黑木相思遗传多样性及寒胁迫诱导差异表达基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑木相思(Acacia Melanoxylon)属含羞草科(Mimosaceae)金合欢属(Acacia Mill.)。自然分布于澳大利亚布里斯班以南,至南澳州的东南部和塔斯马尼亚岛,是近年来我国南方引种的主要用材树种之一,它具有适应性强、速生丰产、用途广泛等优点。但由于种源地属热带地区,大多种源对低温仍较为敏感,引种实践证明,在闽北及其以北地区长势较差,闽北低温是其种苗越冬的主要限制因子;另外,其实生苗在栽培中性状分化十分严重,制约了高产质优的黑木相思人工林的发展。因此,研究黑木相思优树遗传多样性、抗寒性,鉴定寒胁迫诱导下差异表达基因的生物学功能,可为进一步阐明黑木相思的抗寒机理,培育出性状稳定的抗寒相思优良品系提供理论依据;这对黑木相思优良种源引种适宜区的选择、优异抗逆林木的早期选择和种质资源库建设具有重要而深远的意义。本研究采用ISSR分子标记技术分析了黑木相思优树遗传多样性,采用抗寒评估技术对供试黑木相思优树进行了抗寒性评估,采用cDNA-AFLP技术对黑木相思寒胁迫诱导差异表达基因进行了研究,主要结果如下:
     1建立了黑木相思基因组DNA快速提取方法
     采用1.5×CTAB法提取黑木相思叶状柄的基因组DNA,其分子大小约为48Kb,得率约为180-697.5μg﹒g-1, A260/A280=1.75~1.955,无需经RNase处理,可直接用于限制性酶切和ISSR分析。
     2采用均匀设计优化和建立了黑木相思ISSR-PCR体系,筛选了多态性高、稳定性好的ISSR引物10条,并对其扩增程序和引物退火温度进筛选优化。
     (1)黑木相思ISSR-PCR的体系:在20μL反应体系中,含引物0.30μmol·L-1、Mg2+ 3.00mmol·L-1,dNTP 0.15mmol·L-1、Taq DNA聚合酶0.75U和模板DNA2.00ng·μL-1。
     (2)黑木相思ISSR-PCR的扩增程序:94℃预变性5min;接着进行33个循环:94℃变性35s,52-61.5℃退火52s,72℃延伸90s;循环结束后,72℃延伸10min。
     3黑木相思优树遗传多样性ISSR分析的验证
     用ISSR标记技术,采用上述优化的黑木相思ISSR-PCR反应体系和循环参数,从加拿大哥伦比亚大学(UBC)公布的第9套(共计100条ISSR引物)中筛选出的10条引物,对37个黑木相思优树进行遗传多样性分析,结果显示: 37个黑木相思优树之间存在较高的遗传多样性;而引自福建不同栽培地域的优树之间的遗传多样性则相对较小,这与引种黑木相思种源背景资料相一致,与引种栽培事实相符。37个黑木相思优树间的Nei & Li(1979)遗传距离表明:供试的37个黑木相思优树之间存在较大的遗传分化,这种遗传分化显现出显著的地域性;相对而言,3个来自建瓯的抗寒优树相对具有较高的遗传多样性;16个引自广东的优良无性系根孽苗优树具有较高的遗传多样性和较小的遗传分化;7个引自广东的优良无性系采种实生苗优树遗传多样性最低,且遗传分化较大;这与引种黑木相思种源背景和种源试验的栽培客观事实相符。研究结果表明:ISSR分子标记技术适用于黑木相思的遗传多样性分析。
     基于ISSR标记的黑木相思37个优树的聚类分析表明: 3个引自建瓯的抗寒优树与其它34个黑木相思优树亲缘关系可能较远;引自广东的16个优良无性系根孽苗优树与其半同胞优树(7个优良无性系采种实生苗优树)优树聚为一支,说明了它们之间的亲缘关系;这与种源背景和栽培事实相符。研究结果表明:ISSR分子标记技术适用于黑木相思的亲缘关系鉴定。
     另外,筛选出的10个引物对3个抗寒优树的扩增,共扩增出了48个特异遗传位点,其中3个抗寒优树共有的特异遗传位点有22个,可作为区别于其他34个优树的ISSR分子标记,另外26个特异遗传位点可与22个共有特异遗传位点配合使用,作为3个抗寒优树之间相互区分的ISSR标记。
     4黑木相思的抗寒性评估
     应用电导法配以Logistic方程求拐点温度作为黑木相思的低温半致死温度,能较直观且准确地反映黑木相思的抗寒力和所能忍耐的低温极限,可作为黑木相思抗寒性评估的有效方法。
     黑木相思的抗寒性大小与其寒胁迫过程中,细胞中MDA含量累积幅度相关,即抗寒性强的无性系,其细胞中MDA含量累积幅度小,抗寒性弱的无性系,其细胞中MDA含量累积幅度大,因此,寒胁迫中,黑木相思细胞中MDA含量累积幅度大小可作为其抗寒性评估的检测指标。
     低温胁迫下黑木相思可溶性糖含量变化与其抗寒性的关系复杂,部分种源细胞可溶性糖累积与其抗寒性呈负相关;低温下黑木相思细胞可溶性糖的累积作用,对提高其抗寒性可能是间接的,更多的可能趋向于诱导启动抗寒的其它过程,间接提高抗寒性。
     低温胁迫下黑木相思脯氨酸含量变化与其抗寒性的关系复杂,部分种源细胞脯氨酸累积与其抗寒性呈负相关;低温下黑木相思细胞脯氨酸的累积作用,更多的可能趋向于提高细胞的渗透浓度,进而诱导启动抗寒的其它过程,或只是低温胁迫的结果。
     5建立了适于cDNA-AFLP的黑木相思组培苗总RNA快速提取方法
     采用改良CTAB-异硫氰酸胍裂解法能有效地控制多酚、多糖、蛋白质以及DNA等对所提取总RNA的污染,所得总RNA质量高、完整性好;紫外分光光度检测,A260/A280比值为1.96-2.0,A260/A230比值1.98-2.2,总RNA得率为118.4-213.6μg.g-1,电泳检测,28SrRNA亮度约为18SrRNA的两倍,所提RNA质量可以满足dscDNA合成和cDNA-AFLP等后续分子操作要求。
     6建立了黑木相思双低频酶cDNA-AFLP反应体系
     以黑木相思组培苗为实验材料,对影响cDNA-AFLP反应体系的关键因素进行了研究,建立了适用于黑木相思的cDNA-AFLP分析体系。结果表明:适用于黑木相思dscDNA的限制性酶切组合为EcoRI和PstⅠ,dscDNA酶切用量为500 ng。用作预扩增模板的连接产物稀释倍数为1倍,用作选择性扩增模板的预扩增产物稀释倍数为50倍。
     7寒胁迫诱导黑木相思差异表达基因的分离和鉴定
     采用cDNA-AFLP技术,得到黑木相思响应低温胁迫差异表达转录谱,并对图谱中有差异变化的147个TDF测序,测序结果在NCBI上进行同源性比对分析,其中下调表达基因为7个,上调表达基因为140个,这些基因主要有:锌指蛋白、GTP酶激活蛋白、鸟嘌呤核苷酸交换因子、蛋白磷酸酶-2A、MYB结构域蛋白、转录因子NAC、类受体蛋白激酶、蛋白质酪氨酸磷酸酶-受体型B、核糖核苷二磷酸还原酶、细胞色素P450、羧酸酯水解酶、核酮糖-1,5-二磷酸羧化酶、尿素酶辅助蛋白ureG、质膜H+-ATPase蛋白、核糖体蛋白S7、细胞周期蛋白、硫氧还蛋白等。
     本研究结果为进一步研究黑木相思的抗寒机理及差异表达TDFs相应基因在黑木相思应答低温中可能的作用研究奠定了基础。
Acacia Melanoxylon is a Mimosaceae Acacia Mill, naturally distributed from south Brisbane, Australia to the south-east of South Australia and Tasmania. It is one of the main timber tree species in South China, which was imported within recent years. It features easy adaptation, high yield and broad range of usages and so forth. However, because of original from tropical regions, the most of them are still very sensitive to low temperature. Real practice has proved that Acacia Melanoxylon imported into the north Fujian & the further northern regions grows poorly. Low temperature is the main limit in wintertime. In addition, it’s seedling traits in cultivation with significant differentiation, restricting plantation development of Acacia Melanoxylon of the high-yield and high-quality. Therefore, the study of Acacia melanoxylon plus tree, genetic diversity, cold tolerance and identification of biological function of genes expressed differentially under cold stress can provide a theoretical basis for further clarification of the cold-resistance mechanism of Acacia melanoxylon and cultivating good character and stability of the cold Acacia strains. In this study, ISSR molecular marker has been used to analysis of genetic diversity in Acacia melanoxylon plus tree, cold-assessment techniques have been used to test cold tolerance of Acacia melanoxylon, cDNA-AFLP technology has been used to to analysis differentially expressed genes in cold-induced .The main results are as followings:
     1 A fast and convenient method for extraction of DNA from Acacia Melanoxylon is established.
     1.5×CTAB method is considered as one of fast and convenient methods for extraction of DNA in young fresh leaves of Acacia Melanoxylon . The results indicates that 180-697.5μg·g-1DNA are obtained from a phyllode , their molecular weights are about 48 Kb, and the A260/A280 of DNA are 1.75~1.955,the DNA is suitable for digesting with restriction enzyme and ISSR reaction without purifying by RNase.
     2 ISSR-PCR system of Acacia Melanoxylon has been established and optimized with uniform design, screening ten of ISSR primers with rich polymorphism and good stability, optimizing ISSR amplification procedures and primer annealing temperature of Acacia Melanoxylon.
     (1) ISSR-PCR system of Acacia Melanoxylon: Each 20μL ISSR-PCR amplification reaction solution is consisted of 3.00 mmol·L-1 Mg2+ , 0.15 mmol·L-1 dNTP, 0.30μmol·L-1 Primer , 0.75U Taq DNA polymerase , 2.00 ng·μL-1DNA template.
     (2) ISSR amplification procedures of Acacia Melanoxylon: The suitable ISSR-PCR procedure was 1 cycle of pre-denaturing for 5 min at 94℃, 33 cycles of denaturing for 35s at 94℃, annealing for 52s at 52-61.5℃, extending for 90s at 72℃and the last cycle of extending for 10 min at 72℃.
     3 Verification to Genetic diversity of Acacia Melanoxylon based on ISSR markers
     Genetic diversity among 37 Acacia Melanoxylon plus trees is detected by ISSR markers. The results reveal a high level of genetic diversity among 37 Acacia Melanoxylon plus trees, having a low level of genetic diversity between different Acacia Melanoxylon plus trees that are planted in different region in Fujian. This results are matching background information of Acacia melanoxylon and cultivation facts. The Nei & Li(1979) genetic distance among 37 Acacia Melanoxylon plus trees reveals a high genetic differentiation among 37 Acacia Melanoxylon plus trees. Relatively, 3 plus trees from Jianou, Fujian have a high level of genetic diversity; 16 plus trees of good clones from Guangdong have a high level of genetic diversity with a low genetic differentiation. 7 seedlings of good clones from Guangdong have the lowest level of genetic diversity. The results show that: ISSR molecular marker technique is suitable to be applied to analysis of the genetic diversity of Acacia Melanoxylon .
     Cluster Analysis show that: genetic relationship between 3 plus trees from Jianou, Fujian and the other 34 Acacia Melanoxylon plus trees maybe is far. 16 plus trees of good clones from Guangdong cluster together with half-sib 7 seedlings of good clones, which reveals that they are genetically related. This is matching background information of Acacia melanoxylon and cultivation facts. Study shows that: ISSR molecular marker technique is suitable to be used for identification of genetic relationship of Acacia Melanoxylon .
     In addition, 10 primers for amplification of three cold-resistance plus tree are amplified in 48 specific genetic loci, in which a total of three cold-resistance plus tree-specific genetic loci, 22, can be used as difference from other 34 plus tree of ISSR molecular markers; Another 26-specific genetic loci with a total of 22 specific genetic loci used in conjunction, can be used as ISSR molecular markers to distinguish between three cold-plus tree.
     4 Cold-resistance assessments on Acacia melanoxylon
     The relative electrical conductivity of Acacia Melanoxylon under low- temperature treatment was measured by electrical conductivity method. The turning point temperature (semi lethal temperature) measured by Logistic curve is used as the index of cold-tolerance, may directly and effectively show cold resistance and low temperature limit of Acacia melanoxylon, so this method is an effective one for cold-resistance assessment on Acacia melanoxylon.
     Cold resistance of Acacia melanoxylon is associated with the cumulative rate of MDA content of cells under low-temperature treatment. MDA content of cells accumulated a small extent in cold tolerant clones. Meanwhile, MDA content of cells is accumulated a large extent in weak cold resistance clones. Results show that cumulative rate of MDA content of cells can be used as detective index of cold-resistance assessment on Acacia melanoxylon.
     The relationship between soluble sugar content and cold resistance is complicated. Some provenances of Acacia melanoxylon, soluble sugar content are negatively correlated with cold resistance, revealing indirect effect of soluble sugar accumulation in the cold resistance .
     The relationship between proline content and cold resistance is complicated. Some provenances of Acacia melanoxylon, proline content are negatively correlated with cold resistance. Increasing of proline content leads to increase osmotic, inducing other processes of cold resistance or result low-temperature stress only.
     5 A fast method suited to extract total RNA applied to cDNA-AFLP from plantlets of Acacia melanoxylon cultured in vitro
     The modified CTAB- guanidinium isothiocyanate method can efficiently remove polyphenol, polysaccharide, proteins and DNA that often contaminate with RNA. The high-quality and integrity total RNA acquired the 28S rRNA, which is approximately two times as light as the 18S rRNA with 1.96-2.0 of OD260/OD280 ratio and 1.98-2.2 of OD260/OD230 ratio, and the total RNA yield of 118.4-213.6μg.g-1, and the quality of extracted RNA meet the requirement of subsequent molecular biology reactions as in dscDNA synthesis and cDNA-AFLP
     6 Establishment of cDNA-AFLP analysis system with two low- frequency cut Enzyme in Acacia Melanoxylon
     An optimized system is established after studying on the factors affecting cDNA-AFLP analysis system of Acacia Melanoxylon cultured in vitro. The results indicates that the restriction enzyme combination is EcoR I and PstⅠ,the dosage of dscDNA is 500 ng ,the ligation products used as template of pre-amplification are diluted to one time ,and the pre-amplification products used as template of select-amplification are diluted to50 times.
     7 Isolation and identification of differentially expressed genes cold -induced in Acacia melanoxylon
     The transcription profile of Acacia Melanoxylon response to cold stress is analyzed by cDNA-AFLP, and 147 differentially expressed TDFs (transcript-derived fragments) is sequenced functional annotated by Blast in NCBI. And the TDFs are further classified into 2 subgroups:Ⅰup-regulated expression (140)Ⅱdown-regulated expression (7). There are zinc finger protein, GTPase activating protein, guanine nucleotide exchange factor, protein phsophatase-2A, myb domain-containing protein, transcription factor NAC, receptor-like protein kinase (RL Ks), protein tyrosine phosphatase,receptor B(PTPRB), Ribonucleoside-diphosphate reductase, ribulose-1,5-bisphosphate carboxylase, cytochrome P450, carboxylic ester hydrolase, urease accessory protein ureG, H+-ATPase, ribosomal protein S7, Cyclin-related protein, Thioredoxin(Trx).
     The results of this study will build up the foundation for study on the mechanism of cold resistance and the possible role of responsing to low-temperature of TDFs corresponding to differentially expressed genes in Acacia melanoxylon.
引文
[1]Alonso-Blance C,Peeters A J,Koomneef M. Development of an AFLP based linkage map of Ler,Col and Cvi Arobidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred linea population.Plant Journal, 1998.14 (2):259-271
    [2]Ann SH et al. Oncogene, 2003, 22(48): 7677-7686
    [3]Annelies D P, Marnik V, Paul V H, Marc Z, Dominique V D S. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insight into the early response to ethylene in Arabidopsis . Plant Journal , 2004 ,39 (4) :537 - 559.
    [4]Bachem C WB ,Vander Hoeven R S , de Bruijn S M , et al .Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP : analysis of gene expression during potato tuber development . ThePlant Journal ,1996 ,9 (5) :745-753
    [5]Baid V W Low temperature and drought regulated gene expression in Bennudagrass. Turfgrass and environmental research summary. 1994,32-33
    [6]Barna M, Hawe N , Niswander L , et al . Plzf regulates limb and axialskeletal patterning . Nat Genet , 2000 ,25 (2) :166-172
    [7]Bennin DA et al. J Biol Chem, 2002, 277(30): 27449-27467
    [8]Blair M .W .,Panaud O.,and McCouch S.R.,l 999,Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.).Theor. App1. Genet. ,98:780-792
    [9]Boland D J,Brooker M I H,Chippendale G M,et al. Forest trees of Australia.4th ed.Mellbourne:Thomas Nelson and Csiro,1984,405-407.
    [10]Breyne P, Dreesen R, Cannoot B, et al. Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Gen Genomics,2003, 269: 173-179.
    [11]Cai,Q. ,Moore ,G .A. , Guy, C. L. A nunusual Group 2 LEA gene family in citrus responsive to low temperature.Plant Mol. Biol. , 1995, 29: 11- 23.
    [12]Caldeira R L, Vidigal T H D A,Simpson A J G,Carvalbo O S. Genetic variability in Brazilian populations of biomphalaria straminea complex detected by simple sequence repeat anchored polymerase chain reaction amplification.MemIns OswMdo Cruz,2001,96(4):535- 544.
    [13]Camacho F J.and Liston A.Population structrue and genetic diversity of Botrychinm Pumicola (Ophioglossaceae) based on ISSRs. American Journal of Botany,2001,88(6):1065-1070
    [14]Chae MJ , Lee J S , Nam M H , et al . A rice dehydration2inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling . Plant Mol Biol , 2007 , 63(2) :151-169
    [15]Charters Y M.,Robertson A ,Wilkinson M J,Ramasy G. PCR analysis of oliseed rape cultivars(Brossica napus L. ssp. oleifers) using 5′-anchored simper sequence repeat(SSR) primers.Theor.Appl.Genet., 1996, 92:442-447
    [16]Chen H H, L i P H, BrennerM L. Involvement of abscisic acid in potato cold acclimation. Plant P hysiol. , 1983, 71: 362- 365.
    [17]Chen Y F , Etheridge N , Schaller G E. Ethylene signal transduction . Ann Bot (London) , 2005 ,95 (6) :901-915
    [18]Cholewa, E., Cholewinski,A .J ., Shelp, B. J. , et al. Cold-shock-stimulatedγ-aminobutyric acid synthesis ismediated by an increase in cytosolic Ca2+ , not by an increase in cytosolic H+ . Can. J. Bot. , 1997, 75: 375- 382
    [19]Condit R and Hubbell S P. Abundance and DNA sequence of two base repeat region in tropical tree genomes. Genome, 1991,34:66-71
    [20]Crowe J H,Crowe L M,Carpenter J F,Rudolph A S,Wistrom C A,Spargo B J,Anchordoquy T J. Interactions of sugars with membranes. Biochim Biophys Acta,1988,947(2):367-384.
    [21]Delauney,A. J. ,Verma, D.P.S. Proline biosynthesis and osmo regulation in plants. Plant J. , 1993, 4: 215-223.
    [22]Donson J , Fang Y, Espiritu-Santo G, et al . Comprehensive gene expression analysis by transcript profiling . Plant Molecular Biology ,2002 (48) :75-97
    [23]Dunn,M .A. , Goddard, N. J. , Zhang, et al. Low -temperature-responsive barley genes hanve different control mechanism s. Plant Molecular Biology , 1994, 24: 879- 888.
    [24]Fang D Q,Roose M L.Identification of closely related citrus cultivars with inter-simple sequence repeat markers Theor.Appl.Genet. 1997,95(3):408-417
    [25]Fang G, Hammar S , Grumet R. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. BioTechniques , 1992 ,13 : 52-56
    [26]Fujii H ,Verslues P E ,Zhu J K. Identification of two protein kinases required for abscisic acid regulation of seed germination , root growth ,and gene expression in Arabidopsis . Plant Cell , 2007 ,19 (2) :485-494
    [27]Ge S,Olivera G C X,Schaal B A.et al. RAPD variation within and between natural populations of the wild rice Oryza rufipogon from China and Brazil.Heredity,1999, 82:838-844
    [28]Ge X J, Sun M. Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras comiculatum (Myrsinaceae)US ingallozyme and intersimple sequence repeat (ISSR) analysis.Molecular Ecology,1999,8:2061-2069.
    [29]Gerber S,Mariette S,Streiff R,Bodenes C,Kremer A. Comparison of microsatellites and AFLP markers for parentage analysis.Molecular Ecology, 2000,9:1037-1048
    [30]Gibson S, A rondel V , Iba K, et al. Cloning of a temperature2regulated gene encoding a ch lo rop last omega- 3- desaturase from A rabidipsis thaliana. Plant Physiology , 1994, 106: 1615-1621.
    [31]Gilbert J E., Lewis R V., Wilkinson M J and Caligari P D S,1999,Developing an appropriate strategy to assess genetic variability in plant germplasm collections.Theor.App1.Genet. ,98:1125-1131
    [32]Gilmour S J , Thomashow M F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol.Biol. , 1991, 17: 1233- 1240.
    [33]Greve K,CourT L,Micheal K. Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins:RING-H2 molecular specificity and cellular localization. Biochem J, 2003,371:97-108
    [34]Gupta M,Chyi Y S ,Romero-Severson J ,Owen J L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeats. Theor .Appl. Genet., 1994,89:998-1006
    [35]Guy C L , HaskellD, Yeleno sky G. Changes in freezing to lerance and polypep tide content of spinach and citrus at 5℃. Cryobiology , 1988,25: 264- 271.
    [36]Guy C L. Cold acclimation and freezing stress to lerance: role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. , 1990, 41: 187-223.
    [37]Guy C, Haskell D, Li Q B. Association of protein with the stress 70 molecular chaperones at low temperature: evidence for the existenceof cold labilep ro teins in spinach. Cryobiology , 1998, 36: 401- 414.
    [38]Habu Y, Fukada-Tanaka S , Hisatomi Y, Iida S. Amplifiedrest riction f ragment length polymorphism based mRNA fingerprinting using a single rest riction enzyme that recognizes a 4-bp sequence . Biochemical and Biophysical Research Communications ,1997 (234) :516-521
    [39]Hill WG. DNA fingerprints applied to animal and bird populations. Nature, 1987,327:98-99
    [40]Hirsh A G..Vitrification in plants as natural from of Cryoprotection. Cryobiology,1987,24:214-228.
    [41]Hu H H ,Dai M Q ,Yao J L ,Xiao B Z ,Li X H ,Zhang Q F ,Xiong L Z. Overexpressing a NAM , ATAF , and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice . Proc. Natl . Acad . Sci .USA , 2006 ,103 (35) :12987 - 12992.
    [42]Huang j C, Sun M. Genetic diversity and relationship of sweet potato and its wild relatives in pomoea series batatas as revealed by inter-simple sequence repeat (1SSR) and restriction analysis of chloroplast. Theor Appl Genet, 2000,(10):1050-1060.
    [43]Hunghes M A ,Dunn M A. The molecular biology of plant acclimation to low temperature. J. Exp. Bot. , 1996, 47: 291- 305.
    [44]Hunter T. Protein kinases and phosphatases : The ying and yang of protein phosphorylation and signaling . Cell , 1995,80 (2) :225 -236.
    [45]Jaglo-ottosen K R, Gilmour S J , Zarka D G, et al. Arabidosis CBF1 overexpression induces COR genes and enhances freezing to lerance. Science, 1998, 280: 104- 106.
    [46]Jarillo J A , L eyva A , Salinas J , et al. Low temperature induces the acclimation of alcohol dehydrogenasemRNA in Arabidopsis thaliana ,a chilling-tolerant plant. Plant Phy siol. , 1993, 101, 833- 837.
    [47]Jian S G,Shi S H,Zhong Y et al.Genetic diversity among south China Heritiera littoralis detected by inter-simple sequence repeats(ISSR)analysis.Journal of Genetics and Molecular Biology,2002,1 3(4): 272-276.
    [48]Jin H, Martin C. Multifunctionality and diversity within the plant MYB2gene family. PlantMol Biol, 1999, 41: 577 - 585.
    [49]Jinn T L , Stone J M, Walker J C. Haesa , An arabidopsis leucine-rich repeat receptor kinase , controls floral organ abscission.Genes Dev ,2000 ,14 (1) :108-117
    [50]Jonak C, Kiegerl S, L igterink W , et al. Stress signaling in p lants: A m itogen2activated p ro tein kinase pathway is activated by cold and drough t. P roc. N atl. A cad. S ci. USA , 1996, 93: 11274-11279.
    [51]Joseph Sambrook ,David W. Russell. Molecular cloning. A laboratory manual (3nd) . New York : Cold spring harbor laboratory press , 2001 :512
    [52]Kasamo ,K., Kagita, F.,Yamanishi, H.,Sakaki ,T. Low temperature-induced changes in the thermotropic properties and fatty acid composition of the plasma membrane and tonoplast of cultured rice(Oryza sativa L)cells[J]. Plant Cell Physiol, 1992, 33:609-616.
    [53]Kasamo, K. Response of tonop last and plasmamembrane ATPases in chilling-sensive and -insensive rice (Oryza sativa L. ) culture cells to low temperature. Plant Cell Phy siol. , 1988, 29: 1085- 1094.
    [54]Kikuch I K, Ueguchi-Tanakam, Yoshida T K, et al. Molecular analysis of the NAC gene family in rice. Mol Gen Genet, 2000, 262 (6) : 1047 - 1051.
    [55]Kim HJ ,Ryu H ,Hong S H , et al . Cytokin inmediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA , 2006 ,103 (3) :814-819
    [56]Koornneef M , Leon-Kloo stezial K M , Schwartz S H, et al. The genetic and molecular dissection of abiscisic acid biosyethesis and signal transductin in Arabidopsis. Plant Physiol. Biochem. , 1998, 36: 83-89.
    [57]Kurkela S, F ranck M. Cloning and characterization of a cold- and ABA -inducible Arabidopsis gene. Plant Mol.Biol., 1990, 15: 137-144.
    [58]Letourneux C et al. EMBO J, 2006, 25(4): 727-738
    [59]Levitt J Responses of plants to environmental stresses. 1980,Vo 11. 2nd edn. Academic Press.
    [60]Leyva, A.,Jarillo ,J. A. , Salinas, J., et al. Low temperature induces the acclimation of mRNA in Arabidopsis thaliana, a chilling-to lerant plant. Plant Physiol. , 1995, 101: 833- 837.
    [61]Liang P , Pardee A B. Differential display of eukaryotic mes2senger RNA by means of t he polymerase chain reaction.Science ,1992 (257) :967-971
    [62]Luis G,Luisa M C,Cristina M O.Phanetic characterization of plum cultivars by high multiplex ratio marers:amplified fragment lenth polymorphisms and inter-simple sequence repeats.J Amer Soe Hort Sei,2001,126(1):72-77.
    [63]Luo M , Liu J , Mohapatra S, et al. Characterization of a gene fam ily encoding abscisic acid and environmental stress-inducible proteins of alfalfa. J. Biol. Chem. , 1992, 267: 15367-15374.
    [64]Lyons J M, Raison J K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury.Plant Physiol.1970,45(4):386-389
    [65]Lyons J.M. Chilling injury in Plants.Ann Rev Plant Physiol. 1973, 24: 445-528.
    [66]Maguire T L,Peakall R,Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina(Forsk.)Vierh.(Avicenniaceae)detected by AFLPs and SSRs.Theoretical and Applied Genetics, 2002, 104:388-398
    [67]Martin C, Paz - Ares J. MYB transcription factors in plants .Trends Gene, 1997, 13: 67 - 73.
    [68]Mayer T E, Hamann G F, Baranczyk J, et al. Dynamic CT Perfusion Imaging of Acute Stroke . American Journal of Neuroradiology, 2000, 21(8): 1441-1449.
    [69]Meissner R C, Jin H,Cominell I E, et al. Function search in a large transcription factor gene family in Arabidopsis: Assessing the potential ofreverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell, 1999, 11: 1827 - 1840.
    [70]Milbourne D,Meyer R,Bradshaw J E. Comparison of PCR-based marker systems for the analysis of genetic relationship in cultivated potato.Mol. Breeding, 1997, (3):127-136
    [71]Mizoguchi T, Irie K, H irayama T, et al. A gene encoding a mitogen-activated protein kinase Kinase kinase is induced simultaneously withgenes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana.Proc. Natl. Acad. Sci. USA , 1996, 93: 765- 769.
    [72]Money T , Reader S , Qu L J , Dunford R P , Moore G, Qu LJ . AFLP-based mRNA fingerprinting . Nucleic Acids Research ,1996 (24) :2616-2617
    [73]Monroy A F, Castongguay Y, L aberge S, et al. A new cold-induced A lfalfa gene is associated with enhanced hardening at subzerotemperature. Plant Physiol. , 1993, 102: 873- 879.
    [74]Monroy A F, Sangwan V ,Dh indsa R S. Low temperature signal transduction during cld acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J. , 1998, 13: 653- 660.
    [75]Morillo S A , Tax F E. Functional analysis of receptor-like kinases in monocot s and dicot s . Curr. Opin. Plant Biol. ,2006 ,9 (5) :460- 469.
    [76]Mukhopadhyay A,Vij S,Tyagl A K. Proc Nati Acad Sci USA,2004,101:6309-6314.
    [77]Nagaoka T,OgihareY. Applicability of inter simper sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet., 1997,94:597-602
    [78]Nam K H , Li J . BRI1PBAK1 , a receptor kinase pair mediatingbrassinosteroid signaling. Cell , 2002 , 110 (2) : 203-209
    [79]Neven ,L .G., Haskell, D. W. , Hofig, A. , et al. Characterization of a gene fo r sp inach gene responsive to low temperature and water stress. Plant Mol. Biol. , 1993, 21: 291- 305
    [80]Niknam S R,McComb Jen.Cold tolerance screening of selected Australian woody species- a review.Forest Ecdogy and Management,2000,(139):1-19.
    [81]Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling . Cell Signal, 1999, 11 (8) : 545-554.
    [82]Olsen A N, Ernst H A, Leggio L L, et al. NAC transcrip tion factors: structurally distinct, functionally diverse . Trends Plant Sci, 2005, 10 (2) : 79 - 87.
    [83]Ooka H, Satoh K, Do I K, et al. Comp rehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana . DNA Res, 2003, 10 (6) : 239 - 247.
    [84]Palmer J D,Shields C R,Ohen D B and Orton T J. Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor.Appl.Genet, 1983,65:181-189
    [85]Patterson,B.D.,et al. Phytochem. 1978,17:1089
    [86]Patzak J. Characterization of Czech hop(Humulus lupulus L.)genotypes by molecular methods.ROSTLINNA VYROBA, 2002,48(8):343-350
    [87]Paul C,Wachira F N,Powell, Diversity and genetic differentiation among populations of India and Kenyan tea(Camellia sinensis(L.)O.Kuntze)reveals by AFLP markers.Theoretical and Applied Genetics, 1997.94:255-263
    [88]Polisensky D H, Braam J. Cold-shock regulation of the Arabid opsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol. , 1996, 111: 1271- 1279.
    [89]Prasad T K,A ndersonM K, M artin B A , et al. Evidence fo r ch illing2induced oxidative stress in maize seedlings and a regulato ry ro le fo rhydrogen peroxide. P lant Cell, 1994, 6: 65- 74.
    [90]Prevost,A.,Wilkinson,M.J. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor.Appl.Genet., 98:107-112
    [91]Riechmann J L, Heard J , Martin G, et al. A rabidopsis transcrip tion factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290 (5499) : 2105 - 2110.
    [92]Roder M S,Korzun V,Wendehake K.,Plaschke J,Tixier M H,Leroy P,and Ganal M W.A microsatellite map of wheat,Genetics, l 998,149(4):2007-2023
    [93]Ruvolo PP et al. J Biol Chem, 2002, 277(25): 22847-22852
    [94]Sankar A A,Moore G A.Evaluation of inter·simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map.Theor. Appl. Genet.,2001,102: 206-214.
    [95]Schneiderbauer A ,Sandermann HJr ,Ernst D. Isolation of functional RNA from plant tissues rich in phenolic compounds. Anal Biochem, 1991 ,197 : 91-95
    [96]Shoemaker, R .C.,Specht, J .E. 1995 .Integration of the soybean molecular and classical genetic linkage groups. Crop Science, 35:436-446
    [97]Somervile C. Direct tests of the role of membrane lipid composition in low temperature-induced photo-inhibition and chilling sensitivity in plants andcyanobacteria . Proc Natl Acad Sci USA , 1995 , 9(2) : 6215-6218.
    [98]Souer E ,Houwe Lingen V A ,Kloos D ,Mol J ,Koes R. The noapical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries .Cell , 1996 ,85 (2) :159 - 170.
    [99]Steponkus P L Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant. Physiol. , 1984, 35: 543- 584.
    [100]Steponkus P L, Uemura M ,Webb M S. Membrane destabilization during freeze-induced dehydration. Curr. Topics. Plant. Phy siol. , 1993,10: 37- 47.
    [101]Stockinger E J , Gilmour S J , Thomashow M F. A rabid op sis thaliana CBF1 encodes an AP2 domain-containing transcrip tional activato rthat binds to the C-repeat-DRE, a cisacting DNA regulato ryelement that stimulates transcription in response to low temperature andwater deficit. Proc. Natl. Acad. Sci. USA , 1997, 94: 1035-1040.
    [102]Su X, Gibor A.A method for RNA isolation from marinemacro - algae. Anal. Biochem , 1988 ,174 :650 - 657
    [103]Szmidz, A.E. and Wang X.R.. 1991.Genetic Variation in European Populations of Forest Tree. Frankfurt:
    [104]Sauerlander’s Verlag, 79-91
    [105]Tahtiharju S, Sangwan V , Monroy A F, et al. The induction of kin genes in cold-acclimation Arabidopsis thaliana. evidence of arolefo rcalcium. Planta, 1997, 203: 442- 447.
    [106]Thomashow, M. F. Plant cold acclimation: Freezing to lerance genes and regulation mechanisms. Annu. Rev. Plant Physiol. Plant Mol.Biol. , 1999, 50: 571-599.
    [107]Torii KU , Mitsukawa N ,Oosumi T , et al . The arabidopsis ERECTAgene encodes a putative receptorprotein kinase with extracellular leucine-rich repeats . Plant Cell ,1996 ,8(4) :735-746
    [108]Torres ,A. M. Identifying Rose cultivars using random amplified polymorphic DNA markers. HortScience, 1993.28(4):333-334
    [109]Tsumura Y,Ohba K,Strauss S H. Diversity and inheritance of inter-simple seqence polymorphisms in Douglas-fir(Pseudotsuga menziesii)and suge (Cryptomeria japonica). Theoretical and Applied Genetics, 1996,92:40-45
    [110]Uemura M , Joseph R A , Steponkus P L. Cold acclimation of A rabidopsis thaliana. Effect on plasma mambrane lipid composition and freeze-induced lesions. Plant Phy siol. , 1995, 109: 15- 30.
    [111]Vendramin G G,Ziegenhagen B. Characterization and inheritance of polymorphic loci by synthetic tandem repeats of short oligonucleotides. Electrophoresis, 1997,12:134-140
    [112]Virk P S, Zhu J, Newbury H J. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice(Oryza sativa) germplasm,Euphytica, 2000,112:275-284
    [113]Virk P S,Zhu J,Newbury H J. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice(Oryza sativa) germplasm,Euphytica, 2000,112:275-284
    [114]Vos P,Hogers R,Bleeker M,Reijans M. AFLP: a new technique for DNA fingerprinting, Nucleic Acids. Res., 1995.23:4407-4414
    [115]Wagner D G ,Furnier G R,Saghai-Maroof M.A.,Williams S.M,Dancik D.P.and Allard R.W. . Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. 1987. Proc. Natl. Acad. Sci.USA, 84:2097-2100
    [116]Walker J C. Structure and function of t he receptor-like protein kinases of higher plant s . Plant Mol . Biol. , 1994 , 26 (5) : 1 599 -1 609.
    [117]Wanner, L .A., Junttila, O. Cold-induced freezing to lerance in Arabidopsis. Plant Physiol. , 1999, 120: 391- 400.
    [118]Warren G, McKown R, M arin A , et al. Isolation of mutations affecting the development of freezing to lerance in Arabidopsis thaliana(L. )Heynh. Plant Physiol. , 1996, 111: 1011- 1019.
    [119]Weising K,Nybom H,Wolff K,Meyer W. DNA fingerprinting in plants and fungi. 1995,CRC Press,Inc.,Boca Raton
    [120]Weissenbach J. A second generation linkage map of the human genome based on highly informative microsatellite loci. Gene, 1993, 135:275-278
    [121]Williams J G K, Kubelik A R, Livak K J, et al. Nuci Aci Res, 1990,18:6531-6535
    [122]Wilocx P I& Sederoff R R. Detection of a major for resistance to fusiform rust disease in loblolly pine by genomice mapping. Applied Biological Sciences. 1996,93:3859-3864
    [123]Wolfe, A. D.,Xiang Q Y,Kephart, S.Diploid hybrid speciation in Penstemon (Screphulariaceae) Proc Natl Acad Sci USA,1998,95:5112-5115.
    [124]Wu K S,Jones R,.Danneberger L ,Scolnik P A. Detection of microsatellite polymorphisms without cloning. Nucleic.Acids.Res., 1994. 22:3257-3258
    [125]Xin, Z., Browse, J. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell and Envrionment, 2000, 23: 893-902.
    [126]Xu Y and Paul ,S. Low temperature treatments induce an increase in the relative content of both linolenic andγ3-hexadecenoic acids in thylakoid membrane phosphatidylglycerol of squash cotyledons. Plant and Cell Physiol,1997,38(5):611-618.
    [127]Yan H J,Dai S L,Wu N H.RAPD analysis of natural population of Acanthopanax brachypus. Cell Research, 1997,7(1):99-106
    [128]Yoshiba Y, Kiyo sue T, Katagiri T, et al. Correlation between the induction of a gene fo r delta-1-pyrroline-5- carboxylate synthetase and the accumulation of proline in A rabidop sis thaliana under o smo tic stress. Plant Jou rnal, 1995, 7: 751- 760.
    [129]Zabeau M,Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting1993.
    [130]Zhang X R. Leucine-rich repeat receptor-like kinases in plants. Plant Mol . Biol. Rep. , 1998 ,16 (4) :301 - 311.
    [131]Zhao Wei-Guo,Miao Xue-Xia, Zang Bo, Zhang Lin, et al. Construction of Fingerprinting and Genetic Diversity of Mulberry Cultivars in China by ISSR Markers. Acta Genetica Sinica, 2006, 33 (9):851–860
    [132]Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics. 1994,20:176-783
    [133]哀建国,邱英雄,余久华,陈小荣等.百山祖冷杉的ISSR分析优化和遗传多样性初步研究.浙江大学学报(农业与生命科学版), 2005,31(3):277-282,
    [134]陈灵芝.中国生物多样性现状及其保护对策.北京:科学出版社,1993.
    [135]陈银华,韩淑梅,沙爱华,朱红林等. cDNA-AFLP法筛选红树植物盐应答基因.中国农业科学, 2008, 41(12): 4257-4263
    [136]丁丽亚,金则新,李钧敏.短柄袍ISSR-PCR反应体系的优化.福建林业科技,2006,33(1):
    [137]方开泰,马长兴.正交与均匀实验设计.北京:科学出版社
    [138]方开泰,马长兴.正交与均匀实验设计[EB/OL].http://www.math.hkbu.edu.hk/Uniform Design (FANG Kai-tai, MA Chang-xing. The Orthogonal and Uniform Design [EB/OL]) 2004-10-14
    [139]冯建灿,张玉洁,杨天柱.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响.林业科学研究,2002,15(2):197-202.
    [140]高三红,王峥峰,张军丽.鼎湖山厚壳桂Cryptocaryachinensis不同年龄级种群遗传多样性.中山大学学报(自然科学版) , 2005, 44 (6) : 209-212.
    [141]葛颂等.八面山银杉林的遗传多样性和群体分化.植物学报,1997,39(3):266-271
    [142]葛永奇,邱英雄,丁炳扬,傅承新.孑遗植物银杏群体遗传多样性的ISSR分析.生物多样性, 2003,11(4):276-287
    [143]龚明,刘又良.低温下稻苗中蛋白质及游离脯氨酸的变化.植物生理学通讯.1989,(4):18-22.
    [144]龚木荣,李忠正.值得大力推广的造纸速生材—相思木.中华纸业, 2001 , 22 (12) : 42-44.
    [145]谷俊涛,鲍金香,王效颖,郭程瑾等.利用cDNA-AFLP技术分析小麦应答低磷胁迫的特异表达基因.作物学报, 2009, 35(9): 1597?1605
    [146]顾红雅,瞿礼嘉,明小天.植物基因与分子操作.北京:北京大学出版社,1995.
    [147]郭丽琼,林俊芳,杨丽卿.单酶切cDNA-AFLP改良法分离草菇冷诱导基因.菌物学报, 2004, 23(2):
    [148]郭子武,李宪利,高东升等.植物低温胁迫响应的生化与分子生物学机制研究进展.中国生态农业学报. 2004 , 12(2):54-57.
    [149]何开跃,李晓储,黄利斌等.冷冻胁迫对福建柏苗可溶性糖和丙二醛(MDA)含量的影响.江苏林业科技,
    [150]何平.真核生物中的微卫星及其应用.遗传,1998,20;42- 47.
    [151]何若锰主编.植物低温逆境生理.北京:中国农业出版社,1995.
    [152]何正文,刘运生,陈立华.正交设计直观分析法优化PCR条件.湖南医科大学学报,1998,23(4):403-404.
    [153]洪棋斌,裴炎.大麦DNA单限制性酶切选择性扩增多态性技术及其优化.遗传,2001, 23(5):477-479
    [154]侯渝嘉,何桥,梁国鲁,李品武等.茶树杂交后代的ISSR分析.西南农业大学学报(自然科学版) 2006, 28(2): 267-270
    [155]黄福平,梁月荣,陆建良,陈荣冰.应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱.茶叶科学, 2006, 26(3): 171-176
    [156]黄有军,周丽,陈芳芳,周秦等.山核桃成花过程基因表达的cDNA-AFLP分析.浙江林学院学报2009, 26 (3): 297 - 301
    [157]黄月华,徐建民,余雪标.低温胁迫对桉树代谢的影响.热带农业科学, 2005,25(5):24-28
    [158]简令成,董合铸,孙龙华.番茄子叶细胞内三磷酸腺苷酸活性的超微结构定位及其在冷害中的变化.植物学报. 1981, 23(4): 257-261.
    [159]简令成,孙龙华,孙德兰.小麦脂膜及液泡膜的ATP酶活性在抗寒锻炼中的变化.实验生物学报, 1983,16(2):133-145
    [160]简令成.植物生理生化进展, 1987, (5) : 1-16.
    [161]金凤,陈岽顺,邹爱兰.月季ISSR反应体系的优化.江苏农业科学,2006,(1):72-75.
    [162]康向阳.杨树染色体数目和形态观察.甘肃农业大学学报,1996,1:67-70
    [163]李艳,朱柏芳,江玉梅,鲁顺保等.江西穗花杉自然居群遗传多样性的ISSR分析.南昌大学学报, 2008, 32(4): 405-408
    [164]李大志,陈霄,邓子牛,杨宇红等.应用cDNA-AFLP技术分离应答BABA诱导的番茄抗病相关基因.湖南农业大学学报(自然科学版), 2007, 33(1): 32-36
    [165]李海生. ISSR分子标记技术及其在植物遗传多样性分析中的应用.生物学通报,2004,39(2):19-21
    [166]李纪元.金合欢属植物资源在我国亚热带的引种潜力.福建林学院学报,2002,22(3):283—288.
    [167]李绍臣东北主栽杨树品种的ISSR分析2004硕士学位论文[168廖文芳,夏念和,邓云飞.华木莲的遗传多样性研究.云南植物研究,2004,26(1):58-64.
    [169]刘蕾,杜海,唐晓凤,等.MYB转录因子在植物抗逆胁迫中的作用及其分子机理.遗传, 2008, 30 (10) : 1265 - 1271.
    [170]刘丽,马永毅,张志明,潘光堂等.利用cDNA-AFLP分析纹枯病菌诱导的玉米差异表达基因.植物病理学报, 2009, 39 (4): 385-391
    [171]刘树兵,王洪刚.植物的微卫星标记及其应用.山东农业大学学报(自然科学版). 2002,33 (1): 112-116
    [172]刘威生,冯晨静,杨建民,刘冬成等.杏ISSR反应体系的优化和指纹图谱的构建.果树学报, 2005, 22(6):
    [173]柳展基,邵凤霞,唐桂英.植物NAC转录因子的结构功能及其表达调控研究进展.西北植物学报,2007,27(9):1915-1920.
    [174]卢圣栋现代分子生物学实验技术.北京:高等教育出版社,1993.
    [175]陆旺金,李雪萍,季作樑.植物耐寒性的诱导及其与蛋白质的合成、基因的表达的关系.华南农业大学学报, 2000, 21(1): 82-85
    [176]路丙社,白志英,李会平,崔建州等.水分胁迫对阿月浑子幼苗叶片膜脂过氧化和膜磷脂脱酷化反应的影响.果树学报,2004, 21(1): 33-36.
    [177]罗焕亮,徐位力,李建忠.马占相思对低温胁迫适应性的研究.华南农业大学学报,2002,23(2):51-53.
    [178]罗正荣,章文才.应用Logistic方程测定柑橘抗冻力的探讨.果树科学,11(2):100-102
    [179]秘彩莉,张学勇,温小杰,刘旭.利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C.中国农业科学, 2006, 39(9): 1736-1742
    [180]那冬晨,杨传平,姜静,夏德安.利用ISSR标记分析兴安落叶松种源的遗传多样性.林业科技,2006,31(1):1-4
    [181]潘文,周涵韬,陈攀.不同地区桐花树种群的分子遗传变异分析.厦门大学学报,自然科学版,2004,43(增刊):106-112.
    [182]钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报.2000,42(7):741-750
    [183]乔玉山,章镇,房经贵.李种质资源ISSR反应体系的建立.果树学报,2003,20(4):270-274.
    [184]邱芳,伏健民,金德敏,王斌.遗传多样性的分子检测.生物多样性,1998,6(2):143-150
    [185]邱英雄,傅承新,孔航恢.杨梅不同品种的ISSR分析.农业生物技术学报, 2002, 10(4):343-346.
    [186]萨姆布鲁克J ,弗里奇E F ,曼尼阿蒂斯T.分子克隆.北京:科学出版社,1992.
    [187]沈漫,王明麻,黄敏仁.植物抗寒机理研究进展.植物学通报,1997,14(2):1-8.
    [188]沈漫.不同温度条件下常春藤叶片磷脂变化比较分析.园艺学报,2003,30(4):431-435.
    [189]沈漫.常春藤质膜透性和内源激素与抗寒性关系初探.园艺学报,2005,32(l): 141-144.
    [190]盛良明,王化坤,徐春明,章镇等.白沙枇杷优良株系苏白1号的ISSR分析江苏农业科学, 2006, 3: 97-98
    [191]史胜青,张守攻,李春秀,汪阳东等.运用cDNA-AFLP技术初步鉴定两种方法合成的cDNA的指纹图谱.
    [192]宋欣,杨文鹏,赵德刚.玉米双低频酶cDNA-AFLP体系建立.玉米科学, 2008,16(2): 12-15, 21
    [193]孙芳,杨敏生,张军,谷俊涛.刺槐不同居群遗传多样性的ISSR分析.植物遗传资源学报,2009,10(1):91-96
    [194]孙清鹏,许煌灿,张方秋,尹光天等.低温胁迫对大叶相思和马占相思某些生理特性的影响.林业科学研究, 2002, 15(1) :34-40.
    [195]汤章城.逆境条件下植物脯氨酸的积累及可能的意义.植物生理学报.1984,10(1):15-21.
    [196]唐士勇. Logistic方程在果树半致死温度测定中的应用.北方果树,1993,4:23-24
    [197]王明庥主编.林木遗传育种学.北京:中国林业出版社, 2001: 336-366
    [198]王榕楷,丁小球,胡玉佳.三种草坪草的耐寒性及其与超氧化物歧化酶作用关系初步研究.中国草地,2001,23(1):46-50.
    [199]王艳青,陈雪梅,李悦.植物抗逆中的渗透调节物质及其转基因工程进展.北京林业大学学报,2001,23(4): 66-70.
    [200]王玉成,张国栋,姜静.一种适用范围广的总RNA提取方法.植物研究,2006,26(1):84-87
    [201]徐位力,苏开君,王光,王伟平等.马占相思树苗对低温冻害的抗性研究.广西植物,25(5):489-493
    [202]宣继萍,章镇,房经贵,高志红等.苹果品种ISSR指纹图谱构建.果树学报, 2002,19(6):421-423
    [203]杨建民,李艳华,杨敏生.几个仁用杏品种抗寒性比较研究.中国农业科学,1999,32(1):46-50
    [204]杨亚军,郑雷英,王新超.低温对茶树叶片膜脂脂肪酸和蛋白质的影响.亚热带植物科学,2005, 34(1): 5-9.
    [205]杨玉玲,马祥庆,张木清.不同地理种源杉木的分子多态性分析.热带亚热带植物学报,2009,17 (2) : 183-189
    [206]姚明哲,黄海涛,余继忠,陈亮. ISSR在茶树品种分子鉴别和亲缘关系研究中的适用性分析.茶树科学,2005, 25(2): 153-157
    [207]姚元干,石雷晖,杨建国,王淑英.辣椒耐热性与叶片质膜透性及几种生化物质含量的关系.湖南农业大学学报,2000,26(2):97-99.
    [208]余艳,陈海山,葛学军.简单重复序列区间(ISSR)引物反应条件优化与筛选.热带亚热带植物学报,2003, l1(1): 15-19.
    [209]詹夷生.闽北耐寒相思树种源选择研究初报.福建林学院学报,1999 ,19(2) :153- 156
    [210]张峰.AFLP银染法检测植物基因组多态性.细胞生物学杂志,1999,21(2): 98-100.
    [211]张海英,许勇,王永健.分子标记技术概述(上).长江蔬菜,2001,2: 4-6
    [212]张基德,李玉梅,陈艳秋.梨品种枝条可溶性糖、脯氨酸含量变化规律与抗寒性的关系.延边大学农学学报,2004,(04):281-255.
    [213]张莉,,江昌俊,,胥振国,,杨书运等.用cDNA-AFLP技术研究茶树种子在低温贮藏过程中差异基因的表达.安徽农业大学学报, 2008, 35 (3) : 319-323
    [214]张志良,瞿伟菁.植物生理学实验指导(第三版).北京:高等教育出版社,2003,256-258.
    [215]郑炳松,陈苗,褚怀亮,艾雪等.用cDNA-AFLP技术分析山核桃嫁接过程中的CcARF基因表达.浙江林学院学报, 2009, 26(4): 467 - 472
    [216]郑小林,,胡木林,罗晓莹,陈燕等.假俭草低温胁迫的伤害与适应.草业科学,2002,19(7):55-57.
    [217]朱柏芳,朱笃,邓荣根等.穗花杉ISSR引物反应条件的优化与筛选.植物研究,2006, 26(3):56-61
    [218]朱根海,刘祖棋,朱培仁.应用Logistic方程确定植物组织低温半致死温度研究.南京农业大学学报,1986 , 3:11-16
    [219]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001.
    [220]邹喻萍,蔡美琳,张志宪.矮牡丹的遗传多样性与保护对策.自然科学进展,1999a,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700