吐哈盆地鄯勒油田构造特征及油气成藏规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吐哈盆地鄯勒油田处于博格达山前构造带,地质条件复杂,砂层与煤层交互发育。鄯勒油田为特低孔特低渗型煤系储层油田,虽建产规模逐年扩大,但受制于地质构造背景,前期构造分析并不完善,构造及断裂对油气成藏的影响研究不够深入,加上物源方向变化快及生储盖配置多样化等因素,导致近几年多次勘探与开发没有大的突破。论文针对以上问题,以地震、测井及钻井资料为基础,结合研究区地质背景,利用Landmark工作站重新认识并分析鄯勒油田构造特征,总结了典型区块的构造类油藏的油气成藏规律,建立了油气成藏模式,预测了有利油气圈闭,最后指出了下一步勘探开发的有利区块。研究表明:
     (1)鄯勒地区主要发育基底卷入式、盖层滑脱式和撕裂型三种断裂类型。研究区两侧的基底大断裂形成于印支末期,并在后期不断活化改造;中部的盖层滑脱式断裂形成于燕山Ⅱ幕运动时期;燕山Ⅲ幕运动时期,撕裂断层形成,并对早期形成的盖层滑脱断层进行切割。
     (2)断裂是油气成藏的重要控制因素。基底断裂形成时期产生了大量的构造裂缝,沟通了中下侏罗统及三叠系烃源岩,为油气向上或侧向运移提供了有利通道。盖层滑脱断层形成时期伴生的构造裂缝多被方解石、硅质等矿物充填,利于早期生成油气的保存,但受后期燕山晚期及喜山期构造运动的影响,早期断裂活化,断面错开,导致早期油藏内油气散失并在浅层有利圈闭处聚集成藏。
     (3)鄯勒地区油藏类型可以划分为构造类和岩性类油藏,细分为断背斜型、断块型、断鼻型、砂体上倾尖灭型和透镜状砂体型等五个亚类。
     (4)研究区典型区块已发育的构造类油藏成藏规律可归纳为:①靠近可沟通油源的基底断裂;②圈闭形态受构造与断裂双重作用的控制;③有效储集体下部多发育高角度未充填裂缝且上部多发育低角度充填裂缝。
     (5)预测了断鼻型和岩性型油气圈闭,并指出了下一步油气勘探开发的有利区块。研究区南部基底大逆断层下盘封闭条件好,西山窑组一、二段地层中容易形成断鼻型油藏;研究区中部靠西侧西山窑组二段的三角洲相前积砂体受后期构造运动影响,易形成砂体上倾尖灭型油藏;研究区中部靠西侧西山窑组三、四段时期形成的湖相浊积砂体容易形成透镜状砂体型岩性油藏。
The Shanle oil field of the Tuha basin is located in the tectonic zone of the front of the Bogda mountain, the geological condition of which is complex, and the sand layer and coal layer are developed interactively. The Shanle oil field is coal reservoir featured in extra-low porosity and extra-low permeability. Although the production increased yearly, there were no major breakthrough in the exploration and development in recent years, which was the result of the complex geological background, preliminary imperfect structural analysis, no enough in-depth studies of the effect of structure and fracture on the hydrocarbon accumulation, the rapid changed source direction and the multiple source-reservoir-cap assemblage. To solve the above problems, based on the seismic, well logging and drilling data and combined the geological conditions of the study area, this paper recognized and analyzed the structural characteristics of the Shanle oil field using Landmark workstation, on this basis, the rules of hydrocarbon accumulation of the structural reservoir in the typical blocks were summarized, the mode of hydrocarbon accumulation was established, the favorable hydrocarbon trap was predicted, and finally, the favorable areas for further exploration and development were indicated. The results show that:
     (1) The Shanle area mainly developed three types of fracture: basement-involved fault, seal-detachment fault and tear fault. The basement-involved thrust faults in the both sides of the study area formed in the Late Indosinian, and were active in the late period. The seal-detachment faults in the central of the study area formed in the second-stage of the Yanshan movement, while in the third-stage of the Yanshan movement, the tear faults formed and cut the seal-detachment faults formed in the earlier period.
     (2) In the Shanle area, faults are the important factors for hydrocarbon accumulation. During the period of forming the basement fault, a plenty of structural cracks developed, which communicated the source rocks deposited in the Lower-Middle Jurassic and Triassic formations, and provided the favorable channel for the upward or lateral migration of hydrocarbon. The associated structural cracks in the period of the seal-detachment faults formation were mostly filled by calcite, silica and other minerals, which was beneficial for the preservation of the early generated hydrocarbon. However, affected by the late Yanshan movement and Himalayan movement, these faults formed in the earlier period activated and the fault surface staggered, which caused the hydrocarbon loss of the earlier reservoirs and accumulated in the favorable traps of the shallow layers.
     (3) The reservoir types of the Shanle area can be divided into structural reservoir and lithological reservoir, which were subdivided into five subclasses: faulted anticline type, faulted block type, faulted nose type, upward thinning out sand body type and lens-shaped sand body type.
     (4) The hydrocarbon accumulation rules of the structural reservoirs in the typical blocks are:①close to the basement-involved faults that could communicate the source rocks;②the trap morphology is controlled by both structure and faults;③the lower of the effective reservoir mainly develops unfilled high-angle cracks and the upper of that mainly develops filled low-angle cracks.
     (5) The hydrocarbon traps of the faulted nose and lithological types were predicted and the favorable areas for further exploration and development were pointed out. The sealing condition of the footwall fault of the basement-involved thrust fault in the south of the study area is good, which is easy to form faulted nose reservoir in the first and second members of the Xishanyao formation. In the second member of the Xiashanyao formation in the middle-west of the study area, the foreset sand body of delta facies is likely to form the upward thinning out sand body reservoir by the result of the later tectonic movements, while the turbidite sand body of lacustrine facies deposited in the third and fourth member of the Xishanyao formation is prone to form the lens-shaped sand body reservoir.
引文
Chen Xiaozhi, Xu Hao, Tang Dazhen, et al.. Characteristics of abnormal pressure systems and their responses of fluid in Huatugou oil field, Qaidam basin[J].Acta Geologica Sinica(English Edition), 2009, 83(5):939-950.
    Demaison G., Huixinga B.J.. Genetic classification of petroleum system[J]. AAPG Bulletin, 1991, 75(10):1626-1643.
    Dow,W.G.. Application of oil correlation and source rock data to exploration in Williston Basin[J]. AAPG Bulletin, 1974, 58(7):1253-1262.
    Geoffrey A.Dorn. Visualization in 3-D seismic interpretation[J]. The Leading Edge, 1995, 1045-1049.
    Magoon L.B., Dow W.G.. The Petroleum system-from source to trap[J]. AAPG Memoir 60, 1994:3-24.
    Marfurt K.J., Farmer R.L., Bahorich M.S.. 3-D seismic attributes using a semblance-based coherency algorithm[J]. Geophysics, 1998, 63(4): 1150-1165.
    Perrodon A., Masse P.. Subsidence, sedimentation and petroleum system[J]. Journal of Petroleum Geology, 1984,7(1):5-26.
    Perrodon A.. Petroleum system: models and application. Journal of Petroleum Geology[J], 1992, 15(3):319-326.
    Xu Yingxin. Fine structural interpretation and prediction of reservoir in Xinmiaoxi area[J]. OGP, 2006, 41(supplement):25-28.
    Yu Yixing, Chen Dongxia, Pang Hong, et al.. Control of facies and ? uid potential on hydrocarbon accumulation and prediction of favorable Silurian targets in the Tazhong Uplift, Tarim Basin, China[J]. Petroleum Science, 2011,8(1):24-33.
    Zhang Yanling, Yang Changchun, Jia Shuguang. The application of seismic-geological integrated interpretation in the eastern depression of the Liaohe oil field[J]. Applied Geophysics, 2006, 3(1):55-61.
    Zhao Xianzheng, Jin Fengming, Wang Quan et al.. Hydrocarbon accumulation principles in troughs within faulted depressions and their signifi cance in exploration[J]. Petroleum Science, 2011,8(1):1-10.
    卜翠萍.松辽盆地南部十屋断陷油气成藏规律研究[D].北京:中国地质大学(北京), 2007.
    陈刚强.商河油田南部沙二段沉积体系与油气成藏规律研究[D].东营:中国石油大学, 2008.
    陈建渝,熊书权,毕研鹏,等.断陷盆地中含油气系统的特征[J].石油学报, 2000, 21(2):36-42.
    代瑜,李树新,贾晓娟,等.吐哈盆地都勒地区构造样式探讨[J].石油地球物理学报, 2005, 40(增刊):29-33.
    戴小平,陈治军,邵春华,等.山前带东段油气勘探潜力分析[J].吐哈油气, 2006, 11(4):312-315.
    窦立荣,李伟,方向.中国陆相含油气系统的成因类型及分布特征[J].石油勘探与开发, 1996, 23(1):1-7.
    高成全,漆万珍,胡袁丽.台北凹陷北部山前带深层成藏条件分析及勘探前景预测[J]. 吐哈油气, 1997, 2(4):9-16.
    郭伟.大民屯凹陷西部斜坡带地震资料解释和构造特征研究[D].成都:西南石油大学, 2007.
    郝芳,邹华耀,王敏芳,等.油气成藏机理研究进展和前沿研究领域[J].地质科技情报, 2002, 21(4):7-14.
    侯建国,林承焰,姚合法,等.断陷盆地成藏动力系统特征与油气分布规律[J].中国海上油气, 2004, 16(6):361-365.
    胡仁权.鄯勒油田煤系地层试注实践与认识[J].石油钻采工艺, 2006, 28(4):74-76.
    黄贺雄,仲自勉.测井、地震综合解释软件—工作站应用软件开发之一[J].测井技术, 1994, (6):436-441.
    金之钧,张一伟,王捷,等.油气成藏机理与分布规律[M].石油工业出版社, 2003, 6: 73-80.
    李剑峰,董宁,关达.虚拟现实技术在鄂尔多斯东北部低渗透气藏勘探开发中的应用[J]. 石油物探, 2005, 44(5):471-472.
    李进步.吐哈盆地台北凹陷侏罗系含油气系统研究[D].西安:西北大学, 2000.
    李明杰,郑孟林,高岩.中国中西部前陆盆地构造变形特征与油气勘探前景[J].邢台职业技术学院学报, 2004, 21(3):5-6.
    李森明,李鹏,孙惠萍,等.利用微观特征分析鄯勒构造J2x1+2储层物源方向[J].吐哈油气, 2005, 10(3):211-215.
    李森明,梁浩.吐哈盆地台北凹陷鄯勒地区西山窑组物源分析[J].河南石油, 2005, 19(6):16-18.
    李志军,黄先律,杨飞.利用三维地震资料分析胜北构造带构造演化与油气聚集[J].石油物探, 1999, 38(2):66-72.
    刘丽峰,杨怀义,蒋多元,等.三维精细构造解释的方法流程和关键技术[J].地球物理学进展, 2006, 21(3):864-871.
    刘小平,吴欣松,王志章,等.我国大中型气田主要气藏类型与分布[J].天然气工业, 2002, 22(1):1-4.
    刘新月,赵德力,郑斌,等.油气成藏研究历史、现状及发展趋势[J].河南油田, 2001, 15(3):10-17.
    牛嘉玉.吐哈盆地台北凹陷油气封盖主控因素分析[J].石油与天然气地质, 1999, 20(3):266-271.
    秦长文,庞雄奇.台北凹陷侏罗系油气输导体系分析[J].天然气工业, 2005, 25(3):11-13.
    田世澄,陈永进,张兴国,等.论成藏动力系统中的流体动力学机制[J].地学前缘(中国地质大学,北京), 2001, 8(4):329-336.
    佟殿君,阳怀中,吴梅莲,等.前陆冲断带构造-沉积响应研究进展[J].断块油气田, 2006, 13(1):1-3.
    王红军,胡见义.库车坳陷白垩系含油气系统与高压气藏的形成[J].天然气工业, 2002, 22(1):5-9.
    王庭斌.天然气成藏期及成藏组合研究[C].“八五”国家重点科技攻关项目, 1994.
    王喜双,李鹏举.吐哈盆地台北凹陷油气运聚模式[J].石油勘探与开发, 1995, 22(1):9-13.
    吴青鹏,郭精义,李红哲,等.鄯勒构造带油气成藏主控因素和成藏规律[J].天然气地球科学, 2006, 17(1):97-101.
    谢里夫R E,吉尔达特L P.勘探地震学[M].北京:石油工业出版社, 1997.
    熊琦华,王志章,张一伟.油藏描述研究的新进展[J].石油大学学报(自然科学版), 1995, 19(3):96-101.
    叶连俊.含油气盆地研究的关键问题[J].石油与天然气地质, 1982, (4):3-8.
    袁明生,梁世君,燕列灿,等.吐哈盆地油气地质与勘探实践[M].北京:石油工业出版社, 2002.
    袁明生.吐哈盆地油气分布特征及勘探方向[J].新疆石油地质, 1998, 19(2):107-111.
    张厚福.油气系统的新定义及历史-成因分类方案[J].成都理工学院学报, 1999, 26(1):14-16.
    张虎权,于均民,李在光,等.气藏综合描述在吐哈盆地鄯勒地区第三系浅层气藏描述中的应用[J].天然气地球科学, 2004, 15(1):62-67.
    张进学.吐哈盆地北部山前带西段地震资料解释及目标研究[D].东营:中国石油大学, 2008.
    张林晔,王新洲,唐洪三,等.烃源岩热模拟过程中轻烃组分变化特征[J].石油勘探与开发, 1996, 23(3):24-29.
    张世焕,王志勇.吐哈盆地煤系烃源岩特征与油气分布关系初探[J].新疆石油地质, 1996, 17(1):29-33.
    张一伟,熊琦华,王志章,等.枣园油田油藏精细描述技术与方法[J].石油学报, 1994, 15(增刊):10-18.
    张一伟.油气成藏机理研究现状与思路[C].油气成藏机理及油气资源评价国际研讨会论文集.北京:石油工业出版社, 1997, 11-13.
    赵文智,张光亚,王红军.石油地质理论新进展及其在拓展勘探领域中的意义[J].石油学报. 2005, 26(1): 1-8.
    郑鸿图.桩西古潜山油田地震资料解释及储层预测[D].成都:成都理工大学, 2008.
    周铁锁.吐哈盆地台北凹陷北部山前带二叠系油气勘探前景初步分析[D].西安:西北大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700