铜陵矿集区构造—岩浆—成矿系统模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜陵矿集区构造-岩浆-成矿系统是板内环境下成矿作用的典例,该系统内的构造变形、岩浆活动和成矿作用均各自呈现出复杂表象,也显示出三者之间具有紧密的内在联系;通过引入复杂性系统模型研究的思路,对构造-岩浆-成矿系统进行了逐层解析,力图查明复杂表象下的简单控制机制,并澄清各地质作用之间的内在联系。
    矿集区盖层复杂形变场是于印支-燕山期在先压后剪的简单机制下形成的。力学分析和物理实验不但验证上述观点,还定性重塑了区域三维变形场,并获得了一些关于区域构造演化和多层结构变形的新认识;结果表明矿集区经历了“挤压-剪切-旋转-拖带”四步变形过程,形成了不规则边界、角顶部的“拖带盆地”和复杂的三维变形场,后者则发育“上褶下断”和“上断下褶”两个基本构造组合。趋势面分析验证区域中部除受纵弯作用外,还受到底部东西向岩浆活动的顶托。最后通过数值模拟,半定量重现了区域地层的三维形态。
    成矿岩浆具低密度、低粘度、富含挥发份的特征;构造、岩浆、矿点的分形统计结果显示盖层褶皱系是岩浆就位的主要场所;理论分析和地质事实证实,北东向高角度逆断层及基底断裂系是浅层岩浆输运的主要通道;“剩余空间”法研究表明浅层岩浆活动的整体规律为“深部向中间集中,浅部向四周扩散”。据上述事实,本文提出浅层岩浆的输运方式为脉动“岩脉”式,岩浆输运方式决定了岩浆侵入时间的相对集中及各成矿岩体化学组成的整体相似。岩浆输运-定位过程受“上褶-下断”构造组合制约,该构造网络与其内部的流体输运过程组成一“元胞”,该“元胞”在不同尺度均有发育,具体表现形式会因实际地质背景不同而稍有差别。根据“元胞”属性和实际地质背景,推断深部岩浆输运的方式为“中尺度渗流”。
    借助野外观测、古地理环境分析、成矿时代测定、稳定同位素分析、区域沉积岩成矿元素聚类分析、典型矿床成矿元素主成分分析等多种手段,判定成矿流体活动主要集中于燕山期。流体物理化学参数和矿床地质特征表明成矿热液具有阶段性演化的特点,流体早期活动受浅层岩浆输运方式制约而以不混溶作用为主,晚期则呈现出多种流体混合的特征。“上断-下褶”构造组合是成矿流体输运-定位的网络,该网络具有自相似特征,在该网络内流体运移方式为“顺层侵入,切层上侵”。流体输运过程及其阶段性演化的特点控制着矿床(矿点、矿床类型和矿种)空间分布的自相似性和成矿多样性。
    通过对铜陵矿集区构造—岩浆—成矿系统的模型研究,本文认为板内复杂成矿系统表现出的复杂表象是整体统一景观下的细节差别,其整体景观由简单机制制约,细节不同由局部差异或“尺度效应”所导致。
    “模型研究”为板内复杂成矿系统探索的新视点。模型研究主要内容包括:(1)从公认地质事实出发,借助各种方法逐步推进、相互验证,把握整体特征;(2)引入复杂性科学思想,建立符合地质事实简约物理模型;(3)由于现阶段难以建立研究对象的显式定量方程,逻辑推断和物理实验就成为建立并验证模型、开展模型研究的主要手段。
The tectonic-magmatic-metallogenic system of Tongling ore cluster area is appropriate for investigation of the intraplate metallogeny. The structural deformation, magmatic activities and ore-forming processes in this system show complex manifestations independently and close interrelationship among them. In order to determine the simple control mechanism for the complexity in the system and clarify the interrelationship among the three different geological events, the system was studied step by step via Model Study (MS), which is an effective analysis method for complex system.
    The structural deformation was studied from four interrelated aspects. Firstly, in virtue of the field observation, it is suggested that the complex deformation field of the caprocks in Tongling area was mainly developed during Indosinian-Yansanian epoch, and the caprocks had experienced two-stage deformation, the first stage of which is compression, and the second is shear. Secondly, mechanical analysis and analogue experiment not only verify the above view, but also qualitatively remolded 3D deformation field and drew some new knowledge about tectonic evolution and deformation characteristics of the caprocks with multi-layer structure. The detailed results showed that the area experienced four deformation processes, i.e. “compression-shearing-rotation-drag”, therefore, drag basin developed at the opposite corners, the irregular boundaries and the complex 3D deformation field formed. In the 3D deformation field, two basic structural assemblages (SA) with the property of self-similarity were developed, one of which has the form of folding in the upper part and faulting in the lower part (SA1), while the other has the form of faulting in the upper part and folding in the lower part (SA2). Thirdly, trend surface analysis indicated that the middle part of Tongling area underwent jacking process due to the WE magmatic activity from the bottom besides buckling. Finally, 3D shape of strata was semi-qualitively recurred by numerical simulations.
    Ore-forming magma is characterized by low density, low viscosity and high volatile content. The statistics of the fractal calculation of structure, magma and ore deposits revealed that it was fold that controlled the emplacement of magma. Theoretical analysis and geological facts validated that the NE high-angle reverse faults and the basal faults were the flow channels for shallow magma. Furthermore, the study of “surplus space method”pointed the migration pattern of shallow magma could be expressed by “concentrating to the middle in depth and spreading all around in shallow”. Based on the cognitions above, it was put forward that shallow magma in Tongling area intruded as “dyking/dike”model, and the variance of chemical compositions in different magmatic bodies was resulted from the impulsive motions of dikes. In general, the transporting and locating of dikes were controlled by SA1. The SA1 and the magma movement in this network constitute the “Cell”, which was well developed in different scales and its specific form varied with the practical geological settings. According to the attributes of the “Cell”and its local geological background, it is deduced that the magma in the middle and lower crust transported as the mode of “mesoscale pervasive flow”.
    It is confirmed that the metallization centralized mainly in Yanshanian epoch through the field observations, paleogeographic environment analysis, metallogenic chronology, stable isotopes and REE analysis of ores, cluster analysis of metallogenic elements of regional sedimentary rocks and principal component analysis of metallogenic elements of ores in typical ore deposits. Additionally, fluid physicochemical parameters and field phenomena made it clear that ore-forming fluid had the feature of multi-stage evolution. In the early stage, fluid activity was influenced by rapid decrease of magma external pressure, during which fluid immiscibility dominated; while in the late stage, fluid activity was affected by magma
引文
1. Agust Gudmundsson, Laura B. Marinoni, Joan Marti. Injection and arrest of dykes: implications for volcanic hazards. Journal of Volcanology and Geothermal Research, 1999, 88:1–13.
    2. Ames L, Tilton G. R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology, 1993, 21: 339-342.
    3. Ames L, Zhou G., Xiong B. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean cratons, central China . Tectonics, 1996,15: 472-489.
    4. Antherton M P, Petford N. generation of sodium-rich magmas from newly underplated basaltic crust. Nature. 1993, 362:144-146.
    5. Ardnt N T, Goldstein S L. An open boundary between lower continental crust and mantle:its role in crust formation and crustal recycling. Tectonophysics, 1989, 161: 201-212.
    6. Barbarin B. A review of the relationships between granitoid types their origins and their geodynamic environments. Lithos, 1999, 46: 605-626.
    7. Bateman R. The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth-Science Reviews, 1995, 39: 91:106.
    8. Benning L G, Seward T M. Hydrosuphide complexing of gold in hydrothermal solution from 150℃to 50 0℃and 500 to 1500 bars. Geochim. Comochim. Acta, 1996, 60:1849-1877.
    9. Bibby R. Mass transport of solutes in dual-porosity media. Water Resources Research. 1981, 17(4):1075-1081
    10. Bonin B, Azzouni-sekkal A, Bussy F,et al. Alkali-calcic and alkaline post-orgenic (PO) granite magmatism: petrologic constraints and geodynamic setting. Lithos,1998, 45:45-70.
    11. Bonin B. From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol. J, 1990, 25:261-270.
    12. Bower T S. The deposition of gold and other metals:press-induced fluid immiscibility and associated stable signatures. Geochimica et Cosmochimica Acta, 1991, 55:2417-2434.
    13. Bryant D G. Intrusive breccias associated with ore,Warren (Bisbee) Mining District,Arizona. Economic Geology, 1968, 63(1):1-12.
    14. Cathles L M, Erendi A H J, Barri T. How long can a hydrothermal system be sustained by a single in trusive event? Econ. Geol., 1997, 92:766-771.
    15. Chavagnatz N O, Jahn B. Coseite-bearing eclogites from the Bixiling complex, Dabie mountains, China: Sm-Nd ages, geochemical characteristics and tectonics implication . Chemical Geology, 1996, 133: 29-51.
    16. Chen J F, Jahn B M. Crustal evolution of Southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 1998, 284: 101-133.
    17. Chen J, Xie Z, Liu S, Li X, et al. Cooling age of Dabie orogen, China, determined by 40Ar-39Ar and fission track techniques. Sci. in China (Ser. B), 1995, 38: 749-757.
    18. Cloetingh S., Boldreel L.O., Larsen B.T., et al. Tectonics of sedimentary basin formation: models and constraints. Tectonophysics,1998, 300(1-4): 1-11.
    19. Cloetingh S.,Catalano,R.,Argenio B. D'. et al. Basin dynamics and basin fill: models and constraints. Tectonophysics,1999, 315(1-4):1-13.
    20. Coke, C, Dias, R, Ribeiro, A. Rheologically induced structural anomalies in transpressive regimes. Journal of Structural Geology, 2003, 25(3):409-420.
    21. Craw D,Teagle D A H,Belocky R. Fluid immiscibility in late-Alpine gold-bearing veins,Eastern and Northwestern European Alps. Mineral Deposita,1993, 28:28-36.
    22. Craw D. Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recenttectonics and uplift of the Otago and Alpine Schist,New Zealand. Chem Geol, 1992, 82:221-236.
    23. Cui Bin. The alteration zone and the origin of Tongguanshan stratabound skarn copper deposit. In: Augushithis S S.ed. skarn ——their origin and metallogeny. Theophrastus publication,1991,1-8.
    24. de-Bremond-d-Ars-Jean, Arndt-Nicholas-T, Hallot-Erwan. Analog experimental insights into the formation of magmatic sulfide deposits. Earth and Planetary Science Letters,2001,186( 3-4): 371-381.
    25. Deemer S J , Hurich C A. The reflectivity of magmatic underplating using the layered mafic intrusion analog. Tectonophysics,1994,232:239-255.
    26. Defant M J and Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere. Nature, 1990,347: 662-665.
    27. Deng Jun, Fang Yun, Yang Liqiang, et al. Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems. Acta geologica sinica, 2001,75(2):220-232.
    28. Deng Jun, Fang Yun, Yang Liqiang, Yang Junchen, Sun Zhongshi, Wang Jianping, Ding Shijiang, Wang Qingfei. Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems. Acta
    geologica sinica, 2001,75(2):220~232.
    29. Deng Jun, Huang Dinghua, Wang Qingfei, et al. The Formation Mechanism of the “Drag Depressions" and the Irregular Boundaries in Intraplate Deformation. Acta Geologica Sinica, 2004,78(1):267-272.
    30. Deng Jun, Wang Qingfei, Wei Yanguang et al. The metallogenic effect of the transition of tectonic dynamic System. Journal of China University of Geosciences, 2004,15(1):23-28.
    31. Deng Jun,Huang Dinghua,Wang Qingfei et al. Surplus Space Method: A new Numerical model for prediction of shallow concealed magmatic bodies. Acta Geologica Sinica. 2004,78(6):358-367.
    32. Drummond B J, Collins C D N. Seismic evidence for underplating of the lower continental crust of Australia. Earth Planet. Sci. Lett., 1986, 79:361-372.
    33. Du Yangsong, Tian Shihong , Li Xuejun. Contrast in fluid metallogeny between Tianmashan and Datuanshan ore deposits, Tongling, Anhui. Acta Geologica Sinica. 2003, 77(1): 116 –124.
    34. Du Yangsong. Petrological and mineralogical study of enclaves inplutons in the typical mining districts of Tongling, Anhui and its bearing on the process of magmatism and metallogeny. Chinese Journal of Geochemistry,1999,18(3):208-218.
    35. England P C, Thompson A B. Pressure-temperature-time path of regional metamorphism I: heat transfer during the evolution of regions of thickened continental crust. J Petrol., 1984, 25(4): 894-928.
    36. Favis M D. A self-organizing dynamic systems approach to the simulation of rill initiation and development of hillslopes. Computer and Geosciences, 1998, 24(4): 353-372.
    37. Gamkrelidze I P, Shengelia D M. Origin of the igneous rocks of the Dzirula crystalline massif (Caucasus) in light of the tectonic layering of the Earth's crust. Geotectonics, 2001, 35(1): 51-61.
    38. Gavrilenko P, Gueguen Y F. Flow in fractured medi: a modified renormalization method. Water Resources Research, 1998, 34(2):177-191.
    39. Giggenbanch W F. Geothermal solute equilibria derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim.Acta,1988,52:2749-2765.
    40. Gray C M. An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth and planetary science letters, 1984, 70:47-60.
    41. Gu Lianxing, Hu Wenxuan, He Jinxiang, Ni Pei, and Xu Keqin. Regional variations in ore composition and fluid features of massive sulphide deposits in South China: implications for genetic modelling. Episodes, 2000, 23(2): 110-118.
    42. Gu Lianxing, Hu Wenxuan, He Jinxing, et al. Geology and Genesis of Upper Palaeozoic massive Sulfide Deposits of South China. Applied Earth Science, 1993, 102(B):83-96.
    43. Guha J, L u H Z, Dube B, et al. Fluid characteristics of vein and altered wall rock in Archean mesothermal gold deposits. Econ Geol, 1991, 86:667-684.
    44. Harper T R, Last N C. Response of fractal rock subject to fluid injection, Part 2. Characteristic behavior. Tectonophysics, 1990, 172:33-51.
    45. Harper T R, Last N C. Response of fractal rock subject to fluid injection. Part 3. Practical application. Tectonophysics, 1990, 172:53-65.
    46. Hibbard M J. The magma mixing origin of mantled feldspars. Contrib. Mineral. Petrol., 1981, 76:158-170.
    47. Hubbert M K,Rubey W W. Roles of fluid pressure in mechanics of overthrust faulting. AAPG Bulletin, 1959,70:167-206.
    48. Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci.,1971, 8:523-548.
    49. Jean Battaglia, Patrick Bache'lery. Dynamic dyke propagation deduced from tilt variations preceding the March 9, 1998, eruption of the Piton de la Fournaise volcano. Journal of Volcanology and Geothermal Research, 2003, 120:289–310.
    50. Jiang Z W, Nicholas H S, Terence D, et al. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China. Economic Geology, 1997,92:228-247
    51. Keay S M et al. A three-component Nd-Sr isotopic mixing model for granitoid genesis, Lachlan fold belt SE Austrilia. Geology, 1997, 25(4): 307-310.
    52. Lasaga A C , RYe D M. Fluid flow and chemical reaction kinetics in metamorphic systems: Amer. Jour. Sci., 1984, 2(93):361-404.
    53. Lichtner P C. Time-space continum description of fluid/rock interaction in permeable media; Water Resources Research, 1992, 28:3135-3155.
    54. Long J C S, Remer J S, Wilson C R. et al. Porous media equivalents for net-works of discontinuous fractures. Water Resouces Research, 1982, 18(3):645-658.
    55. LüQ T, Hou Z Q, Zhao J H, et al. Deep seismic reflection profiling reveals complex crustal structure of Tongling ore district. Science in China (Series D), 2003, 33(5): 442-449.
    56. Maurizio Bonafede, Nicola Cenni. A porous flow model of magma migration within Mt. Etna: The influence of extended sources and permeability anisotropy. Journal of Volcanology and Geothermal Research, 1998, 81:51–68.
    57. Middlemost E A K. Naming materials in the magma/igneous rock system. Earth-science Reviews, 1994, 37: 215-224.
    58. Middlemost E A K. towards a comprehensive classification of igneous rocks and magmas. Earth-science Reviews, 1991, 31: 73-87.
    59. Nelson K D. Are crustal thickness variation in old mountain belts like the Appalachians a consequence of lithospheric delamination? Geology, 1992, 20: 498-502
    60. Neretnieks I, Rasmuson A. Diffusion in the rock matrix: an important factor in radionudide retardation. Journal of Geophysical Research. 1980, 85(B8): 4379-4397.
    61. Neuman S P. Generalized scaling of permeabilities: Validation and effect of support scale. Geopys Res ett, 1994, 1:349-352.
    62. Neuman S P. Univeral scaling of hydraulic conductivities and dispersivities in geological media. Water Resources Research, 1990, 26:1749-1758.
    63. Neves S P , Vaucher A. Successive mixing and mingling of magmas in a plutonic complex of Northeast brazil. Lithos, 1995,34(4):275-299.
    64. Norton D L,Cathles L M. Breccia pipes,products of exsolved vapor from magmas. Economic Geology,1 973,68(3):540–546
    65. Norton D., Knight J.. A model for simulating transport of reactive multispecies components: Model development and demonstration; Water Resources Research, 1991, 27: 3075-3094.
    66. Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 1986, 22(13):1845-1856.
    67. Odling N E, Webman I.A "conductance" mesh approach to the permeability of natural and simulated fracture patterns. Water Resources Research, 1991, 27(10):2633-2643.
    68. Oyarzun R, Marquez A, Lillo J, et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 2001, 36: 794-798.
    69. Pan Yuanming, Dong Ping. The Lower Changjiang(Yangzi/ YangtzeRiver) metallogenic belt, east central China: Intrusion and wallrock hosted Cu ,Fe Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews,1999, 15(4):177-242.
    70. Paul McLeod, Stephen Tait. The growth of dykes from magma chambers. Journal of Volcanology and Geothermal Research. 1999, 92:231–245.
    71. Petford N,Antherton M P. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J Petrol. 37:1491-1521.
    72. Rapp P R, Shimizu N, Norman M.D. Applegate, Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol, 1999, 160: 335-356.
    73. Rapp R P, Xiao L, Shimizu N. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica, 2002, 18: 293-302.
    74. Read J J, Meinert L D. Gold-bearing quartz vein mineralization at the Big Hurrah Mine, Seward Peninsula, Alaska. Econ Geol, 1986, 81:1760-1764.
    75. Reid J B,Evans O C, Fates D G. Magma mixing in granitic rocks of the Central Sierra Nevada, California [J]. Earth Planetary Science Letter, 1983, 66:243-261.
    76. Robert E, Kelly W C. Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi Green-stone Belt, Quebec, Canada. Econ Geol, 1987, 82:1464-1482.
    77. Roberto F. Weinberg. Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos, 1999, 46:393–410.
    78. Roberts M P, Clemens J D. Origin of high-potassium calc-alkaline, I-type granitoids. Geology. 1993,21: 825-828.
    79. Robinson J W, Gale J E. A laboratory and numerical investigation of solute transport in discontinuous fracture systems, Ground Water,1990,28(1):25-36.
    80. Rouleau A, Gale J E. Statistical characterization of the fracture system in the Stripa Granite, Sweden. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(6):353-367.
    81. Rowley D B, Xue F, Turker R D, et al. Age of ultrahigh pressure metamorphism and protolith of orthogneisses from the eastern Dabie Shan: U/Pb zircon geochemistry [J] . Earth Plan. Sci. Lett., 1997,151: 191-203.
    82. Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower crust perspective. Rev. Geophys., 1995, 33: 267-309.
    83. Rudnick R L. Making continental crust. Nature, 1995, 378: 571-578.
    84. Russell M J, Solomon M, Walshe J L. The genesis of sediment-hosted exhalative zinc-lead deposits. Mineralium Deposita, 1981, 16:113-127.
    85. Ruzhentsev S V, Trifonov V G. Tectonic layering of the lithosphere. Episodes, 1984, 7(1): 44-48.
    86. Sachs P M, Hansteen T H. Pleistocene underplating and metasomatism of the lower continent crust: a xenolith study. Journal of Petrology, 2000, 41(3): 331-356.
    87. Sajona FG, Maury R. Association of adakites with gold and copper mineralization in the Philippines. Earth & Planetary Sciences,1998, 326: 27-34.
    88. Sibon R H. Tectonic controls on maximum sustainable overpressure fluid redistribution from stress transition. Journal of Geochemical Exploration, 2000, 69-70:471-475.
    89. Sibson R H. Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology,1996, 18(8):1031-1042.
    90. Snow D T. Anisotropic permeability of fractured media. Water Resources Research, 1969, 5(6): 1273-1289.
    91. Snyder D, Crambles C, Tait S, et al. Magma mingling in dikes and sills. J. Geol. 1997, 105: 75-86.
    92. Steefel C. I. Lasaga. A. C. A coupled model for transport of multiple chemical species and kinetic precipitation/ dissolution reactions with application to reactive flow in single phase hydrothermal system. Am. J. Sci., 1994, 294: 529-592.
    93. Stein H.J, Markey R.J, Morgan JW, et al. The remarkable Re-Os chronometer in molybdenite: how and why it works . Terra Nova, 2001, 13:479-486.
    94. Suvorov A I. Tectonic layering and tectonic motions in the continental lithosphere. Geotectonics, 2000, 34(6): 442-451.
    95. Tang Y. W. The effect of tortuosity on fluid flow through a single fracture. Water Resources Research. 1984, 20(9):1209-1215.
    96. Tobin H, Vannucchil P, Meschede M. Structure, inferred mechanical properties, and implications for fluid transport in the decollement zone, Costa Rica convergent margin. Geology, 2000, 29(10):907-910.
    97. Vernon R H. Crystallization and hybridism in microgranitoid enclave magma: miccrostructural evidence. J. Geophys. Res., 1990, 95: 17849-17859.
    98. Walsh J B, Brace W F. The effect of pressure on porosity and the transport properties of rock. J Geophys Res, 1984, 89:9425-9431.
    99. Walsh JF, Kesler SE. Fluid inclusion geochemistry of high-grade,vein-hosted gold ore at the Pamour Mine, Porcu-pire Camp,Ontario. Econ Geol, 1988, 83:1347-1367.
    100. Wang Daojing. Some relationships between geologic structures and copper ores of skarn type in Tongling. Dizhi Lunping. 1981, 27(4): 301-306.
    101. Warren J E, Root P J. The behavior of naturally fractured reservoirs. J Soc Petrol Eng.1963, (3):245-255.
    102. Wawrzyniec T, Selverstone J, Axen G J. Correlations between fluid composition and deep-seated structural style in the footwall of the Simplon low-angle normal fault, Switzerland.Geology, 1999, 27(8):715-718.
    103. White A J R and Chappell B W. ultrametamorphism and granite genesis. Tectonophysics, 1977,43:7-22.
    104. Wilcox R E. The idea of magma mixing: history of a struggle for Acceptance. The Journal of Geology, 1999, 107:421-432.
    105. Wintsch R P, Christoffersen R, Kronenberg A K. Fluid-rock reaction weakening of fault zone. Journal of Geophysical Reaserch, 1995, 100(7):13021-13032.
    106. Wu Cailai, Wang Fusheng, Hao Meiying, et al. Geochronology of intermediate-acid intrusive rocks from Tongling, Anhui. Continental Dynamics, 2000, 5(1): 15-23.
    107. Wu Cailai, Wang Zhihong, Qiao Dewu et al. Types of enclaves and their features and origins in intermediate-acid intrusive rocks from the Tongling district, Anhui Province, China. Acta Geologica Sinica, 2000, 74(1):56-67.
    108. Wu Cailai,Wang Fusheng, Hao Meiying, et al. Geochronology of intermediate –acid intrusive rocks from Tongling, Anhui.Continental Dynamics, 2000, 5(1):15-23.
    109. Wu G G, Zhang D, Zang W S. Study of tectonic layering motion and layering mineralization in the Tongling metallogenic cluster. Science in China, Ser D, 2003,46(8):852-863.
    110. Wu G, Deng J, Wen C, etal. Fluid inclusion study of ore forming fluids and its bearing on the hydrothermal mineralization of the Datuanshan copper deposit of skarn type in the Tongling area, Anhui Province. Geochimicaet Cosmochimica Acta, 2002, 66(15A):A848-A848.
    111. Wu Ganguo, Zhang Da, Zang Wenshuan. Study of tectonic layering motion and layering mineralization in the Tongling metallogenic cluster. Science in China(Series D), 2003, 46(8): 852-863.
    112. Xu G, Zhou J. The Xinqiao Cu-S-Fe-Au deposit in the Tongling mineral district,China: synorogenic remobilization of a stratiform sulfide deposit. Ore geology reviews, 2001, 18:77-94.
    113. Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111-1114.
    114. Y. G. Leonov. Intraplate tectonics in light of tectonic layering of the Earth's crust. Geotectonics, 1992, 25(6): 459-472.
    115. Yang Jianwen, Latychev K, Edwards R N. Numerical computation of hydrothermal fluid circulation in fractured Earth structures.,Geophysical Journal International. 1998, 135(2):627-649.
    116. Zhai Y S, Deng J, Song H L. Synchronous structural of superlarge ore deposits. Science in China (Series D), 1998, 41(supp): 7-12
    117. Zhai Y S. Giant ore deposits related to deep structure in and around the North China Block, Global Tectonics and Metallogeny, 1998, 6 (3, 4) .173-175.
    118. Zhai Y.S., Xiong Y.Y., Yao S.Z., et al. Metallogeny of copper and iron deposits in the Eastern Yangtze Craton, east-central China. Ore Geology Review, 1996,11:229-248.
    119. Zhai Yusheng, Peng Runmin, Deng Jun. Analysis of Mineralization System and Prediction of New-Type Ore Deposits. Journal of China University of Geosciences, 2000,11(2):107-112.
    120. Zhang X, Sanderson D J. Numerical modeling of the effects of fault slip on fluid flow around extensional faults. Journal of structural Geology,1996,18:109-119.
    121. Zhang Youtuan, Liu Zhong. Hydraulic behavior of rock fractures analyzed by using fractal. In: Liu Huaiheng, ed. Proceedings of international symposium on application of computer method in rock mechanics and engineering. Xi an:Shanxi Science and technology Press. 1993.427-434
    122. Zhao Y M, Zhang Y N, BICS.Geologyofgold bearing skarn deposits in the middle and lower Yangtze River Valley and adjacent regions.OreGeologyReviews,1999,14(3 4): 227-249.
    123. Zhou Taofa, Yuan Feng, Yue Shucang, et al. Two series of copper-gold deposits in the Middle and Lower Reaches of the Yangtze River area (MLRYA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems. Science in China (Series D), 2000, 43(Supp.): 209-218.
    124. Zimmerman R W, Chen G, Hadgu Teklu, et al. A numerical dual-porosity model with asemi-analytical treatment of fracture/matrix flow. Water Resources Research. 1993, 29(7): 2127-2137.
    125. 安徽省地矿局三二一地质队、三二七地质队,南京大学地球科学系,等. 安徽沿江主要成矿区铜及有关矿产勘查研究(上册)(“八五”国家科技攻关计划专题成果报告)
    126. 安徽省地质矿产局区域地质调查队,《安徽地层志》泥盆系和石炭系分册.合肥:安徽科技出版社,1989.
    127. 安徽省地质矿产局三二一地质队. 安徽铜陵狮子山矿区冬瓜山南段勘探地质报告. 1995.
    128. 岑况,於崇文.成矿流体的流动-反应-输运耦合与金属成矿. 地学前缘, 2001, 8(4):323-328.
    129. 岑况.共存矿物溶解度与硫化物金属成矿作用. 地质学报, 1999, 73(3):243-249.
    130. 岑况.铜陵地区硫化物矿床成矿过程的热传导和物质运输动力学.地球化学, 2001, 30(6):533-539.
    131. 常印佛, 刘湘培,吴言昌.长江中下游铜铁成矿带. 北京:地质出版社. 1991. 1-379.
    132. 常印佛, 刘学圭. 关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例. 矿床地质,1983, 2(1):11-20.
    133. 常印佛, 唐永成, 邢凤鸣,等.安徽沿江地区铜金多金属成矿预测研究(简介).安徽地质科技,1997, 40(1):1-11.
    134. 陈邦国,姜章平,张卫平.安徽冬瓜山叠生式层状铜矿热液改造型流体研究, 2002,江苏地质,26(2),65-69
    135. 陈宏明、吴祥和、张瑛,等,1994,中国南方石炭纪岩相古地理与成矿作用。地质出版社。
    136. 陈沪生. 下扬子地区HQ13 线的综合地球物理调查及其地质意义. 石油与天然气地质,1988,9(3):211-222
    137. 陈沪生. 扬子准地台下扬子盆地HQ-13 线地球物理-地质解释纲要. 见:陈沪生主编. 中国南方油气勘查新领域探索论文集(第二辑). 北京:地质出版社. 1988.
    138. 陈江峰, 周泰喜,李学明,等.安徽南部燕山期中酸性侵入岩源区的锶/钕同位素制约. 地球化学, 1993, (3):261-268.
    139. 陈丕基. 郯庐断裂巨大平移的时代与格局. 科学通报, 1989, 4: 289-293.
    140. 陈衍景, 陈华勇, 刘玉琳,等.碰撞过程内生矿床成矿作用的研究历史和进展. 科学通报, 1999. 44(16):1681-1689.
    141. 陈衍景,郭光军,李欣.华北克拉通花岗绿岩体中生代的成矿动力学背景. 中国科学(D 辑), 1998,28(1):35-40.
    142. 陈衍景,秦善,李欣. 中国矽卡岩型金矿的成矿时间、空间、地球动力学背景和成矿模式. 北京大学学报(自然科学版),1997,33(4):457-466.
    143. 陈毓川, 裴荣富, 宋天锐. 中国矿床成矿系列初论. 北京: 地质出版社, 1998, 1-104
    144. 池国祥、周义明、卢焕章,2003,当前流体包裹体研究和应用,岩石学报,2003,2(19)-Guoxiang CHI,
    145. 储国正,黄许陈,张成火,等. 1995. 安徽铜陵地区成矿控制因素的探讨. 安徽地质,1995,5(1):47-58.
    146. 储国正,黄许陈. 安徽铜陵地区成矿规律研究. 地质与勘探,1993, 29(2):1-5.
    147. 储国正,王训诚,周育才,等.安徽铜陵地区铜金矿化关系及其成因初探. 贵金属地质,2000, 9(2):73-77.
    148. 储国正,吴言昌,刘光华,等.安徽铜陵鸡冠石银(金)矿床地质地球化学特征.地质地球化学, 2000,28(3):31~40.
    149. 储国正. 1992. 铜陵狮子山矿田构造及其控岩控矿作用的研究. 安徽地质. 2(2):1-14.
    150. 邓晋福, 莫宣学, 罗照华,等.火成岩构造组合与壳幔成矿系统. 地学前缘, 1999,6(2): 259-270.
    151. 邓晋福, 莫宣学, 赵海玲,等. 中国东部燕山期岩石圈—软流圈系统大灾变与成矿环境. 矿床地质, 1999,18(4):309-315.
    152. 邓晋福,莫宣学,赵海玲,等.中国大陆根-柱构造—大陆动力学的钥匙.北京:地质出版社. 1996.
    153. 邓晋福,吴宗絮.下扬子克拉通岩石圈减薄事件与长江中下游Cu、Fe 成矿带. 安徽地质, 2001,11(2): 86-91.
    154. 邓晋福,叶德隆,赵海玲,等.下扬子地区火山作用深部过程盆地形成.武汉:中国地质大学出版社. 1992.
    155. 邓晋福、戴圣潜、赵海玲,等. 铜陵Cu-Au(Ag)成矿区岩浆-流体-成矿系统和亚系统的识别.矿床地质. 2002, 21(4): 317-322.
    156. 邓军, 吕古贤, 郭涛,等. 构造应力场转换与界面成矿. 地球学报, 1998, 19(3): 244-250
    157. 邓军, 孙忠实, 王建平,等. 2001. 动力系统转换与金成矿作用. 矿床地质. 20(1): 71-77.
    158. 邓军, 杨立强, 方云,等. 2000. 成矿系统嵌套分形结构和自有序效应. 地学前缘. 7(1):133-145.
    159. 邓军, 杨立强, 孙忠实,等. 2000. 构造体制转换与流体多层循环成动力学. 地球科学. 25(4):397-403.
    160. 邓军, 杨立强, 翟裕生,等. 2000. 构造-流体-成矿系统及其动力学的理论格架与方法体系.地球科学. 25(1):71-77.
    161. 邓军, 翟裕生, 杨立强, ,等. 剪切带构造-流体-成矿系统动力学系统模拟.地学前缘, 1999, 6(1):115-128.
    162. 邓军,黄定华,王庆飞,等.铜陵矿集区构造-流体-成矿系统演化格架. 地学前缘, 2004,11(1): 121-129.
    163. 邓军,黄定华,王庆飞,等.铜陵矿集区印支-燕山期盖层形变场三维结构的实验重塑. 中国科学(D辑),2004,34(3):993-1001.
    164. 邓军,吕古贤,杨立强,等.构造应力场转换与界面成矿.地球学报, 1998,19(3):244-250.
    165. 邓军,孙忠实,王建平,等.动力系统转换与金成矿作用.矿床地质, 2001,20(1):71-77.
    166. 狄永军,赵海玲,张贻全,等.安徽铜陵地区花岗岩类岩石中的岩浆混合结构. 北京地质,2003,15(1): 12-17
    167. 狄永军. 铜陵矿集区燕山期岩浆作用及深部过程. 北京: 中国地质大学博士学位论文.2003.
    168. 杜建国, 戴圣潜, 莫宣学, 等. 安徽沿江地区燕山期火成岩成岩成矿地质背景. 地学前缘, 2003,10(4):551-560.
    169. 杜杨松, 李学军. 安徽铜陵典型矿区岩石包体及其岩浆-成矿作用过程探讨. 高校地质学报, 1997,3(2): 171-182.
    170. 杜杨松, 刘金辉, 秦新龙,等.岩浆底侵作用研究进展. 自然科学进展, 2003, 13(3):237-242.
    171. 杜杨松, 田世洪, 李学军.安徽铜陵天马山矿床与大团山矿床流体成矿作用对比研究. 地球科学, 2000, 25(4):433-437.
    172. 杜杨松,李学军.安徽铜陵典型矿区岩石包体研究及岩浆成矿作用过程探讨.高校地质学报,1997,3(2):171 182.
    173. 冯增昭,杨玉卿,鲍志东,等.中国南方石炭纪岩相古地理.北京:地质出版社,1998.
    174. 富士谷. 长江中下游成矿带中石炭纪海底火山喷发-沉积黄铁矿型铜矿地质特征. 南京大学学报(自然科学版), 1977,5(1):110-112.
    175. 葛小月,李献花,陈志刚,等. 中国东部燕山期高Sr 低Y 型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约. 科学通报, 2002,47(6): 474-479.
    176. 顾连兴,陈培荣,倪培,等.长江中、下游燕山期热液铜—金矿床成矿流体. 南京大学学报(自然科学),2002,38(3):392-407.
    177. 顾连兴,富士谷.下扬子威宁期断裂拗陷、火山活动及块状硫化物成矿作用—答黄志诚《安徽铜陵新桥黄龙组沉积期海底火山喷发-沉积质疑》一文.高校地质学报,1999,5(2):228-232.
    178. 顾连兴,徐克勤. 论长江中下游中石炭世海底块状硫化物矿床. 1986, 地质学报. 66 (2):176-188.
    179. 顾连兴. 块状硫化物矿床研究进展评述. 地质论评, 1999, 45(3):265-275.
    180. 顾连兴.. 江西武山中石炭世海相火山岩及块状硫化物矿床.桂林冶金地质学院学报. 1984, (4):91-102.
    181. 郭文魁..论安徽铜官山铜矿成因. 地质学报,1957, 37(3):317-332.
    182. 郭文魁.某些金属矿床的原生分带及其成因.地质学报,1963,43(3):247-270.
    183. 郭宗山. 扬子下游某些矽卡岩型铜矿床. 地质学报, 1957,37(1):1-10.
    184. 何知礼,杜加锋.流体包裹体研究的某些进展与发展趋势、地学前缘,1996,3(4):306-312.
    185. 侯增谦,韩发,夏林圻,等.现代与古代海底热水成矿作用. 北京:地质出版社. 2003. 423.
    186. 胡受奚,周顺之,孙志明,等.论我国东部与铁、铜矿床有关中-酸性岩类的成矿专属性. 地质学报, 1979,53(4):323-336.
    187. 华仁民,毛景文. 1999.试论中国东部中生代成矿大爆发. 矿床地质, 18(4):300-307.
    188. 黄斌. 1991. 安徽铜陵地区块状硫—铁—金矿床的铅同位素特征. 地质学报. 65(4):347-357.
    189. 黄定华,张国胜. 鄂东南地区印支─燕山期区域构造变形的实验研究与动力学分析.矿床地质,1994,13(4):299-306.
    190. 黄许陈,储国正.铜陵狮子山矿田多位一体(多层楼)模式. 矿床地质,1993, 12(3):221-230.
    191. 黄志诚. 安徽铜陵新桥黄龙组沉积期海底火山喷发沉积质疑. 高校地质学报, 1999, 1(5):110-113.
    192. 解广轰,汪云亮,范彩云.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制,中国科学,1998,28(增):31-36
    193. 李曙光,黄方,李晖. 大别-苏鲁造山带碰撞后的岩石圈拆离. 科学通报,2001,46(17):1487-1491.
    194. 李曙光. 论华北与扬子陆块的碰撞时代-同位素年代学方法的原理及应用. 安徽地质, 1992, 2(4):13-23.
    195. 李文达,王文斌,范洪源,等.长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性.火山地质与矿产,1997,20(增刊):1-131.
    196. 梁祥济,王福生.接触交代型矽卡岩金矿床形成机理的实验研究.黄金地质,2000,6(1):1-14.
    197. 凌其聪,程惠兰,陈邦国.铜陵东狮子山铜矿床地质特征及其成岩成矿机理研究. 矿床地质, 1998, 17(2):158-166.
    198. 凌其聪,程惠兰.岩浆矽卡岩的地质特征及其形成机理讨论——以铜陵地区为例,长春科技大学学 报,1998,28(4):366-371
    199. 凌其聪,刘丛强,鲍征宇.地质流体的输运—化学反应与成矿作用微观机制研究——以安徽冬瓜山层控矽卡岩型铜矿床为例. 大地构造与成矿学, 2002. 26(1):56-62.
    200. 凌其聪,周贵斌,黄许陈,等. “层控式”矽卡岩矿床特征及成矿机制—以铜陵大团山铜(金)矿床为例. 贵金属地质, 1998,7(2):91-95.
    201. 刘俊来, 马立杰, 崔迎春, 等. 上地壳环境中的流体作用与灰岩的脆—韧性转变, 地学前缘,2001,8(3):171-176.
    202. 刘文灿,高德臻,储国正. 安徽铜陵地区构造变形分析及成矿预测. 1996. 北京:地质出版社. 1-44
    203. 刘英俊,曹励明.元素地球化学导论. 北京:地质出版社.1987. 281.
    204. 刘裕庆,刘兆廉,杨成兴.铜陵地区冬瓜山铜矿的稳定同位素研究.中国地质科学院矿床地质研究所所刊,1984,第1号:70-101.
    205. 刘裕庆,刘兆廉. 铜陵地区层状铜(铁、硫)矿床同位素地球化学和矿床成因研究. 中国地质科学院矿床地质研究所所刊, 1991, 1:47-111.
    206. 吕古贤, 林文蔚, 郭涛,等. 金矿成矿过程中构造应力场转变与热液浓缩-稀释作用. 地学前缘, 2001, 8(4): 253-263.
    207. 吕古贤, 林文蔚, 罗元华,等.构造物理化学与金成矿预测. 北京: 地质出版社. 1999.397-419.
    208. 吕庆田,侯增谦,赵金花,等. 深地震反射剖面揭示铜陵矿集区复杂地壳结构形态. 中国科学,2003,33(5):442-449
    209. 吕庆田. 侯增谦. 杨竹森等. 长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束. 中国科学(D).2004,34(9):783~794
    210. 马振东,单光祥. 1998. 长江中下游及邻区基底和花岗岩成矿元素丰度背景的研究. 地质学报. 72(3):267-275.
    211. 毛建仁, 苏郁香,陈三元,等. 长江中下游中酸性侵入岩与成矿. 北京:地质出版社. 1990. 1-191.
    212. 毛景文, 张作衡, 余金杰,等. 华北中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示. 中国科学(D 辑), 2003,33(4):289-300.
    213. 毛景文,Holly STEIN,杜安道,等.长江中下游地区铜金(钼)矿Re-Os 年龄测定及其对成矿作用的指示.地质学报,2004,78(1):121-131.
    214. 毛景文,华仁民,李晓波. 浅议大规模成矿作用与大型矿集区. 矿床地质, 1999, 18(4):291-299.
    215. 毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨. 矿床地质,2000, 19(4):289-296.
    216. 孟良义. 长江中、下游铜矿床的成矿模式. 中国科学D辑, 1996a, 26(1): 21-25.
    217. 孟良义.侵入型块状硫化物矿床的稳定同位素组成特征. 科学通报, 1996b,41(9):808-810.
    218. 裴荣富, ,翟裕生,张本仁..深部构造作用与成矿. 北京: 地质出版社, 1999. 67
    219. 裴荣富,吴良士,熊群尧等. 中国特大型矿床成矿偏在性与异常成矿构造聚敛场.北京: 地质出版社,1998.418.
    220. 裴荣富. 中国矿床模式. 北京: 地质出版社,1995.357.
    221. 彭聪,赵一鸣. 长江中下游及其邻区深部地球物理背景与含金矽卡岩矿床的分布. 物探与化探,1998,22(3):175-182
    222. 彭省临,邵拥军,刘亮明.安徽铜陵凤凰山铜矿矿床成因新认识.矿床地质,2002,21(增刊):443-446.
    223. 秦新龙, 杜杨松, 田世洪. 安徽铜陵地区含磁黄铁矿-黄铜矿角闪石巨晶的首次发现. 自然科学进展, 2002,12(8): 834-838.
    224. 秦新龙,杜杨松,李铉具,等. 安徽铜陵地区角闪石堆积晶包体中出溶氧化物、硫化物的发现. 科学通报, 2003,48(18):1982-1989.
    225. 任启江、刘孝善、徐兆文,等.安徽庐枞中生代火山构造洼地及其成矿作用. 北京:地质出版社. 1991. 47-111.
    226. 芮宗瑶,李荫清,王龙生. 初论成矿流体及金属矿物富集系统. 矿床地质,2002,21(1):83-90.
    227. 邵拥军, 彭省临, 吴淦国,等.铜陵凤凰山岩体成岩机制探讨. 地质与勘探, 2003, 39(5):39-43.
    228. 谭凯旋,谢焱石,赵志忠.构造流体成矿体系的反应输运力学耦合模型和动力学模拟, 地学前缘,2001,8(4):311-321.
    229. 唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京: 地质出版社,1998.351.
    230. 田世洪, 杜杨松, 秦新龙,等. 安徽铜陵地区中酸性侵入岩及其岩石包体中的矿物包裹体研究. 地学前缘.2001,8(4): 422-428.
    231. 田世洪,丁悌平,杨竹森,等. 安徽铜陵朝山金矿床稳定同位素、稀土元素地球化学研究. 矿床地质,2004,23(3):365-374.
    232. 涂光炽. 初议中亚成矿域. 地质科学,1999,34: 397-404.
    233. 涂光炽. 过去20 年矿床事业发展的概略回顾. 矿床地质,2001,20: 1-9.
    234. 万天丰.郯庐断裂带的演化与古应力场.地球科学——中国地质大学学报,1995,20(5):526-534.
    235. 万天丰.中国东部中新生代板内变形构造应力场及其应用. 北京:地质出版社. 1993. 102.
    236. 王德滋,周金城,邱检生,等.中国东南部晚中生代花岗质火山-侵入杂岩特征与成因.高校地质学报,2000,6(4):487-498.
    237. 王洪涛,聂永丰,李雨松.耦合岩体主干裂隙和网络状裂隙渗流分析及应用.``清华大学学报(自然科学版),1998,38(12):23-26.
    238. 王良书,李成,刘福田,等. 中国东、西部两类盆地岩石圈热-流变学结构,中国科学,2000,30(增):116-121.
    239. 王强, 许继峰,赵振华,等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的约束. 中国科学(D 辑), 2003, 33(4): 323-334.
    240. 王强, 许继峰,赵振华.一种新的火成岩——埃达克岩的研究综述. 地球科学进展, 2001. 16(2): 201-208.
    241. 王强,赵振华,熊小林,等. 底侵玄武质下地壳的熔融:来自安徽沙溪adakite 质富钠石英闪长玢岩的证据. 地球化学,2001,30(4):353-362
    242. 王强,赵振华,许继锋,等.扬子地块东部燕山期埃达克质(adakite-like)岩与成矿. 中国科学(D辑),2002,32(增刊):127-136
    243. 王清晨, 从柏林,马力. 大别山造山带与合肥盆地的构造耦合,科学通报,1997,42(6):575-580.
    244. 王庆飞, 邓军,侯增谦等.铜陵矿集区成矿作用研究进展. 矿床地质, 2002,21(增刊):480-483.
    245. 王文斌, 李文达, 董平, 等. 论长江中下游地区含铜黄铁矿型矿床成因. 火山地质与矿产, 1994,15(2):25-34.
    246. 王文斌,李文达,谢华光,等.长江中下游铜铁多金属矿床铅同位素特征. 火山地质与矿产, 1995, 16(2):67-77.
    247. 王晓鸿,仵彦卿. 渗流场-应力场耦合分析,勘探科学技术,1998,4:3-6.
    248. 王元龙, 张旗, 王强, 等. 埃达克质岩石与Cu-Au 成矿作用关系的初步探讨. 岩石学报,2003,19(3):543-550.
    249. 王媛,速宝玉,徐志英.三维裂隙岩体渗流耦合模型及其有限元模拟.水文地质工程地质,1995,(3):1-4.
    250. 吴才来, 周珣若,黄许陈,等.铜陵地区中酸性侵入岩年代学研究.岩石矿物学杂志,1996,15(4):299-306.
    251. 吴才来, 周珣若. 铜陵地区中酸性侵入岩的包体岩石学研究. 地球学报,1997,18(2): 182-191.
    252. 吴才来,陈松永,史仁灯,等.铜陵中生代中酸性侵入岩特征及成因.地球学报,2003,24(1):41-48.
    253. 吴才来,周珣若,黄许陈,等. 铜陵地区中酸性侵入岩的包体岩石学研究. 地球学报,1997,17(2):182-191.
    254. 吴淦国, 张达, 臧文拴. 铜陵矿集区构造滑脱与分层成矿特征研究. 中国科学(D 辑), 2003, 33(4): 300-308.
    255. 吴淦国,杜杨松,邓军等.国家重点基础研究发展规划项目1999CB403206 课题研究报告《长江中下游地区铜陵和宁芜大型矿集区》.
    256. 吴淦国. 矿田构造与成矿预测. 地质力学学报, 1998, 4(2):1-4.
    257. 吴言昌,曹奋扬,常印佛.初论安徽沿江地区成矿系统的深部构造—岩浆控制. 地学前缘, 1999, 6(2):285-296.
    258. 吴言昌,邵桂清,吴炼.岩浆矽卡岩及其矿床.安徽地质,1996,(2):30-39.
    259. 吴言昌.论岩浆矽卡岩:一种新类型矽卡岩.安徽地质,1992,(1):12-26.
    260. 夏元法. 试论天马山硫金矿床的成矿物质来源. 矿产与地质, 1999a,13(1).34-38.
    261. 夏元法. 铜陵地区层控矽卡岩型矿床地质特征和成矿条件. 矿产与地质.1999b,13(6).338-342.
    262. 肖建新,顾连兴,倪培,等.安徽铜陵狮子山铜金矿床流体多次沸腾及其与成矿的关系.中国科学(D), 2002,32(3): 199-206.
    263. 谢光华, 王文斌, 李文达. 安徽新桥铜硫矿床成矿时代及成矿物质来源. 火山地质与矿产, 1995,16(2):101-107.
    264. 谢和平, Pariseau W G. 岩石节理粗糙系数(JRC)的分形估计.中国科学,1994,24(5):524-530
    265. 谢和平,周宏伟. 岩体断裂面渗流特性的分形研究,煤炭学报,1998, 23(6):585-589
    266. 邢风鸣,徐祥.铜陵地区高钾钙碱系列侵入岩. 地球化学, 1996,25(1):29—38.
    267. 邢风鸣,赵斌,徐祥,等.安徽省铜陵地区侵入岩成因的实验研究. 中国区域地质, 1997,16(3):267-274.
    268. 邢凤鸣, 徐详. 铜陵地区高钾钙碱性系列侵入岩. 地球化学,1996,25(1):29-38.
    269. 邢凤鸣,徐详. AFC 混合与铜陵地区侵入岩的成因. 岩石矿物学杂志, 1996,15(1):10-20.
    270. 徐九华, 谢玉玲, 申世亮. 热液金矿床控矿断裂性质与成矿流体的物理化学, 地球学报,1998,19(2):204-209.
    271. 徐克勤、孙明光,叶俊.华南两个成因系列花岗岩类及其成矿特点. 矿床地质, 1982,1(2): 1-14.
    272. 徐启东. 长江中下游中生代花岗岩类源区的壳-壳混源性质. 岩石矿物学杂志, 1997, 16(2):120-130.
    273. 徐志刚. 从构造应立场特征探讨中国东部中生代火山岩成因.1985.地质学报. 59(2):109~126.
    274. 徐志刚.从构造应力场特征探讨中国东部中生代火山岩成因.地质学报, 1985, 59(2):109-126.
    275. 扬振宇,董树文,Besse, J. 华南、华北地块中生代构造演化与超高压变质岩的折返机制.地质论评,2001, 47(6): 568-575.
    276. 杨太华,袁勇,孙钧. 岩体裂隙渗流地质力学模型及应用.同济大学学报,1995,23(3):241-246
    277. 杨巍然,张文淮.断裂性质与流体包裹体组合特征.地学前缘,1996,21(3):286-290;
    278. 杨文采,胡振远,程振炎,等. 郯城-涟水综合地球物理剖面. 地球物理学报,1999,42(2):206-217
    279. 杨文采,胡振远,程振炎,等. 郯城—涟水综合地球物理剖面. 地球物理学报,1999,42(2):206-217.
    280. 杨文采. 地球物理反演和地震层析成像,北京:地质出版社.1989.
    281. 杨学明,林文通.铜官山矿区金口岭铜金矿床围岩蚀变、成矿物理化学条件及成矿机理研究.地质科学,1989,,4:323-337.
    282. 杨学明,杨晓勇,王奎仁,等.安徽铜陵老鸦岭层状铜矿床的成矿地球化学研究[J].大地构造与成矿学,1997,21(4):347-361.
    283. 殷洪福,彭元桥. 秦岭显生宙古海洋演化,地球科学—中国地质大学学报,1995, 20(6):605-611.
    284. 殷鸿福, 吴顺宝, 杜远生,等. 华南是特提斯多岛洋体系的一部分.地球科学, 1999,24(1):1-12.
    285. 於崇文, 岑况, 鲍征宇,等. 成矿作用动力学. 北京: 地质出版社. 1998.
    286. 於崇文. 成矿动力系统在混沌边缘的分形生长—一种新的成矿理论与方法论. 矿物岩石地球化学通报,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700