件进行模拟实验,模拟入射场和出射光场的光的分布情况,从而给出了二元光学元件的位相分布。从模拟结果看出,出射光场呈平顶化的分布,实现了波面整形。利用模拟的实验就可以得到,如果设计的器件是纯相位的元件,那么这种器件会对激光具有一定的整形作用。
     然后,在二元光学的特有的加工设计理论基础之上,利用角谱衍射理论作为模拟匀光器光路的理论基础,设计阵列结构的位相环,所设计的每个单元的结构是3环2值位相环,其中每个单元最外环半径由实际的光路给出,本文的设计是应用355nm固体激光,则根据激光设计最外环直径为0.3mm,中间环直径0.108mm,最小环直径是0.027mm,利用纳米器件加工工艺,在3英寸的JGS2石英基材料上制作出两台阶的170*170个结构的微浮雕衍射微光学元件,并利用MATLAB对高斯光对设计的阵列结构的位相环进行模拟仿真,证明了设计的机构可以实现对激光能量的均匀化,在此基础上还可以提高光能利用率。
     在制作阵列位相环元件的过程中,首先根据计算设计的数据,使用专业软件LEDIT绘制了两块掩模版的图形并制作完成。为了保证在第一版掩膜版和第二版在套刻曝光的时候,能够精准的吻合进行套刻,并降低误差对结果的影响。在设计掩模板的时候两侧分别加入了相应的对准标记。接着通过试验摸索,首先对石英进行测试和抛光,其次在对石英涂胶过程中,使用增粘剂解决了石英材料的亲水性所带来的无法粘合光刻胶的问题。
     在利用等离子体刻蚀,蒸金属和剥离等技术基础上,最终把掩模上的图形转移到石英基片上,关键是研究等离子体刻蚀的参数的设定上,例如在离子刻蚀过程中的流量,功率和时间的选择和设定。主要是根据以往刻蚀的经验,并结合本次实验刻蚀的深度,进过大致的实验测试,最终确定了刻蚀加工的时间。
     最终确定加工的参数:
     1)光刻阶段
     实验室内的温度:20℃;使用的增粘剂型号:六甲基二硅胺烷;增粘剂涂胶时的转速:5000r/min;光刻胶型号:9920型,光刻胶涂胶时的速率:3000r/min;前烘的温度:85℃,前烘的时间:4min;光刻机的曝光时间:13s;光刻胶的显影时间:60s;光刻胶的定影时间:30s;
     2)刻蚀阶段
     实验的温度:20℃;本底真空(低真空):1.4×10-2Pa,刻蚀机的压强:15Pa,通入刻蚀机气体的压强:5-8Pa,刻蚀机的偏转电压:300V,使用时的刻蚀的压强P=400W;通入刻蚀机的气体:CHF3:180sccm, SF6:60sccm;刻蚀时间:T=4分50秒(因为时间不好控制,大致为整数);刻蚀速率:V=70nm/min。
     制作完成后,对阵列位相环进行了试验检验,利用显微镜对石英进行观察,检查其制作后的效果图。在此基础上,并对整形效果进行了测试,对比阵列菲涅耳波带片的整形效果,对结果进行了可能存在的问题进行分析,为下一阶段的制作工艺,制作出良好的元件提出了一些建议。并利用整形技术测试直写曝光的试验,得到了一些比较好的曝光结果。由于二元光学的原理和传统光学的不甚相同,所以元件的稳定性等还需要进一步考察。
Micro-electromechanical systems is developed with nano-processing technology That is new science and technology. In the process of using MEMS technology, laser micro processing technology has many advantages, so it provides a new processing method of micro-devices. In the use of laser mask lithography and direct writing experiments, Lighting system image plane (mask) of the light will directly affect the distribution of light energy distribution, which determines the quality of the production of components, However, the amplitude of the laser beam is Gaussian distribution, the energy is not uniform, which requires the energy of the Gaussian beam shaping for the uniform distribution of flat-topped beams Therefore, in the light exposure system uniformity is important
     Based on the analysis of several lasers are commonly used shaping method, for the laser characteristics and practical use, We propose a binary optical theory, using laboratory micro-nano device fabrication technology, design and produce the array uniform structure of phase-ring.
     The paper is proved that the diffraction efficiency of binary optical elements, and explain that the problem of phase retrieval is the key to the design of laser shaping. Based on this idea, we use the GS algorithm optimization, and use MATLAB software to simulate the incident and outgoing light field, which gives the phase distribution of binary optical elements. From the results we see that the outgoing light field of the distribution was flattened, so it confirmed the pure phase element can be achieved for laser shaping.
     Furthermore, according to the binary optics, we design the energy homogenizer, and simulate the optical absorption of optical devices is the use of angular spectrum diffraction theory。We designed the phase ring array, each element is the value of phase 3, Central 2, one of the most outer radius of the actual diameter of optical.The most outer diameter of 0.3mm, the middle diameter of 0.108mm, the smallest diameter of 0.027mm, Our design is the application 355nm laser, using nano-device processing technology, producing two-level structure of micro-relief diffractive optical elements in JGS2 quartz material, Production structure is 170* 170 in the 3-inch quartz chip and simulated Gaussian beam through the device in MATLAB, The results proved to achieve uniformity of laser energy, and increase the rate of light diffraction.
     In the production process, First of all, according to calculations, using professional software LEDIT to draw the two mask graphics and produced. In order to ensure the mask in the first edition and second edition in exposure time, to coincide precisely and reduce errors. So we plus the alignment marks on both sides of the graphics board in the mask. We explored through experiments. First, we tested and polished quartz Second, in the process of coating quartz, Quartz material was easy to swap plastic problems solved using the Hexamethyl disilylamine.
     Using plasma etching, steam metal and lift-off technology, The graphics in the mask eventually transferred to the quartz substrates, Plasma etching technology was used to transfer the mask graphics to the quartz substrate eventually. The parameters of plasma etching were researched, such as the etching rate and etching time. According to the requirements of component's structure, the depth of etching was determined, and further the etching time was defined.
     Final experiment parameters:
     (1)Lithography stage
     Temperature:20℃; Tackifier:Hexamethyl disilylamine. Whirl coating rate: 5000turn/min; Photosensitive resist:9920; Whirl coating rate:3000turn/min; Before baking:85℃4 min; Exposure time:13 seconds; Development time:60 seconds; Fixing time:30 seconds;
     (2) Etching stage
     Temperature:20℃; Vacuum at the end (low vacuum):1.4×10-2Pa, Working pressure:15 Pa, Ventilating pressure:5~8 Pa, Auto bias pressure:300 V, etching pressure:P=200/400W, Gas and intensity:CHF3:180sccm, SF6:60sccm; Etching time:T=4min50sec; Etching rate:V=70nm/min.
     Production is completed, we conducted a test on the array, using the microscope on quartz were observed to check the effect after its production plans. On this basis, testing the effects of quartz shaping, contrast Array Fresnel zone plate shaping effect, Results in the problems analyzed, for the next stage of the production process, making a good device to present a number of recommendations, We use the uniformity of laser and test the direct writing of laser, got some good exposure results, Since the principle of binary optics and traditional optics are different, so the stability of such devices need to be further investigated.
引文
[1]赫荣杰,张虹.微细加工技术发展前景与展望.微处理机。2004,(3):1-2
    [2]王立鼎,吴一辉.抓住机遇推动我国微型机械的快速发展.中国机械工程1999(2):57—58.
    [3]李承德,万莹,左铁钏.实用型准分子激光微细加工机研制.光学精密工程.1999,7(1):79—84.
    [4]周兆英,王晓浩,叶雄英,王伯雄,李莎,刘卫丹.微型机电系统.中国机械工程.2000,11(2):163—168.
    [5]M.Weck, S.Fischer, M.Vos. Fabrication of microcomponents using ultraprecision machine tools [J]. Nanotechnology,1997 (8):145-148
    [6]J.Cordingley. Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers. Appl. Opt,1993,32 (14):2538~2542
    [7]F. S. Roux. Intensity distribution transformation for rotationally symmetric beam shaping. Optical Engineering,1991,30 (5):529~536
    [8]苑伟政,马炳和.微机械与微细加工技术.西安:西北工业大学出版社,2000.
    [9]崔铮.微纳米加工技术及其应用[M].北京:高等教育出版社,2006
    [10]李德胜,王东红,孙金玮,金鹏.MEMS技术及其应用[M].哈尔滨:哈尔滨工业大学出版社,2002
    [11][德]W.Menz, J.Mohr, O.Paul.微系统技术[M],北京:化学工业出版社,2003
    [12][瑞士]H.P赫尔齐克主编,周海宪等译,微光学器件、系统和应用[M],北京:国防工业出版社,2002
    [13]罗均,谢少荣,龚振邦.面向MEMS的微细加工技术[J].电加工与磨具.2001,(5):1-6
    [14]S.Fatikow, U. Rembold. Microsystem Technology and Microrobotics. Springer Verlag Berlin Heidelberg,1997.
    [15]方宏秦义等.光纤传感器中光源的选用及比较.传感器世.2004.11.
    [16]Toby Schaer, Robert Rusnov, Stephen Eagle et al. A dynamic simulation mode for semiconductor laser diodes[J].Electrical and Computer Engineering,2003. IEEE CCECE 2003. Canadian Conference on, Volume:1,4-7 May 2003 P293-297 vol.1.
    [17]David L. Shealy. John A. Hoffnagle. Laser beam shaping profiles and propagation (J) Appl. Opt,2006,45 (21):5118-5131.
    [18]David L. Shealy. Historical perspective of laser beam shaping (C).Pro. of SPIE, 2002,4770:28-47.
    [19]杜国军.准分子激光微加工光学系统研究.北京工业大学硕士论文,2005
    [20]J. E. Rothenberg, "Two-dimensional beam smoothing by spectral dispersion for direct-drive inertial confinement fusion,"in Solid State Lasers for Application to Inertial Confinement Fusion, W. F. Krupke, ed., Proc. SPIE 2633,634-644 (1995).
    [21]"Two-dimensional SSD on OMEGA," Laboratory for Laser Energetics (LLE) Review 69, available as NTIS document DOE/SF/19460-152 (National Technical Information Service,Springfield, Va.,1996), pp.1-10;
    [22]R.H. Lehmberg, S.P. Obenschain. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Optics Communications, Vol 46, Iss 1,1983, 27-31
    [23]RH Lehmberg, AJ Schmitt, SE Bodner.Theory of induced spatial incoherence. J. Appl. Phys.62,2680 (1987);
    [24]李呈德,陈涛,左铁钏.两级复眼式准分子激光微加工均束器的设计[J].中国激光,1999,26(6):560-564
    [25]Jeffrey A. Davis, Dylan E. McNamara, and Don M. Cottrell. Image processing with the radial Hilbert transform:theory and experiments Optic Letters.2000,Vol. 25, No.2
    [26]陈怀新,隋展,陈祯培等.采用液晶空间光调制器进行激光光束的空间整形(J).光学学报,2001,21(9):1107-1111.
    [27]杨向通范薇.利用双折射透镜组实现激光束空间整形,光学学报,2006 26(11)
    [28]B. M. Van Wonterghem, J.T. Salmon, R.W.Wilcox. Beamlet pulse-generation and wave front-control system (P). UCRL-LR-105821-95-1.
    [29]S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell Random phase plates for beam smoothing on the Nova laser, Appl Opt, Vol.32, Issue 14, pp.2543-2554 (1993).
    [30]HA Rose, DF DuBois, Statistical properties of laser hot spots produced by a random phase plate, Phys. Fluids B (1984-1993),Vol 5,Iss 2
    [31]金国藩,谭峭峰,严瑛白等.二元光学在强激光波面整形中的应用[J].中国工程科学,2000,2(6):27-32,39
    [32]金国藩,谭峭峰.二元光学[J].光电子技术与信息,2001,14(5):1-10
    [33]金国藩严瑛白.二元光学.北京:国防工业出版社1997:1-25,298-313
    [34]农文捷,金宁.二元光学工艺参数计算[J].红外技术,2004,26(6):13-16
    [35]徐满平,周杰.MATLAB在二元光学元件设计中的应用[J].安徽师范大学学报(自然科学版),2005,28(1):35-37
    [36]金国藩,二元光学[J],物理与工程,2000,10(5):2-5,16
    [37]董梅峰,李慎,龙华;加权GS算法的权因子对BOE整形效果的影响[J];电子科技大学学报;2000,04
    [38]Fienup J R. Phase retrieval algorithms:a comparisor[J]. Applied Optics,1982,21 (15):2758-2769.
    [39]Feng D,Yan Y B,Lu S,et al.Designing diffractive phase plates for beam smoothing in the fractional Fourier domain.Journal of Modern Optics,2002,49(7):1125~ 1133
    [40]Zalevsky Z,Mendlovic D,Dorsch R G.Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt Lett,1996,21(12):842~844
    [41]WU T H,LOW C Y,BAI J W.Heuristics Solutions to Multi-depot Location-Routing Problems[J]. Computer& Operation Research,2002,29(2):1 393-1415.
    [42]WU C G,LI X P,ZHOU P. A job shop oriented virus genetic algorithm[C] 5th world Congresson Intelligent Control andAutomation.Hangzhou:IEEE,2004,3:2132-2136.
    [43]MULGREW B.Applying radial basis functions[J]. IEEE Signal Processing Magazine,1996,13(2):50-65.
    [44]樊仲维,光学系统中的二元光学元件[J],光学精密工程,1995,Vol.3,No.2:1-10.24.
    [45]杜春雷等,激光直写制作微透镜阵列的方法研究[J],光学学报,2000,(8):1194
    [46]崔庆丰,用二元光学器件实现复消色差[J],光学学报,1994,4:38-41.
    [47]周崇喜,周宇,税必继,杜惊雷,郭永康.激光淬火中二元光学光束整形器的设计[J],应用激光,1997,Vol.17,No.4:164-166.
    [48]刘卫国,陈昭平,张颖.MATLAB程序设计与应用[M].北京:高等教育出版社,2002.80-86,139-141
    [49]MATLAB. The Language of Technical Computing, Version 6.1.0.450 Release 12.1. May 18,2001
    [50]David L. Shealy. John A. Hoffnagle. Laser beam shaping profiles and propagation (J) Appl. Opt,2006,45 (21):5118-5131.
    [51]锺锡华 光波衍射与变换光学[M].北京:高等教育出版社,1995
    [52]古德曼(Goodman,J.W.)著,秦克诚 等译 傅里叶光学导论. 电子工业出版社,2006
    [53]Jia Jia, Changhe Zhou, Xiaohui Sun, and Liren Liu "Superresolution laser beam shaping", Appl. Opt, vol 43, No.10,2004
    [54]Lin ying,Lawrence Geoge N,Buck Jesse. Charaterization of excimer lasers for application to lenslet array homogenizer[J], Appl. Opt,2001,49(12):1931-1941
    [55]王之江.光学技术手册/下册[M],北京:机械工业出版社,1994
    [56]李景镇.光学手册[M],西安:陕西科学技术出版社,1986
    [57]孙承龙,戈肖鸿,王渭源,姜建东.反应离子深刻蚀(RIE)技术的研究[J].传感器世界,1996,5:31-35,46
    [58]David L. Shealy. John A. Hoffnagle. Laser beam shaping profiles and propagation (J) Appl. Opt,2006,45 (21):5118-5131.
    [59]张锦,杜春雷,冯伯儒等.用反应离子刻蚀技术制作二元光学元件[J].光电工程,1997,24,Sup:41-45
    [60]张锦,冯伯儒,杜春雷等.反应离子刻蚀工艺因素研究[J].光电工程,1997,24,Sup:46-51
    [61][美]K.A.杰克逊主编,屠海令等译,材料科学与技术丛书——半导体工艺[M],北京:科学出版社,1996.6
    [62]王庆有,孙学珠.CCD应用技术.天津大学出版社,1993.
    [63]Bilhorn R.B., Sweedler J.V., Epperson P.M.,et al. Applied Spectroscopy.1978, 41(7):1124
    [64]Michael W. Farn, Joseph W. Goodman. Effect of VLSI fabrication errors on kinoform efficiency[J], Proc SPIE,1990,1211:125-136
    [65]叶均等,八台阶二元光学器件套刻误差的逐层分析发研究[J],浙江大学学报,1999,23(2):157-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700