榆树—榆紫叶甲的化学通讯机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先通过顶空取样法对来源于寄主植物的信息化学物质进行了分析鉴定,包括健康完整的1年生榆苗、受不同虫口密度的榆紫叶甲成虫危害的榆苗和受不同虫口密度的榆紫叶甲幼虫危害的榆苗的挥发物进行分析,同野外寄主和非寄主的挥发物、家榆韧皮部萃取液的成分进行比较,并分析了挥发物的释放节律、影响挥发物释放的主要因素等。然后通过萃取法提取来源于榆紫叶甲虫体的信息化学物质,包括榆紫叶甲各龄幼虫体表、成虫和幼虫粪便以及取食前后雌雄二性榆紫叶甲成虫后肠的化学物质的鉴定,结合来源于植物的化学信息物质,分析二者的联系和交流。最后通过室内外生物测定,筛选出对榆紫叶甲有引诱作用的信息化学物质。
     受虫害诱导的榆苗的挥发物相比健康完整的榆苗不仅种类增加,而且释放量也增加。10头榆紫叶甲成虫危害后挥发物增加了benzyl benzoate、tmtt、(+)-longifolene、benzoic acid, butyl ester、methyl salicylate和2-heptanol 6种组分,40头榆紫叶甲成虫危害后挥发物增加了anisole、cis-3-hexenyl acetate、1-undecene、undecanal、methyl salicylate、linalool、caryophyllene、naphthalene,1,2-dimethyl-和tmtt 10种组分;20头榆紫叶甲幼虫危害后挥发物增加了2,4,6-tris(1,1-dimethylethyl) phenol、tmtt、cis-nerolidol、(+)-longifolene、caryophyllene、naphthalene, 1,2,3-trimethyl-4-propenyl-, (e)-、benzoic acid butyl ester、butanedioic acid dibutyl ester、methyl salicylate、linalool、2-heptanol和benzaldehyde 12种组分,40头榆紫叶甲幼虫危害后挥发物增加了anisole、benzaldehyde、cis-3-hexenyl acetate、1-undecene、methyl salicylate、linalool、undecanal、butylated hydroxytoluene、tmtt、heptadecane、和benzyl benzoate11种组分。虫害诱导之后的挥发物有一些是立即释放,如:绿叶气味cix-β-hexenyl acetate在40头成虫和40头幼虫危害后1h内就立即释放。而多数的挥发物组分则是在危害后8-9h的释放量达到最大,少部分是在危害后第三天释放量达到最大。野外家榆主要挥发物的释放基本遵循上午释放量逐渐增加,到中午时达到最大,在下午逐渐减少;在日夜交替的晚19:00-20:00这一时间段有一个爆发的规律。相比室内寄主挥发物的组成,野外寄主未检测到2-heptanol、anisole、benzaldehyde、β-caryophyllene、cis-3-hexenyl acetate和cis-β-ocimene这几种物质。韧皮部的成分增加了pentanal-2-methy、cis-2-peten-1-ol、hexanal、1,3-dimethyl benzene、methyl-pentylketo、myrcene、γ-terpinene、naphthalene, decahydro-2,6-dimethyl-、naphthalene, decahydro-2,3-dimethyl-、α-humulene、globulo、octadecane、nonadecane、n-eicosane和n-heneicosane 15种物质,其余13种物质和家榆的挥发物一致。但家榆挥发物中的β-caryophyllene、cis-3-hexenyl acetate、linalool、methyl salicylate、1-tridecene、cis-nerolidol、tmtt等是家榆韧皮部中没有的。
     从榆紫叶甲4个龄期幼虫的表皮中共检测到benzyl butyl ether、cis-2-peten-l-ol、n-octane、hexanal、benzene,1,2-dimethyl-、myrcene、benzeneacetaldehyde、phenylacetate、methyl benzoate、naphthalene, decahydro-2,6-dimethyl-、naphthalene, decahydro-2,3-dimethyl-、1-methyl naphthalene、tetradecane、hexadecen-1-ol, trans-9-、heptadecane、1,2-benzenedicarboxylic acid, diundecyl ester、nonadecane、tetracontane, 3,5,24-trimethyl-、dodecane,2,6,10-trimethyl-、-2-tetradecen-1-ol、1,2-benzenedicarboxylic acid, diundecyl ester、citronellylacetone、tetradecane,2,6,10-trimethyl-、dotriacontane、1-hexadecanol,2-methyl-、13-methylheptacosane 26种物质,其中1龄幼虫表皮的物质的量较少,4龄幼虫表皮一些化合物的量较高,与其他3龄相比有显著差异。榆紫叶甲后肠化学物质在取食前后雌雄二性都发生了变化,雌性在取食之后增加了cis-2-peten-l-ol、cyclohexane,1,4-dimethyl-, cis-、(-)-β-pinene、limonene、naphthalene、naphthalene, decahydro-1,5-dimethyl-、tetradecane,2,6,10-trimethyl-、1,2-benzenedicarboxylic acid, butyl 8-methylnonyl ester、dotriacontane、vitamin E、13-methylheptacosane 11种化合物,雄性取食之后增加了n-octane、styrene、α-thujene、camphene、3-carene、benzene, 1-ethynyl-4-methyl-、naphthalene、acenaphthylene、9,10-ethanoanthracene,9,10-dihydro-11,12-diacetyl-、vitamin E、dotriacontane 11种化合物。其中一些物质是寄主植物所具有的,如:cis-2-peten-1-ol、(-)-β-pinene、limonene、dotriacontane、tetradecane,2,6,10-trimethyl。榆紫叶甲成虫的粪便相比幼虫的粪便来说,含有更多的化合物。粪便中的limonene、cis-β-ocimene、α-pinene、phenyl acetate、linalool、methyl salicylate、α-farnesene、δ-cadinene、tmtt、nerolidol、n-hexadecane、heptadecane也是寄主植物所具有的;而benzene,1,2-dimethyl-、α-pinene、limonene、1-heptatriacotanol、dotriacontane、vitamin E是榆紫叶甲后肠的化合物。
     本文选取了13种化合物进行室内外生物测定。y形管的行为测定表明榆紫叶甲更喜欢受害24h之内的榆树挥发物,而在受害后第二天的挥发物和健康完整榆苗的挥发物比较时,则没有显著差异。室内触角电位、触角电位浓度实验和y形管实验都表明雌性榆紫叶甲对linalool、α-farnesene、dibutyl phthalate、indole和cis-3-hexen-1-ol的反应超过了其他几种物质,雄性榆紫叶甲对γ-terpinene、α-farnesene和β-caryophyllene的反应较强。雌性对0.1、10和100μg浓度的linalool的反应显著高于雄性。室外生物测定的结果也基本同室内结果一致,但多种因素影响使诱捕到的数量较少。混合化合物作为榆紫叶甲的引诱剂在野外还需要进一步进行研究。
In this paper, infochemicals from the plants were first analyzed and identified by the headspace sampling method. Volatiles from a year-old elm seedlings including intact and induced by adult and larvae Ambrostoma quadriimpressum of different population was identified. Comparing with volatiles from host and non-host in the field, and extract from elm's phloem, the release rhythm of volatile and the main factors of affecting the release of volatile were analysis. And then infochemicals from A. quadriimpressum by extraction, including the cuticular of larvae, the hindgut pre-and post feed and the feces produced by adults and larvaes. Combined with compounds from plants, chemical communication and link between the two were analysis. At last the bioassay in the lab and field was finished, so as to choosing suitable chemicals that lured adult A. quadriimpressum.
     Herbivore-induced volatiles increased both quantitative and qualitative compared to the undamaged intact elm, the volatiles induced by 10 adult A. quadriimpressum increased 6 chemicals which were benzyl benzoate, tmtt, (+)-longifolene, benzoic acid, butyl ester, methyl salicylate and 2-heptanol. The volatiles induced by 40 adults A. quadriimpressum increased 10 chemicals which were anisole, cis-3-hexenyl acetate,1-undecene, undecanal, methyl salicylate, linalool, caryophyllene, naphthalene,1,2-dimethyl-and tmtt. The volatiles induced by 20 larvaes A. quadriimpressum increased 12 chemicals which were 2,4,6-tris(1,1-dimethylethyl) phenol, tmtt, cis-Nerolidol, (+)-longifolene, caryophyllene, naphthalene, 1,2,3-trimethyl-4-propenyl-, (E)-, benzoic acid butyl ester, butanedioic acid dibutyl ester, methyl salicylate, linalool,2-heptanol and benzaldehyde. The volatiles induced by 40 larvaes A. quadriimpressum increased 11 chemicals which were anisole, benzaldehyde, cis-3-hexenyl acetate,1-undecene, methyl salicylate, linalool, undecanal, butylated hydroxytoluene, tmtt, heptadecane and benzyl benzoate. Some herbivore-induced volatile components were released immediately, such as green leaf odor, cis-3-hexenyl acetate released within 1h after 40 adults and 40 larvae induced. Release quantity reached the max when elm was damaged after 8-9h for most volatiles, whereas minority was reached the max when elm was damaged in the third day. Release of volatile for Ulmus pumila in the field followed the regulations that release quantity increased gradually in the morning, and reach the maximum at noon, and gradually reduced in the afternoon, there is an outbreak in day and night that is the time 19:00-20:00. Compared with volatiles in the lab, volatiles in the field increased 2-heptanol, anisole, benzaldehyde, (3-caryophyllene, cis-3-hexenyl acetate and cis-β-ocimene. Chemicals in the phloem inceased pentanal-2-methy, cis-2-peten-l-ol, hexanal 1,3-dimethyl benzene, methyl-pentylketo, myrcene, y-terpinene, naphthalene, decahydro-2,6-dimethyl-, naphthalene, decahydro-2,3- dimethyl-,α-humulene, globule, octadecane, nonadecane, n-eicosane and n-heneicosane, butβ-caryophyllene, cis-3-hexenyl acetate, linalool, methyl salicylate,1-tridecene, cis-nerolidol and tmtt from volatiles were not found in the phloem. There were 13 chemicals were in accordance with volatiles from elm.
     There are 26 chemicals from the cuticular of larvae A. quadriimpressum which were benzyl butyl ether, cis-2-peten-l-ol, n-octane, hexanal, benzene,1,2-dimethyl-, myrcene, benzeneacetaldehyde, phenyl acetate, methyl benzoate, naphthalene, decahydro-2,6-dimethyl-, naphthalene, decahydro-2,3-dimethyl-,1-methyl naphthalene, tetradecane, hexadecen-1-ol, trans-9-, heptadecane,1,2-benzenedicarboxylic acid, diundecyl ester, nonadecane, tetracontane, 3,5,24-trimethyl-, dodecane,2,6,10-trimethyl-, E-2-tetradecen-l-ol,1,2-benzenedicarboxylic acid, diundecyl ester, citronellylacetone, tetradecane,2,6,10-trimethyl-, dotriacontane,1-hexadecanol,2-methyl-,13-methyl heptacosane. Quality and quantity of infochemicals from 1st instar larvae is low, meanwhile quality and quantity of infochemicals from 4th instar larvae was the highest among each star, and had significant difference. The chemicals from the hindgut of female and male A. quadriimpressum changed pre-and post feed. For females cis-2-peten-1-ol, cyclohexane,1,4-dimethyl-, cis-, (-)-β-pinene, limonene, naphthalene, naphthalene, decahydro-1,5-dimethyl-, tetradecane,2,6,10-trimethyl-,1,2-benzenedicarboxylic acid, butyl 8-methylnonyl ester, dotriacontane, vitamin E,13-methylheptacosane were increased after feed, meanwhile for males, n-octane, styrene, a-thujene, camphene,3-carene, benzene, 1-ethynyl-4-methyl-, naphthalene, acenaphthylene,9,10-ethanoanthracene,9,10-dihydro-11,12-diacetyl-, vitamin E and dotriacontane were increased after feed. Some of these compounds were according with volatiles from elm, such as cis-2-peten-l-ol, (-)-β-pinene, limonene, dotriacontane and tetradecane,2,6,10-trimethyl. The compounds in the feces produced by adults were much than by larvaes,12 compounds which were limonene, cis-β-ocimene,α-pinene, phenyl acetate, linalool, methyl salicylate,α-farnesene,δ-cadinene, tmtt, nerolidol, n-hexadecane, heptadecane were according with volatiles from elm, moreover benzene,1,2-dimethyl-,α-pinene, limonene,1-heptatriacotanol, dotriacontane, vitamin E also were founding the hindgut of A. quadriimpressum.
     In this paper,13 compounds were chosen to conduct the bioassay in the lab and field. Experiments using the Y-tube olfactometer indicated that beetle-damaged elm seedlings were more attractive to additional beetles during the first 24 h of damage as compared with intact elm seedlings. Volatiles from feeding-damaged trees play important roles in attracting A. quadriimpressum. Electrophysiological and behavioral responses of male and female beetles to 13 semiochemical compounds from elm were investigated to determine their potential ecological functions prior to more detailed field studies. Electroantennograms (EAGs), EAG dose-response curves and Y-tube olfactometer bioassays using synthetic compounds revealed that females had a stronger response to linalool, a-farnesene, dibutyl phthalate, indole and cis-3-hexen-l-ol than to other compounds; males had a stronger response toγ-terpinene, a-farnesene and P-caryophyllene than to other compounds. EAG responses to linalool at doses of 0.1,10 and 100μg were significantly different between females and males. The results in the field were generally consistent with the results in the lab. But the quantity of A. quadriimpressum in the trap was less due to many factors. These factors could provide important information when synthetic attractants are evaluated as baits for controlling adult A. quadriimpressum.
引文
[1]Bernays EA. Neural limitations in phytophagous insects:Implications for diet breadth and evolution of host affiliation [J]. Annual Review of Entomology,2001, 46:703-727.
    [2]Chapman RF. Contact chemoreception in feeding by phytophagous insects [J]. Annual-Review of Entomology,2003,48:455-484.
    [3]Futuyma DJ. Some current approaches to the evolution of plant-herbivore interactions [J]. Plant Species Biology,2000,15:1-9.
    [4]Gardner SN, Agrawal AA. Induced plant defence and the evolution of counter-defences in herbivores [J]. Evolutionary Ecology Research,2002,4:1131-1151.
    [5]Fernandez P, Hilker M. Host plant location by Chrysomelidae [J]. Basic and Applied Ecology,2007,8:97-116.
    [6]Awmack CS, Leather SR. Host plant quality and fecundity in herbivorous insects [J]. Annual Review of Entomology,2002,47:817-844. doi:10.1007/s10886-006-9184-y
    [7]Hilker M, Meiners T. Early herbivore alert:Insect eggs induce plant defense [J]. Journal of Chemical Ecology,2006,32:1379-1397. doi:10.1007/s10886-006-9057-4.
    [8]Reddy VP, Guerrero A. Interactions of insect pheromones and plant semiochemicals [J]. Trends in Plant Science,2004,9 (5):253-261.
    [9]Landolt PJ, Phillips T W. Host plant influences on sex pheromone behavior of phytophagous insects [J]. Annual Review of Entomology,1997,42:371-391.
    [10]Szentesi A, Weber DC, Jermy T. Role of visual stimuli in host and mate location of the Colorado potato beetle [J]. Entomologia Experimentalis et Applicata,2002, 105:141-152.
    [11]Xue HJ, Yang XK. Common volatiles are major attractants for neonate larvae of the specialist flea beetle Altica koreana (Coleoptera:Chrysomelidae) [J]. Naturwissenschaften,2008,95:639-645. doi:10.1007/s00114-008-0367-y.
    [12]Kalberer NM, Turlings TCJ, Rahier M. Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants [J]. Journal of Chemical Ecology,2001,27:647-661.
    [13]Kalberer NM, Turlings TCJ, Rahier M. An alternative hibernation strategy involving sunexposed'hotspots', dispersal by flight, and host plant finding by olfaction in an alpine leaf beetle [J]. Entomologia Experimentalis et Applicata, 2005,114:189-196.
    [14]Gorb E, Gorb S. Effects of surface topography and chemistry of Rumex obtusifolius leaves on the attachment of the beetle Gastrophysa viridula [J]. Entomologia Experimentalis et Applicata,2009,130:222-228. doi: 10.1111/j.1570-7458.2008.00806.x
    [15]Gorb EV, Gorb SN. Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces [J]. Entomologia Experimentalis et Applicata,2002,105: 13-28.
    [16]Fawcett TW, Johnstone RA. Optimal assessment of multiple cues [J]. Proceedings of the Royal Society B,2003,270:1637-1643.
    [17]Baldwin IT, HaIitschke R, Paschold A, von Dahi CC, Preston CA. Volatile signaling in plant-plant interactions:talking trees in the genomicsera [J]. Science, 2006,311:812-815.
    [18]Runyon JB, Mescher MC, de Moraes CM. Volatile chemical cues guide host location and host selection by para-siticplants [J]. Science,2006,313:1964-1967.
    [19]Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT. Shared signals 'alarm calls'from plants increase apparency to herbivores and their enemies in nature [J]. Ecology Letters,2008,.11:24-34.
    [20]Held DW, Gonsiska P, Potter DA. Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae) [J]. Journal of Chemical Ecology,2003,96:81-87.
    [21]Bruce TJA, Wadhams LJ, Woodcock CM. Insect host location:A volatile situation [J]. Trends in Plant Sciences,2005,10:269-274.
    [22]Blight MM, Pickett JA, Wadhams LJ, Woodcock CM. Antennal reception of oilseed rape, Brassica napus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera:Curculionidae) [J]. Journal of Chemical Ecology,1995,21:1649-1664.
    [23]Bartlet E, Blight MM, Lane P, Williams IH. The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer [J]. Entomologia Experimentalis et Applicata,1997,85: 57-262.
    [24]Barata EN, Pickett JA, Wadhams LJ, Woodcock CM, Mustaparta H. Identification of host and nonhost semiochemicals of eucalyptus woodborer Phoracantha semipunctata by gas chromatography electroantennography [J]. Journal of Chemical Ecology,2000,26:1877-1895.
    [25]Van Loon JJA, Wang CZ, Nielsen JK, Gols R, Qui YT. Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour [J]. Entomologia Experimentalis et Applicata, 2002,104:27-34.
    [26]Wright GA, Smith BH. Variation in complex olfactory stimuli and its influence on odour recognition [J]. Proceedings of the Royal Society,2004, B271:147-152.
    [27]McIndoo NE. An insect olfactometer [J]. Journal of Economic Entomology,1926, 19:545-571.
    [28]DeWilde, J The olfactory component in host plant selection in the adult Colorado potato beetle(Leptinotarsa decemlineata Say) [J]. Symposium Biologica Hungarica,1976,16,291-300.
    [29]Visser JH, Ave DA. General green leaf volatiles in the olfactory orientation of Colorado beetle, Leptinotarsa decemlineata [J]. Entomologia Experimentalis et Applicata,1978,24:538-549.
    [30]Dickens JC. Sexual maturation and temporal variation of neural responses in adult Colorado potato beetles to volatiles emitted by potato plants [J]. Journal of Chemical Ecology,2000,26:1265-1279.
    [31]Puttick GM, Morrow PA, Lequesne PW. Trirhabda canadensis (Coleoptera: Chrysomelidae) responses to plant odors [J]. Journal of Chemical Ecology,1988, 14:1671-1686.
    [32]Morrow PA, Tonkyn DW, Goldburg RJ. Patch colonization by Trirhabda canadensis (Coleoptera:Chrysomelidae):Effects of plant species composition and wind [J]. Oecologia,1989,81:43-50.
    [33]Hibbard BE, Bjostad LB. Behavioral responses of western corn rootworm larvae to volatile semiochemicals from corn seedlings [J]. Journal of Chemical Ecology, 1988,14:1523-1539.
    [34]Metcalf RL, Lampman RL. Evolution of diabroticite rootwormbeetle (Chrysomelidae) receptors for Cucurbita blossom volatiles [J]. Proceedings of the National Academy of Sciences,1991,8.8:1869-1872.
    [35]Naranjo SE. Flight orientation of Diabrotica virgifera virgifera and D. barberi (Coleoptera:Chrysomelidae) at habitat interfaces [J]. Annals of the Entomological Society of America,1994,87:383-394.
    [36]Park IK, Lee SG, Shin SC, Kim CS, Ahn YJ. Feeding and attraction of Agelastica coerulea (Coleoptera:Chrysomelidae) to Betulaceae plants [J]. Journal of Economic Entomology,2004,97:1978-1982.
    [37]Garcia-Robledo C, Horvitz CC. Host plant scents attract rolled-leaf beetles to Neotropical gingers in a Central American tropical rain forest [J]. Entomologia Experimentalis et Applicata.2009,131:115-120. doi:10.1111/j.1570-7458.2009.00843.x.
    [38]Dicke M, Van Loon JJA. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context [J]. Entomologia Experimentalis et Applicata,2000,97: 237-249.
    [39]Dicke M. Induced indirect plant defence:communication. and exploitation in multitrophic context [J]. Mitteilungen der Deutschen Gesellschaft fur Allgemeine und Angewandte Entomologie,1998,11:453-464.
    [40]Dolch R, Tscharntke T. Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours [J]. Oecologia,2000,125:504-511.
    [41]Landolt PJ, Tumlinson JH, Alborn DH. Attraction of Colorado potato beetle (Coleoptera, Chrysomelidae) to damaged and chemically induced potato plants [J]. Environmental Entomology,1999,28(6):973-978.
    [42]Kendrick AP, Raffa KF. Sources of insect and plant volatiles attractive to cottonwood leaf beetles feeding on Hybrid Poplar [J]. Journal of Chemical Ecology,2006,32:2585-2594. doi:10.1007/s10886-006-9184-y.
    [43]Bolter CJ, Dicke M, van Loon JJA, Visser JH, Posthumus MA. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination [J]. Journal of Chemical Ecology,1997,23:1003-1023.
    [44]Peng C, Weiss MJ. Evidence of an aggregation pheromone in the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera, Chrysomelidae) [J]. Journal of Chemical Ecology,1992,18:875-884.
    [45]Cosse AA, Bartelt RJ, Zilkowski BW. Identification and electrophysiological activity of a novel hydroxy ketone emitted by male cereal leaf beetles [J]. Journal of Natural Products,2002,65:1156-1160.
    [46]Tansey JA, Mcclay AS, Cole DE, Keddie BA. Evidence for the influence of conspecific chemical cues on Aphthona nigriscutis (Coleoptera:Chrysomelidae) behaviour and distribution [J]. BioControl,2005,50:343-358.
    [47]Dickens, JC. Sexual contact influences orientation to plant, attractant in Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera:Chrysomelidae) [J]. Naturwissenschaften,2007,94:847-852. doi 10.1007/s00114-007-0261-z.
    [48]Loughrin JH, Manukian A, Heath RR, Tumlinson JH. Volatiles emitted by different cotton varieties damaged by feeding beet army worm larvae [J]. Journal of Chemical Ecology,1995,21:1217-1227.
    [49]Zilkowski BW, Bartelt RJ, Cosse AA, Petroski RJ. Male-Produced Aggregation Pheromone Compounds from the Eggplant Flea Beetle (Epitrix fuscula): Identification, Synthesis, and Field Biossays [J]. Journal of Chemical Ecology, 2006,32:2543-2558.
    [50]Cosse AA, Bartelt RJ, Zilkowski BW, Bean DW, Andress ER. Behaviorally active green leaf volatiles. for monitoring the leaf beetle, Diorhabda elongata, a biocontrol agent of saltcedar, Tamarix spp [J]. Journal of Chemical Ecology,2006, 32:2695-2708. doi:10.1007/s10886-006-9193-x.
    [51]娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制[J].生态学报,2000,20:1097-1106.
    [52]Andrews ES, Theis N, Lynn S. Adler pollinator and herbivore attraction to Cucurbita floral volatiles [J]. Journal of Chemical Ecology,2007,33:1682-1691. doi:10:1007/sl 0886-007-9337-7.
    [53]Cosse AA, Thomas BC. Electrophysiologically and behaviorally active volatiles of buffalo gourd root powder for corn rootworm beetles [J]. Journal of Chemical Ecology,1999,1(25),51-66.
    [54]Hammack L. Corn volatiles as attractants for northern and western corn rootworm beetles (Coleoptera:Chrysomelidae:Diabrotica spp.) [J]. Journal of Chemical Ecology,1996,22:1237-1253.
    [55]Andersen JF, Metcalf RL. Identification of a volatile attractant for Diabrotica and Acalymma species from the blossoms of Cucurbita maxima Duchesne [J]. Journal of Chemical Ecology,1986,12:687-699.
    [56]Metcalf RL, Lampman RL. Plant kairomones and kairomone mimetics in basic and applied research with Diabroticite rootworms [J]. Trends Entomol,1997,1: 49-62.
    [57]Petroski RJ, Hammack L. Structure activity relationships of phenyl alkyl alcohols, phenyl alkyl amines, and cinnamyl alcohol derivatives as attractants for adult corn rootworm (Coleoptera:Chrysomelidae:Diabrotica spp.) [J]. Environmental Entomology,1998,27:688-694.
    [58]Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles:recent advances and future perspectives [J]. Critical Reviews in Plant Sciences,2006,25:417-440.
    [59]Pichersky E, Noel JP, Dudareva N. Biosynthesis of plant volatiles:nature's diversity and ingenuity [J]. Science,2006,311:808-811.
    [60]Dickens JC, Jang EB, Light DM, Alford AR. Enhancement of insect pheromone responses by green leaf volatiles [J]. Naturwissenschaften,1990,77:29-31, doi: 10.1007/BF01131792.
    [61]Miiller C, Hilker M. The effect of a green leaf volatile on host plant finding by larvae of a herbivorous insect [J]. Naturwissenschaften,2000,87:216-219.
    [62]Rao S, Cosse AA, Zilkowski BW, Bartelt RJ. Aggregation pheromone of the cereal leaf beetle:field evaluation and emission from males in the laboratory [J]. Journal of Chemical Ecology,2003,29:2165-2175.
    [63]Meiners T, Hacker N, Anderson P, Hilker M. Response of the elm leaf beetle to host plants induced by oviposition and feeding:the infestation rate matters [J]. Entomologia Experimentalis et Applicata,2005,115:171-177.
    [64]Meiners T, Hilker M. Induction of plant synomones by oviposition of a phytophagous insect [J]. Journal of Chemical Ecology,2000,26:221-231.
    [65]Hibbard BE, Higdon ML, Duran DP, Schweikert YM, Ellersieck MR. Role of egg density on establishment and plant-to-plant movement by western corn rootworm larvae (Coleoptera:Chrysomelidae) [J]. Journal of Economic Entomology,2004, 97:871-882.
    [66]Peng C, Bartelt RJ, Weiss M. Male crucifer flea beetles produce an aggregation pheromone [J]. Physiological Entomology,1999,24:98-99;
    [67]Oliver J E, Dickens JC, Glass TE. (S)-3,7-dimethyl-2-oxo-6-octene-1,3-diol:an aggregation pheromone of the Colorado potato beetle, Leptinotarsa decemlineata [J]. Tetrahedron Letters,2002,43:2641-2643.
    [68]Smyth RR, Hoffmann MP. A male-produced aggregation pheromone facilitating Acalymma vittatum (Coleoptera:Chrysomelidae) early-season host plant colonization [J]. Journal of Insect Behavior,2003,16:347-359.
    [69]Chuman T, Guss PL, Doolittle RE, McLaughlin JR, Krysan JR, Schalk JM, Tumlinson JH. Identification of female produced sex pheromone from banded cucumber beetle, Diabrotica balteata LeConte (Coleoptera:Chrysomelidae) [J]. Journal of Chemical Ecology,1987,13:1601-1616.
    [70]Zhang ZQ, McEvoy PB. Attraction of Longitarsus jacobaeae males to cues associated with conspecific females (Coleoptera:Chrysomelidae) [J]. Environmental Entomology,1994,23:732-737.
    [71]Jermy T, Butt BA. Method for screening female sex-pheromone extracts of the Colorado potato beetle [J]. Entomologia Experimentalis et Applicata,1991,59: 75-78.
    [72]Cuthbert FP, Reid JR. Studies of a sex attractant of the banded cucumber beetle [J]. Journal of Economic Entomology,1964,57:247-250.
    [73]Guss PL, Sonnet PE, Carney RL, Branson TF, Tumlinson JH. Response of Diabrotica virgifera vrgifera, D. v. zeae, and D. porracea to stereoisomers of 8-methyl-2-decyl propanoate [J]. Journal of Chemical Ecology,1984,10:1123-1132.
    [74]Pierce AM, Pierce HDJR, Oehlschlager AC, Borden JH. Macrolide aggregation pheromones in Oryzaephilus surinamensis and O. mercator (Coleoptera: Cucujidae) [J]. Journal of Agricultural and Food Chemistry,1985,33:848-852.
    [75]Wong JW, Verigin V, Oehlschlager AC, Borden JH, Pierce HDJR, Pierce AM, Chong L. Isolation and identification of two macrolide pheromones from the frass of Cryptolestes ferrugineus [J]. Journal of Chemical Ecology,1983,9:451-474,
    [76]Bartelt RJ, Cosse AA, Zilkowski BW, Weisleder D, Momany FA. Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles [J]. Journal of Chemical Ecology,2001,27:2397-2423.
    [77]Muto S, Bando M, Mori K. Synthesis and stereochemistry of the four himachalene type sesquiterpenes isolated from the flea beetle (Aphthona flava) as pheromone candidates [J]. European Journal of Organic Chemistry,2004,2004: 1946-1952.
    [78]Mori K. Synthesis of (R)-ar-turmerone and its conversion to (R)-ar-himachalene, a pheromone component of the flea beetle:(R)-ar-himachalene is dextrorotatory in hexane, while levorotatory in chloroform [J]. Tetrahedron:Asymmetry,2005, 16:685-692.
    [79]Bartelt RJ, Weisleder D, Momany FA. Total synthesis of himachalene sesquiterpenes of Aphthona and Phyllotreta flea beetles [J]. Journal of Synthetic Organic Chemistry,2003,1:117-123.
    [80]Soroka JJ, Bartelt RJ, Zilkowski BW. Cosse AA. Responses of the flea beetle Phyllotreta cruciferae to synthetic aggregation pheromone components and host plant volatiles in field trials [J]. Journal of Chemical Ecology,2005,31:1829-1843.
    [81]Cosse AA, Bartelt RJ, Zilkowski BW, Bean DW, Petroski RJ. The aggregation pheromone of Diorhabda elongata, a biological control agent of saltcedar (Tamarix spp.):Identification of two behaviorally active components [J]. Journal of Chemical Ecology,2005,31:657-670.
    [82]Bartelt RJ, Cosse AA, Zilkowski BW, Weisleder D, Grode SH, Wiedenmann RN, Post SL. Dimethylfuran-lactone pheromone from males of Galerucella calmariensis and Galerucella pusilla [J]. Journal of Chemical Ecology,2006, 32(3):693-711. doi:10.1007/s10886-005-9026-3.
    [83]Toth M, Csonka E, Bartelt RJ, Cosse AA, Zilkowski BW, Muto S, Mori K. Pheromonal activity of compounds identified from male Phyllotreta cruciferae: Field tests of racemic mixtures, pure enantiomers, and combinations with allyl isothiocyanate [J]. Journal of Chemical Ecology,2005,31:1-16.
    [84]Dickens JC. Behavioural responses of larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera:Chrysomelidae), to host plant volatile blends attractive to adults [J]. Agricultural and Forest Entomology,2002,4:309-314.
    [85]Krysan JL, Mcdonald IC, Tumlinson JH. Phenogram based on allozymes and its relationship to classical biosystematics and pheromone structure among eleven Diabroticites (Coleoptera:Chrysomelidae) [J]. Annals of the Entomological Society of America,1989,82:574-581.
    [86]Hammack L. Single and blended maize volatiles as attractants for Diabroticite corn rootworm beetles [J]. Journal of Chemical Ecology,2001,27(7):1373-1390.
    [87]Ventura MU, Martins MC, Pasini A. Responses of Diabrotica speciosa and Cerotoma arcuata tingomariana (Coleoptera:Chrysomelidae) to volatile attractants [J]. Florida Entomol,2000,83:403-410.
    [88]Petersonl MA, Dobler S, Larson EL, Juarez D, Monsen KJ, Francke W. Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera:Chrysomelidae) [J]. Chemoecology,2007, 17,87-96.
    [89]王振华,赵晖,李金甫,曾宪东,陈建军,冯汉利,徐家文.植物源挥发物对昆虫信息素的增效作用及其增效机制[J].应用生态学报,2008,19(11):2533-2537.
    [90]Dickens JC. Plant volatiles moderate response to aggregation pheromone in Colorado potato beetle [J]. Journal of Applied Entomology,2006,130(1):26-31. doi:10.1111/j.1439-0418.2005.01014.x
    [91]Stenberg JA, Ericson L. Visual cues override olfactory cues in the host-finding process of the monophagous leaf beetle Altica engstroemi [J]. Entomologia Experimentalis et Applicata,2007, 1(125):81-88.
    [92]Heisswolf A, Ulmann S, Obermaier E, Mitesser O, Poethke HJ. Host plant finding in the specialised leaf beetle Cassida canaliculata:an analysis of small-scale movement behaviour [J]. Ecological Entomology,2007,32(2):194-200.
    [93]Yang EC, Lee DW, Wu WY. Action spectra of phototactic responses of the flea beetle, Phyllotreta striolata [J]. Physiological Entomology,2003,28:362-367.
    [94]Arruda-Gatti ICd, Silva FACd, Ventura MU. Responses of Diabrotica speciosa to a semiochemical trap [J]. Brazilian Archives of Biology and Technology,2006, 49(6):975-980.
    [95]Gorb S, Gorb E, Kastner V. Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae) [J]. Journal of Experimental Biology, 2001,204:1421-1431.
    [96]Betz O. Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae) [J]. Journal of Experimental Biology, 2002,205:1097-1113.
    [97]Voigt D, Schuppert JM, Dattinder S, Gorb S. Sexualdi morphism der Haftfahigkeit an rauen Oberflachen bei Leptinotarsa decemlineata Say (Coleoptera, Chrysomelidae) [J]. Mitteilungen der Deutschen Gesellschaft fur Allgemeine und Angewandte Entomologie,2008,16:431-434.
    [98]Pelletier Y, Dutheil J. Behavioural responses of the Colorado potato beetle to trichomes and leaf surface chemicals of Solanum tarijense [J]. Entomologia Experimentalis et Applicata,2006,120:125-130.
    [99]Lam WKF, Pedigo LP. Effect of trichome density on soybean pod feeding by adult bean leaf beetles (Coleoptera:Chrysomelidae) [J]. Journal of Economic Entomology,2001,94:1459-1463.
    [100]Federle W, Rohrseitz K, Holldobler B. Attachment forces of ants measured with a centrifuge:better "wax-runners" have a poorer attachment to a smooth surface [J]. Journal of Experimental Biology,2000,203:505-512.
    [101]Brennan EB, Weinbaum SA. Effect of epicuticular wax on adhesion of psyllids to glaucous juvenile and glossy adult leaves of Eucalyptus globulus Labillardiere [J]. Australian Journal of Entomology,2001,40:270-277.
    [102]Gorb E, Haas K, Henrich A, Enders S, Barbakadze N, Gorb S. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment [J]. Journal of Experimental Biology,2005,208:4651-4662.
    [103]Gaume L, Gorb S, Rowe N. Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers [J]. New Phytologist,2002,156:479-489.
    [104]Nahrung HF, Allen GR. Intra-plant host selection, oviposition preference and larval survival of Chrysophtharta agricola (Chapius) (Coleoptera:Chrysomelidae, Paropsini) between foliage types of a heterophyllous host [J]. Agricultural and Forest Entomology,2003,5:155-162.
    [105]Tanaka M, Nakasuji F. Dynamic interaction between a leaf beetle, Galerucella nipponensis, and an aquatic plant, Trapajaponica. Ⅱ. Dispersal behavior of larvae [J]. Population Ecology,2002,44:1-6.
    [106]Muller C, Agerbirk N, Olsen CE, Boeve JL, Schaffner U, Brakefield PM. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athaliarosae [J]. Journal of Chemical Ecology,2001,27:2505-2516.
    [107]Endo N, Abe M, Sekine T, Matsuda K. Feeding stimulants of Solanaceae feeding lady beetle, Epilachna vigintioctomaculata (Coleoptera:Coccinellidae) from potato leaves [J]. Applied Entomology and Zoology,2004,39:411-416.
    [108]Tamura Y, Hattori M, Konno K, Kono Y, Honda H, Ono H, Yoshida M. Triterpenoid and caffeic acid derivatives in the leaves of ragweed, Ambrosia artemisiifolia L. (Asterales:Asteraceae), as feeding stimulants of Ophraella communa LeSage (Coleoptera:Chrysomelidae) [J]. Chemoecology,2004,14: 113-118.
    [109]Randlkofer B, Jordan F, Mitesser O, Meiners T, Obermaier E. Effect of vegetation density, height, and connectivity on the oviposition pattern of the leaf beetle Galeruca tanaceti [J]. Entomologia Experimentalis et Applicata,2009,132: 134-146. doi:10.1111/j.1570-7458.2009.00872.x
    [110]Stenberg JA, Axelsson EP. Host race formation in the meadowsweet and strawberry feeding leaf beetle Galerucella tenella [J]. Basic and Applied Ecology, 2008,9:560-567.
    [111]Goodwin BJ, Fahrig L. Effect of landscape structure on the movement behaviour of a specialized goldenrod beetle, Trirhabda borealis [J]. Canadian Journal of Zoology,2002,80:24-35.
    [112]Hannunen S. Vegetation architecture and redistribution of insects moving on the plant surface [J]. Ecological Modelling,2002,155:149-157.
    [113]Langellotto GA, Denno RF. Responses of invertebrate natural enemies to complex-structured habitats:a meta-analytical synthesis [J]. Oecologia,2004,139: 1-10.
    [114]Shaw MR. Habitat considerations for parasitic wasps (Hymenoptera) [J]. Journal of Insect Conservation,2006,10:117-127.
    [115]Heisswolf A, Obermaier E, Poethke HJ. Selection of large host plants for oviposition by a monophagous leaf beetle:Nutritional quality or enemy-free space? [J]. Ecological Entomology,2005,30,299-306.
    [116]萧刚柔/李亚杰.中国森林昆虫/榆紫叶甲.第二版[M].北京:中国林业出版社,1992:521-523.
    [117]安瑞军,李秀辉,张冬梅.榆紫叶甲生物学特性的研究[J].林业科技,2005,30(5):18-20.
    [118]李彬,苏元吉,李海山.牡丹江榆树新记录害虫——榆紫叶甲的生物学特性与防治[J].中国林副特产.2007,87(2):59.
    [1 19]梁成杰,舍楞,王建文,郭晋伟,张振盛,佟进义,史万林.两种菊酯农药防治榆紫叶甲试验[J].农药.1990,29(2):52-53.
    [120]史万林,童进义,梁春秀.榆紫叶甲的化学防治试验[J].林业科技.1993,18(1):24-25.
    [121]迟德富,苗建才,曲辉,邱立方,卜金祥.灭幼脲和氟幼灵防治榆紫叶甲的研究fJ].东北林业大学学报.1995,23(2):40-47.
    [122]安丽萍,许铁军,王威,迟莉,蒲子刚,李健.榆紫叶甲不同发育历期药剂防治[J].林业勘查设计.2006,4:35-38.
    [123]孟繁君,张大明,宋丽文,张晓军,李兴鹏,高长启.榆紫叶甲生物学特性及其防治技术[J].林业科技.2009,34:33-34.
    [124]萧刚柔/高长启,王志明,余恩裕.中国森林昆虫/蠋蝽.第二版[M].北京:中国林业出版社,1992:342-344.
    [125]钱范俊,郑孝如,裴玉芹.榆紫叶甲卵的天敌初步观察[J].昆虫天敌,1981,3:79-82.
    [126]高长启.关于榆紫叶甲(Ambrostoma quadriimpressum Motschulsky)综合防治技术的几项建议[J].吉林林业科技.1987,4:29-30.
    [127]迟莉,蒲子钢,王威.榆紫叶甲种群空间分布型及其应用[J].黑龙江八一农垦大学学报,2007,19(4):41-45.
    [128]暴学祥,王彬,白效耘.榆紫叶甲Ambrostoma quadriim-pressum脑及咽下神经节GABA阳性神经元分布模式的构建[J].东北师大学报(自然科学版),2007,39(4):1 10-116.
    [129]Visser JH. Host odor perception by phytophagous insects [J]. Annual Review of Entomology,1986,31:121-144.
    [130]阎凤鸣.化学生态学[M].北京:科学出版社,2003.
    [131]Rasmann S, Turlings TCJ. Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies [J]. Ecology Letters,2007,10:926-936.
    [132]徐伟,严善春.荣莉酸在植物诱导防御中的作用[J].生态学报,2005,25(8):2074-2082.
    [133]祝传书,赵惠燕.虫害诱导的植物挥发物[J].西北农林科技大学学报(自然科学版),2003,31:183-186.
    [134]Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science,2001,291:2141-2144.
    [135]Kessler A, Baldwin IT. Plant responses to insect herbivory:The emerging molecular analysis [J]. Annual Review of Plant Biology,2002,53:299-328.
    [136]Mumm R, Tiemann T, Varama M, Hilker M. Choosy egg parasitoids:specificity of oviposition-induced pinevolatiles exploited by an egg parasitoid of pine sawflies [J]. Entomologia Experimentalis et Applicata,2005,115:217-225.
    [137]Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F. Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids [J]. Journal of Experimental Biology,2004,207:47-53.
    [138]Manrique V, Jones WA, Williams LIII, Bernal JS. Olfactory responses of Anaphes iole (Hymenoptera:Mymaridae) to volatile signals derived from host habitats [J]. Journal of Insect Behavior,2005,18:89-104.
    [139]Arimura G, Kost C, Boland W. Herbivore-induced, indirect plant defences [J]. Biochimica et Biophysica Acta,2005,1734:91-111.
    [140]Birkett AM, Chamberlain K, Guerrieri E, Pickett JA, Wadhams LJ, Yasuda L. Volatiles from whitefly infested plants elicit a host-locating response in the parasitoid, Encarsia Formosa [J]. Journal of Chemical Ecology,2003,29:1589-1600.
    [141]Wei J, Wang L, Zhu J, Zhang S, Nandi O, Kang L. Plants attract parasitic wasps to defend themselves against insect pests by releasing hexenol [J]. PLoS One, 2007,2(9):e852.
    [142]Dicke M, Van Beek TA, Posthumus MA, Ben Dom N, Van Bokhoven H, De Groot AE. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions [J]. Journal of Chemical Ecology,1990,16:381-396.
    [143]Turlings TCJ, Tumlinson JH, Lewis WJ. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps [J]. Science,1990,250:1251-1253.
    [144]Horiuchi JI, Arimura GI, Ozawa R, Shimoda T, Dicke M, Takabayashi J, Nishioka T. Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores [J]. Applied Entomology and Zoology,2003,38:365-368.
    [145]高艳,罗礼智.寄主植物—甜菜夜蛾—寄生蜂三级营养关系的研究进展[J].昆虫学报,2006,49(2):333-341.
    [146]Steinberg S, Dicke M, venle M. Relative importance of infochemicals from first and second trophic level in long range host location by the larval parasitoid Cotesia(=Apanteles) glomerata [J]. Journal of Chemical Ecology,1993,19:47-59.
    [147]彭金英,黄勇平.植食性昆虫诱导的挥发物及其在植物通讯中的作用[J].植物生理学通讯,2005,41(5):679-683.
    [148]张咏洁,张真,金幼菊.寄主树木、小蠹与天敌三重营养关系的化学生态学研究进展[J].中国农学通报,2007,23(2):141-145.
    [149]Martin H. Direct defense or ecological costs:responses of herbivorous beetles to volatiles released by wild lima bean (Phaseolus lunatus) [J]. Journal of Chemical Ecology,2004,30:1289-1295.
    [150]Degenhardt DC, Lincoln DE. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure [J]. Journal of Chemical Ecology,2006,32:725-743.
    [151]Maffei ME, Mithofer A, Boland W. Before gene expression:early events in plant-insect interaction [J]. Trends in Plant Science,2007,12:310-316.
    [152]Maffei ME, Mithofer A, Boland W. Insects feeding on plants:Rapid signals and responses preceding the induction of phytochemical release [J]. Phytochemistry, 2007,68:2946-2959.
    [153]任琴.马尾松快速诱导抗性及化学信号物质的研究[D].北京林业大学博士论文,2006.
    [154]李凯,李镇宇,许志春.松毛虫危害对光合作用几个因子的影响[J].北京 林业大学学报,1997,19(1):58-62.
    [155]Takabayashi J, Takahashi S, Dicke M, et al. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants [J]. Journal of Chemical Ecology,1995,21:273-287.
    [156]de Moraes CM, Lewis WJ, Pare PW, et al. Herbivore-infested plants selectively attract parasitoids [J]. Nature,1998,393:570-573.
    [157]Guerrieri E, Poppy GM, Powell W, et al. Induction and systemic release of herbivore induced plant volatiles mediating in flight orientation of Aphidius ervi [J]. Journal of Chemical Ecology,1999,25:1247-1261.
    [158]Du Y J, Poppy GM, Powell W. Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi [J]. Journal of Chemical Ecology,1996,22:1591-1605.
    [159]Vet LEM, Dicke M. Ecology of infochemical use by natural enemies in a tritrophic context [J]. Annual Review of Entomology,1992,37:141-172.
    [160]Steidle JLM, van Loon JJA. Dietary specialization and infochemical use in carnivorous arthropods:Testing a concept [J]. Entomologia Experimentalis et Applicata,2003,108:133-148.
    [161]Loughrin JH, Manukian A, Heath RR et al. Diurnal cycle of emmission of induced volatile terpenoids by herbivore-injured cotton plants [J]. Proceedings of the National Academy of Sciences,1994,91:11836-11840.
    [162]Coley PD, Bryant JP, Chapin FS et al. Resource availability and plant anti herbivore defense [J]. Science,1985,230:895-899.
    [163]Hoballah MEF, Tamo C, Turlings TCJ. Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: Is quality or quantity important? [J]. Journal of chemical ecology,2002,28:951-968.
    [164]蔡晓明.三种茶树害虫诱导茶树挥发物的释放规律[D].中国农业科学研究院博士论文,2008.
    [165]孙凡,鲁继红,李垒,赵奎军.采用固相微萃取—气谱质谱联用技术分析家榆挥发物组成成[J].东北林业大学学报,2008,36:55-57.
    [166]Wegener R, Schulz S, Meiners T, Hadwich K & Hilker M. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor [J]. Journal of Chemical Ecology,2001,27:499-515.
    [167]Tholl D, Boland W, Hansel A, et al. Practical approaches to plant volatiles analysis [J]. The plant journal,2005,45:540-560.
    [168]Stewart-Jones A, Poppy GM. Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis [J]. Journal of chemical ecology,2006,32:845-864.
    [169]Rinne J, Hakola H, Laurila R, et al. Canopy scale monoterpene emissions of Pinus sylvestris dominated forests [J]. Atmospheric environment,2000,34:1099-1107.
    [170]Pio CA, Silva PA, Cerqueira TV, et al. Diurnal and seasonal emissions of volatiles organic compounds from cork oak (Quercus suber) tress [J]. Atmospheric environment,2005,39:1817-1827.
    [171]Holzke C, Hoffmann T, Jaeger L, et al. Diurnal and seasonal variation of monoterpene and sesquiterpene emissions from Scots pine (Pinus sylvestris L) [J]. Atmospheric environment,2006,40:3174-3185.
    [172]Karl T, Curtis AJ, Rosenstiel TN, et al. Transient releases of acetaldehyde from tree leaves-products of a pyruvate overflow mechanism? [J]. Plant cell environment,2002,25:1121-1131.
    [173]Holzinger R, Sandoval-Soto L, Rottenberger S, et al. Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry (PTR-MS) under different environmental conditions [J]. Journal of geophysical research,2000,105:20573-20579.
    [174]Chamberlain K, Khan Z R, Pickett J A, et al. Diel periodicity in the production of green leaf volatiles by wild and cultivated host plants of stemborer moths, Chilo partellus and Busseola fusca [J]. Journal of chemical ecology,2006,32: 565-577.
    [175]张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,41(2):204-214.
    [176]Arimura G, Huber DPW, Bohlmann J. Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa×deltoides):cDNA cloning, functional characterization, and patterns of gene expression of (-)-germacrene D synthase, PtdTPS1 [J]. The Plant Journal,2004,37:603-616.
    [177]Arimura GI, Kopke S, Kunert M, et al. Effects of Feeding Spodoptera littoralis on Lima bean leaves:IV. Diurnal and nocturnal damage differentially initiate plant volatile emission [J]. Plant Physiology,2008,146:965-973.
    [178]Anbutsu H, Togashi K. Deterred oviposition of Monochamats altematus (Coleoptera: Cerambycidae) on Pinus densiflora bolts from oviposition Scars containing eggs or larval [J]. Applied Entomology and Zoology,1996,31:481-488.
    [179]Anderson P, Hilker M, Hansson BS, Bombosch S, Klein B, Schildlmecht H. Oviposition deterringcomponents in larval frass of Spodoptera littoralis (Boisd.) (Lepideptera:Noctuldae):a behavioural and elentrephysiological evaluation [J]. Journal of Insect Physiology,1993,39:129-137.
    [180]Fettkother R, Reddy GVP, Noldt U, Dettner K. Effect of host and larval frass volatiles on behavioral response of the old house borer, Hylotrupes bajulus (L.) (Coleoptera:Cerambycidae), in a wind tunnel bioassay [J]. Chemoecology,2000, 10:1-10.
    [181]石旺鹏.蝗虫化学信息物质研究进展[J].昆虫知识,2005,42(3):244-249.
    [182]Roni PU, Ktanari SI, Sriramakrishna T, Sudhakar TR. Kairomones extracted from rice yellow stem borer and their influence on egg parasitization by Triehogramma japonicum Ashmead [J]. Journal of Chemical Ecology,2007,33: 59-73.
    [183]Chuehe J, Xuereb A, Thiery D. Attraction of Dibrachys cavus (Hymenoptera: Pteromalidae) to its host frass volatiles [J]. Journal of Chemical Ecology,2006, 32:2721-2731.
    [184]Henson RD; Vinson SB; Barfield CS. Ovipositional behavior of Bracon mellitor Say, a parasitoid of the boll weevil(Anthonomus grandis Boheman) III. Isolation and identification of natural releasers of oviposition probing [J]. Journal of Chemical Ecology,1977,3:151-158.
    [185]高景林,赵冬香.昆虫信息化合物[J].热带农业科学,2005,25(4):86-91.
    [186]Peterson MA, Dobler S, Larson E, Juarez D, Schlarbaum T, Monsen KJ, Francke W. Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera:Chrysomelidae) [J]. Chemoecology,2007,17:87-96. doi:10.1007/s00049-007-0366-z.
    [187]Phillips TW, Nation JL, Wiklinson RC, FolZt JL. Secondary arttaction and field activity of beetle-produced volatiles in the Dendroctonus terebranns [J]. Journal of Chemical Ecology,1989,15(5):1513-1533.
    [188]孙晓玲.云杉八齿小蠹化学信息物质的研究[D].东北林业大学博士论文,2006.
    [189]Weiss MR. Good housekeeping:why do shelter-dwelling caterpillars fling their frass? [J]. Ecology Letters,2003,6:361-370.
    [190]Weiss MR. Defecation behaviorur and ecology of insects [J]. Annual Review of Entomology,2006,51:635-661.
    [191]Reddy GVP, Holopzinen JK, Guerrero A. Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles [J]. Journal of Chemical Ecology,2002,28:131-143.
    [192]Rogers ME, Potter DA. Kairomones from scarabeid grubs and their frass as cues in belowground host location by the parasitoids Typhia vernalis and Typhia pygidialis [J]. Entomologia Experimentalis et Applicata,2002,102:307-314.
    [193]Nomikou M, Janssen A, Sabellis MW. Herbivore host plant selection:whitefly learns to avoid host plants that harbour predators of her offspring [J]. Behavioral Ecology,2003,136:484-488.
    [194]Freitas AVL, Oliveira PS. Ants as selective agents on herbivore biology:effects on the behaviour of a non-myrmecophylous butterfly [J]. Journal of Animal Ecology,1996,65:205-210.
    [195]Stireman JO, Singer MS. What determines host range in parasitoids? An analysis of a tachinid parasitoid community [J]. Oecologia,2003,135:629-638.
    [196]Singer MS, Stireman JO. Does antiparasitoid defense explain host-plant selection by a polyphagous caterpillar? [J]. Oikos,2003,100:554-562.
    [197]Mitchell ER, Heath RR. Influence of Amaranthus hybridus L. allelochemics on oviposition behavior of Spodoptera exigua and Spodoptera eridania (Lepidoptera: Noctuidae) [J]. Journal of Chemical Ecology,1985,13:309-316.
    [198]Anbutsu H, Togashi K. Oviposition deterrence associated with larval frass of the Japanese pine sawyer, Monochamus alternatus (Coleoptera:Cerambycidae) [J]. Journal of Insect Physiology,2002,48:459-465.
    [199]Cesar RN, Daniel RP. Host marking behavior in phytophagous insects and parasitoids [J]. Entomologia Experimentalis et Applicata,2001,99:273-293.
    [200]Tumlinson JH, Turlings TCJ, Lewis WJ. The semiochemical complexes that mediate insect parasitoid foraging [J]. Agricultural Zoology Reviews,1992,5: 221-252.
    [201]Schaffner U, Muller C. Exploitation of the Fecal Shield of the Lily Leaf Beetle, Lilioceris lilii (Coleoptera:Chrysomelidae), by the Specialist Parasitoid Lemophagus pulcher (Hymenoptera:Ichneumonidae) [J]. Journal of Insect Behavior,2001,14(6):739-757.
    [202]Li GQ, lshikawa Y. Oviposition deterrents in larval frass of four Ostrinia species fed on artificial diet [J]. Journal of Chemical Ecology,2004,30:1445-1455.
    [203]孔祥波,王睿,高伟,赵成华.气相色谱与触角电位检测器联用技术及其应用[J].昆虫知识,2001,38(4):304-309.
    [204]Fraser AM, Mechaber WL, Hildebrand JG. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles [J]. Journal of Chemical Ecology,2003,29:1813-1833.
    [205]Huber DPW, Gries R, Borden JH, Pierce HDJ. A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera:Scolytidae) to bark volatiles of six species of angiosperm trees [J]. Chemoecology,2000,10:103-113.
    [206]Rodriguez-Saona C, Poland TM, Miller JR, Stelinski LL, Grant GG, Groot PD, Buchan L, MacDonald L. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica [J]. Chemoecology,2006,16:75-86.
    [207]Eltz T, Lunau K. Antennal response to fragrance compounds in male orchid bees [J]. Chemoecology,2005,15:135-138.
    [208]Yan ZG, Wang CZ. Identification of Mythmna separata-induced maize volatile synomones that attract the parasitoid Campoletis chlorideae [J]. Journal of Applied Entomology,2006,130(4):213-219.
    [209]Chen Li, Fadamiro HY. Behavioral and Electroantennogram Responses of Phorid fly Pseudacteon tricuspis (Diptera:Phoridae) to Red Imported Fire Ant Solenopsis invicta Odor and Trail Pheromone [J]. Journal of Insect Behavior, 2007,20:267-287. doi:10.1007/s10905-007-9079-y.
    [210]Zhang QH, Schlyter F, Chen GF, Wang YJ. Electrophysiological and behavioral responses of to semiochemicals from its hosts, non-hosts, and conspecifics in China [J]. Journal of Chemical Ecology,2007,33:391-404. doi:10.1007/s10886-006-9231-8.
    [211]Asaro C, Sulivan BT, Dalusky MJ, Berusford CW. Volatiles associated with preferred and nonpreferred hosts of the Nantucket pine tip moth, Rhyacionia frustrana [J]. Journal of Chemical Ecology,2004,22:971-984.
    [212]Santana J, Da Silva RFP, Dickens JC. Olfactory Reception of Conspecific Aggregation Pheromone and Plant Odors by Nymphs of the Predator, Podisus maculiventris [J]. Journal of Chemical Ecology,1999,25:1813-1826.
    [213]Zhang QH, Ma JH, Zhao FY, Song LW, Sun JH. Aggregation Pheromone of the Qinghai Spruce Bark Beetle, Ips nitidus Eggers [J]. Journal of Chemical Ecology, 2009,35:610-617.
    [214]Otalora-Luna F, Hammock JA, Alessandro RT., Lapointe SL, Dickens JC. Discovery and characterization of chemical signals for citrus root weevil, Diaprepes abbreviatus [J]. Arthropod-Plant Interactions,2009,3:63-73. doi: 10.1007/s11829-009-9058-7.
    [215]Raguso RA, Light dM, Pichersky E. Electroantennogram responses of Hyles lineate (Sphingidae:Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers [J]. Journal of Chemical Ecology, 1996,22:1735-1766.
    [216]Schlyter LM, Lindelow A. Attraction of scolytids and associated beetles by different absolute amounts and proportions of alpha-pinene and ethanol [J], Journal of Chemical Ecology,1989,15:807-817.
    [217]Byers JA, Zhang QH, Birgersson G. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors [J]. Naturwissenschaften; 2004, 91:215-219. doi:10.1007/s10886-008-9503-6
    [218]Zhang QH, Schlyter F. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles [J]. Agricultural and Forest Entomology,2004,6:1-20.
    [219]Faccoli M, Blazenec M, Schlyter F. Feeding response to host and non-host compounds by males and females of the spruce bark beetle Ips typographus in a tunneling microassay [J]. Journal of Chemical Ecology,2005,31:745-759.
    [220]Faccoli M, Piscedda A, Salvato P, Simonato M, Masutti L, Battisti A. Phylogeography of the pine shoot beetles Tomicus destruens and T. piniperda (Coleoptera Scolytidae) in Italy [J]. Annals Forest Science,2005,62:361-368.
    [221]Groot Pd, Grant GG, Poland TM, Scharbache R, Buchan L, R Nott eW, Macdonald L, Pitt D. Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage [J]. Journal of Chemical Ecology,2008,34:1170-1179.
    [222]Faccoli M, Anfora G, Tasin M. Responses of the mediterranean pine shoot beetle Tomicus destruens (Wollaston) to pine shoot and bark volatiles [J]. Journal of Chemical Ecology,2008,34:1162-1169.
    [223]Goldansaz SH, Dewhirst S, Birkett MA, Hooper AM, Smiley DWM, Wadhams L, McNeil JN. Identification of two sex pheromone components of the potato aphid, Macrosiphum euphorbiae (Thomas) [J]. Journal of Chemical Ecology, 2004,30(4):819-834.
    [224]苏茂文,张钟宁.昆虫信息化学物质的应用进展[J].昆虫知识,2007,44(4):477-485.
    [225]娄永根.信息化合物在稻虱缨小蜂寄主选择行为中的作用[D].浙江大学博士论文,1999.
    [226]Turlings TCJ, Wackers FL. Recruitment of predators and parasitoids by herbivore-injured plants.//Cardes RT, Millar JG, eds. Advances in insect chemical ecology [M]. Cambridge, UK:Cambridge University Press,2004:21-75.
    [227]Delphia CM, Mescher MC, De Moraes CM. Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips [J]. Journal of Chemical Ecology,2007,33:997-1012.
    [228]Erbilgin N, Krokene P, Kvamme T, et al. A host monoterpene influences Ips typographus (Coleoptera:Curculionidae, Scolytinae) responses to its aggregation pheromone [J]. Agricultural and Forest Entomology,2007,9:135-140.
    [229]Wakefield ME, Bryning GP, Chambers J. Progress towards a lure to attract three stored product weevils, Sitophilus zeamais Motschulsky, S. oryzae (L.) and S. granarius (L.) (Coleoptera:Curculionidae) [J]. Journal of Stored Products Research,2005,41:145-161.
    [230]Wang Y, Kays SJ. Sweetpotato volatile chemistry in relation to sweetpotato weevil (Cylas formicarius) behavior [J]. Journal of the American Society for Horticultural Science,2002,127:656-662.
    [231]Sun XL, Wang GC, Cai XM, et al. The tea weevil, Myllocerinus aurolineatus, is attracted to volatiles induced by conspecifics [J]. Journal of Chemical Ecology, 2010,36:388-395.
    [232]Turlings TCJ, Benrey B. Effects of plant metabolites on the behavior and development of parasitic wasps [J]. EcoScience,1998,5:321-333.
    [233]Halitschke R, Schittko U, Pohnert G, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata.Ⅲ. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses [J]. Plant Physiology,2001,125:711-717.
    [234]Freitas AVL, Oliveira PS. Ants as selective agents on herbivore biology:effects on the behaviour of a non-myrmecophylous butterfly [J]. Journal Animal Ecology, 1996,65:205-210.
    [235]Stireman JO, Singer MS. What determines host range in parasitoids? An analysis of a tachinid parasitoid community [J]. Oecologia,2003,135:629-638.
    [236]Singer MS, Stireman JO. Does antiparasitoid defense, explain host-plant selection by a polyphagous caterpillar? [J]. Oikos,2003,100:554-562.
    [237]Ruther J, Kleier S. Plant-plant signaling:Ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-l-ol [J]. Journal of Chemical ecology,2005,31(9):2217-2222.
    [238]Campbell CAM, Pettersson J, Pickett JA, et al. Spring,migration of Damson-Hop aphid, Phorodon humuli (Homoptera:Aphididae), and summer host plant-derived semiochemicals released on feeding [J]. Journal of Chemical Ecology, 1993,19:1569-1576.
    [239]Turlings TCJ, Ton J. Exploiting scents of distress:the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests [J]. Current Opinion in Plant Biology,2006,9:421-427.
    [240]De bruyne M, Foster K, Carlson JR. Odor coding in the Drosophila antenna [J]. Neuron,2001,30:537-552.
    [241]Shields VDC, Hildebrand JG. Responses of a population of antennal olfactory receptor cells in the female moth Manduca sexta to plant-associated volatile organic compounds [J]. Journal of Comparative Physiology,2001,186:1135-1151.
    [242]James DG, Price TS. Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops [J]. Journal of Chemical Ecology,2004,30:1613-1628.
    [243]Brown AE, Riddick, EW, Aldrich JR& Holmes WE. Identification of (-)-β-caryophyllene as a gender-specific terpene produced by the multicolored Asian lady beetle [J]. Journal of Chemical Ecology,2006,32:2489-2499.
    [244]Verheggen FJ, Fagel Q, Heuskin S, Lognay G, Francis F, Haubruge E. Electrophysiological and Behavioral Responses of the Multicolored Asian Lady Beetle, Harmonia axyridis Pallas, to Sesquiterpene Semiochemicals [J]. Journal of Chemical Ecology,2007,33:2148-2155. doi:10.1007/s 10886-007-9370-6.
    [245]Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior [J]. Proceeding of the National Academy of Sciences,2006,103:10509-10513.
    [246]Gatehouse JA. Biotechnological prospects for engineering insect-resistant plants [J]. Plant Physiology,2008,146:881-887.
    [247]Mcauslane HJ, Alborn HT. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding [J]. Journal of Chemical Ecology,1998,24:399-416.
    [248]Rodriguez-Saona C, Crafts-Brandner SJ, Pare PW, Henneberry TJ. Exogenous methyl jasmonate induces volatile emissions in cotton plants [J]. Journal of Chemical Ecology,2001,27:679-695.
    [249]Schmelz EA, Alborn HT, Tumlinson JH. The influence of intact-plant and excised leaf bioassay designs on volicitin and jasmonic acid-induced sesquiterpene volatile release in Zea mays [J]. Planta,2001,214:171-179.
    [250]Bengtsson M, Backman AC, Liblikas I, Ramirez MI, Borg-karlson AK, Ansebo L, Anderson P, Loefqvist J, Witzgall P. Plant odor analysis of apple:Antennal response of codling moth females to apple volatiles during phenological development [J]. Journal of Agricultural Food Chemistry,2001,49:3731-3736.
    [251]Al Abassi S, Birkett MA, Petterson J, Pickett JA, Wadhams LJ, Woodcock CM. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor mediated by paired olfactory cells [J]. Journal of Chemical Ecology,2000,26:1765-1771.
    [252]Weissbecker B, Van Loon JJA, Posthumus MA, Bouwmeester HJ, Dicke M. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus [J]. Journal of Chemical Ecology, 2000,26:1433-1445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700