中国汉族人群8q24区域单核甘酸多态性与前列腺癌风险的关联性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:近期,独立的全基因组关联扫描已经证实位于染色体8q24上多个基因变异位点与前列腺癌风险有关联性。rs1447295位点是第一个在两个独立的研究样本中被证实的与前列腺癌风险关联的基因变异位点,并且在欧美人群中显示了很强的关联性。这一关联性已在欧洲裔美国人、美国黑人、日裔美国人、夏威夷本土人、日本人群、亚洲印度人群得到验证。2007年,Gudmundsson等证实了第二个位于8q24上遗传变异位点rs16901979与前列腺癌的关联性,同期,Haiman等发现了5个位于8q24遗传变异位点与前列腺癌关联性,其中rs6983561位点的关联性最强。本研究目的是为了研究3个在欧美人群中与前列腺癌高度关联的基因变异位点rs698356、rs16901979、rs1447295位点,在中国汉族人群中是否与前列腺癌有关联性。
     方法:通过中国汉族人群120例PCa患者和120例对照人群的病例对照研究,采用直接测序法对rs698356、rs16901979、rs1447295等3个SNP位点基因型分型,分析3个SNP与前列腺癌风险关联性,同时也在不同PSA水平、肿瘤分期、Gleason分级、肿瘤侵袭性亚组间进行关联性分析。
     结果:(1)rs6983561C等位基因与前列腺癌风险无关联性,OR值为1.19(95%CI=0.81-1.76,P=0.367)。rs6983561位点C等位基因在低分期肿瘤与高分期肿瘤及侵袭性前列腺癌组与前列腺癌风险均有关联性,OR值分别为3.54(95%CI:2.38-5.25;P=0.000), 1.60(95%CI:1.02-2.51;P=0.O40), 1.78 (95%CI:1.16-2.67; P=0.008)。(2) rs16901979A等位基因与前列腺癌风险无关联性,OR值为1.13(95%CI=0.76-1.66, P=0.55)。rs16901979位点A等位基因在不同PSA水平、Gleason评分、肿瘤分期、肿瘤侵袭性组间与前列腺癌风险均无关联性(P均>0.05)。(3)rs1447295A等位基因与前列腺癌风险有关联性,OR值为1.63(95%CI:1.02-2.63, P=0.042)。rs1447295位点A等位基因在高PSA组(>20ng/mL)与侵袭性前列腺癌组与前列腺癌风险有关联性,OR值分别为1.63(95%CI:1.00-2.66; P=0.033),1.63(95%CI:1.00-2.67;P=0.049)。
     结论:rs1447295位点多态性在中国汉族人群中与前列腺癌有关联性,rs1447295A等位基因携带者能增加前列腺癌的风险。
BACKGROUND.Recently, independent genome-wide scans have identified multiple genetic variants at 8q24 to be associated with PCa risk. The rs1447295 was the first variant identified by two independent study groups,and it was shown to have the strongest association in European and African populations. This association was replicated in European Americans, African Americans, Japanese Americans, Native Hawaiians, Japanese,and Asian Indians. Gudmundsson et al identified a second variant rs16901979 at 8q24 associated with PCa risk. At about the same time, Haiman et al identified five previously unidentified risk variants at 8q24, of which rs6983561 showed the strongest association with PCa. Most of the association studies have been performed in American, African and European populations. We performed this study to determine whether these three risk variants at 8q24 were associated with PCa risk in Chinese han population.
     METHODS. We conducted a case-control study comprising of 120 prostate patients and 120 healthy controls in Chinese han population. Genotyping by direct sequencing was performed for rs16901979, rs6983561and rs1447295. Their association with disease stage, tumor grade, PSA level and disease aggressiveness was also determined.
     RESULTS.
     1. The allele C of rs6983561 was not associated with prostate cancer risk, odds ratio was 1.19(95% CI:0.81-1.76,P=0.367). The risk allele C was associated with prostate cancer risk in PCa patients of both stages (A+B) and stages (C+D),and in patients with aggressive disease, odds ratio was 3.54(95% CI:2.38-5.25; P=0.000), 1.60(95% CI;1.02-2.51; P=0.040),1.78 (95% CI:1.16-2.67;P=0.008) respectively.
     2. The allele A of rs 16901979 was not associated with prostate cancer risk,odds ratio was 1.13(95% CI:0.76-1.66,P=0.55).The allele A of rs16901979 was not associated with prostate cancer risk in PCa patients of all stages, all Gleason scores, all PSA level and all disease aggressiveness groups(P>0.05)
     3. The A allele of rs 1447295 was significantly associated with prostate cancer risk,odds ratio was 1.63(95% CI:1.02-2.63,P=0.042). The allele A of rs1447295 was associated with PCa risk in patients with PSA levels>20 ng/mL and in patients with aggressive disease,odds ratio was 1.63 (95%CI:1.00-2.66;P=0.033) and 1.63 (95% CI:1.00-2.67;P=0.049) respectively.
     CONCLUSION. The variants rs1447295 at 8q24 is associated with prostate cancer risk in Chinese han population. The A allele of rs1447295 carrying can increase the risk of prostate cancer.
引文
[1]Gronberg H. Prostate cancer epidemiology [J]. Lancet,2003,361(9360): 859-864.
    [2]叶定伟.前列腺癌的流行病学和中国的发病趋势[J].中华外科杂志.2006,44(6):362-364.
    [3]Schroder FH. Review of diagnostic markers for prostate cancer [J]. Recent Results Cancer Res,2009,181:173-182.
    [4]Johansson JE, Andren O, Andemson SO, et al. Natural history of early localized prostate cancer [J].JAMA,2004,291(22):2713-2719.
    [5]安宁,陈彤,李登新等.营养素摄入水平与前列腺癌发病因素的相关分析[J].中华肿瘤防治杂志,2007,14(11):818-820.
    [6]Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable factors in the causation of cancer:analyses of cohorts of twins from Sweden, Denmark, and Finland [J]. N Engl J Med,2000,343(2):78-85.
    [7]习小庆,胡映波,吴勇等.前列腺癌相关基因表达谱研究[J].中华泌尿外科杂志,2003,24(11):757-759.
    [8]Zheng SL, Sun J, Wiklund F, et al. Cumulative Association of Five Genetic Variants with Prostate Cancer [J]. N Engl J Med,2008,358(9):910-919.
    [9]Cook LS, Goldoft M, Schwartz SM, et al. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants [J]. J Urol,1999,161(1):152-155.
    [10]Amundadottir LT, Sulem P, Gudmundsson J, et al.A common variant associated with prostate cancer in European and African populations [J]. Nat Genet,2006, 38(6):652-658.
    [11]Freedman ML, Haiman CA, Patterson N, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men [J]. Proc Natl Acad Sci U S A,2006,103(38):14068-14073.
    [12]Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24 [J]. Nature Genet,2007,39(5):631-637.
    [13]Salinas CA, Kwon E, Carlson CS, et al. Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk [J]. Cancer Epidemiol Biomarkers Prev,2008,17(5):1203-1213.
    [14]Greenlee RT, Hill-Harmon MB, Murray T, et al. Cancer statistics [J]. CA cancer J Clin,2001,51(1):15-36.
    [15]Majeed A, Babb P, Jones J, et al.Trends in prostate cancer incidence,mortality and survival in England and Wales 1971-1998[J]. BJU Int,2000,85(9): 1058-1062.
    [16]Brewster DH, Fraser LA, Harris V, et al. Rising incidence of prostate cancer in Scotland:increased risk or increased detection [J]? BJU Int,2000,85(4): 472-473.
    [17]叶定伟,朱耀.中国前列腺癌的发病趋势[A].马军,秦叔逵,张清媛.中国临床肿瘤学教育专辑[M].2007:616-620.
    [18]Ross RK, Berstein L, Lobo RA, et al.5-Alpha-reductase activity and risk of prostate cancer among Japanese and US White and black males[J]. Lancet, 1992,339(8798):887-889.
    [19]Setinberg GD,Carter BS,Beaty TH,et al.Family history and the risk of prostate cancer[J]. Prostate,1990,17(4):337-347.
    [20]GronbergH,Damber L,Damer JE. Familial prostate cancer Sweden. A nationwide register cohort study [J]. Cancer,1996,77(1):138-143.
    [21]Gronberg H,Damber L,Damber JE. Studies of genetic factors in prostate cancer in a twin population[J].J Urol,1994,152(5 Pt 1):1484-1487.
    [22]Carmen Rodriguez,Eugenia ECalle,et al乳腺癌家族史是致死性前列腺癌的预测指标[J].世界医学杂志,1999,3(4):16-20.
    [23]Eeles RA, Kote-Jarai Z, Giles GG, et al. Multiple newly identified loci associated with prostate cancer susceptibility [J]. Nat Genet,2008,40(3): 316-321.
    [24]Zheng SL, Sun J, Cheng Y, et al. Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans [J]. J Natl Cancer Inst,2007,99(20):1525-1533.
    [25]Guy M, Kote-Jarai Z, Giles GG, et al. Identification of new genetic risk factors for prostate cancer [J]. Asian J Androl,2009,11(1):49-55.
    [26]Zhang Y, Coogan P, Palmer JR, et al. Vitamin and mineral use and risk of prostate cancer: the case-control surveillance study [J]. Cancer Causes Control, 2009,20(5):691-698.
    [27]Salisbury BA, Pungliya M, Choi JY,et al. SNP and haplotype variation in the humangenome [J].Mutat Res,2003,526(1-2):53-61.
    [28]Wen AQ, Wang J, Feng K, et al. Analysis of polymorphisms in the promoter region of interleukin-lbeta by restriction fragment length polymorphism-PCR [J]. Chin J Traumatol,2004,7(5):271-274.
    [29]Zhang XF, Wang YM, Wang R, et al. Correlation of E-cadherin polymorphisms to esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma [J]. Ai Zheng,2005,24(5):513-519-29
    [30]Goddard KA, Hopkins PJ, Hall JM, et al. Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five population [J]. Am J Hum Genet,2000,66(1):216-234.
    [31]佟明,艾军魁,袁亦明,等.SRD5A2基因A49T多态性与前列腺癌风险性关系的研究[J].中华医学杂志,2005,85(19):1319-1321.
    [32]杨奕,王少刚,叶章群,等.湖北地区汉族人群维生素D受体基因起始密码单核苷酸多态性与前列腺癌的相关性分析[J].中华男科学杂志,2004,10(6):411-414.
    [33]孙颖浩,杨波,王小慧,等.雌激素受体β的单核苷酸多态性与前列腺癌风险的相关性研究[J].中华外科杂志,2005,43(14):948-951.
    [34]高建平,黄跃东.代谢酶基因多态性与前列腺癌易感性的关系[J].中华男科学杂志,2003,9(1):32-35.
    [35]刘元丰,江军,王洛夫,等.雄激素受体基因多态性与前列腺癌关系的研究[J].第三军医大学学报,2005,27(10):1036-1038.
    [36]管同郁,李鸣那.生物转化酶基因多态性与前列腺癌易感性的研究[J].中华外科杂志,2005,43(22):1467-1470.
    [37]葛劲超,单玉喜.单核苷酸多态性与前列腺癌遗传易感性的相关研究.[学位论文],苏州,苏州大学,2007
    [38]Zheng SL, Hsing AW, Sun J, et al. Association of 17 prostate cancer susceptibility loci with prostate cancer risk in Chinese men[J]. Prostate,2010, 70(4):425-432.
    [39]Chen M, Huang YC, Yang S. Common variants at 8q24 are associated with prostate cancer risk in Taiwanese men[J]. Prostate,2010,70(5):502-507-39
    [40]Robbins C, Torres JB, Hooker S, et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus [J]. Genome Res,2007,17(12):1717-1722.
    [41]Schumacher FR, Feigelson HS, Cox DG, et al. A common 8q24 variant in prostate and breast cancer from a large nested casecontrol study [J]. Cancer Res, 2007,67(7):2951-2956.
    [42]Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 [J]. Nat Genet,2007, 39(5):645-649.
    [43]Wang L, McDonnell SK, Slusser JP, et al. Two common chromosome 8q24 variants are associated with increased risk for prostate cancer [J]. Cancer Res, 2007,67(7):2944-2950.
    [44]Wokolorczyk D, Gliniewicz B, Stojewski M, et al. The rs1447295 and DG8S737 markers on chromosome 8q24 and cancer risk in the Polish population[J]. Eur J Cancer Prev,2010,19(2):167-171.
    [45]Severi G, Hayes VM, Padilla EJ, et al. The common variantrs1447295 on chromosome 8q24 and prostate cancer risk:Results from an Australian population-based case-control study[J]. Cancer Epidemiol Biomarkers Prev, 2007,16(3):610-612.
    [46]Terada N, Tsuchiya N, Ma Z, et al. Association of genetic polymorphisms at 8q24 with the risk of prostate cancerin a Japanese population [J]. Prostate,2008, 68(15):1689-1695.
    [47]Liu M, Kurosaki T, Suzuki M, et al. Significance of common variants on human chromosome 8q24 in relation to the risk of prostate cancer in native Japanese men [J]. BMC Genet,2009,10:37.
    [48]Tan YC, Zeigler-Johnson C, Mittal RD, et al. Common 8q24 sequence variations are associated with Asian Indian advanced prostate cancer risk [J].Cancer Epidemiol Biomarkers Prev,2008,17(9):2431-2435.
    [49]Haiman CA, Patterson N, Freedman ML, et al. Multiple regions within 8q24 independently affect risk for prostate cancer [J]. Nat Genet,2007,39(5): 638-644.
    [50]Pal P, Xi H, Guha S, et al. Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry[J]. Prostate,2009,69(14):1548-1556.
    [51]Miller DC, Hafez KS, Stewart A, et al. Prostate carcinoma presentation, dignosis, and staging:an update from the National Cancer Data Base[J].Cancer, 2003,98(6):1169-1178.
    [52]Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome [J]. Science,2001,291(5507):1304-1351.
    [53]Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome[J]. Nature,2001,409(6822):860-921.
    [54]Bork P, Dandekar T, Diaz-Lazcoz Y, et al. Predicting function:from genes to genomes and back[J]. J Mol Biol,1998,283(4):707-725.
    [55]Hanash SM. Operomics:molecular analysis of tissues from DNA to RNA to ptotein[J].Clin Chem Lab Med,2000,38(9):805-813.
    [56]Martienssen RA. Functional genomics:probing plant gene function and expession with transposons[J]. Proc Natl Acad Sci U S A,1998,95(5): 2021-2026.
    [57]Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes [J]. Science,1996, 274(5287):546,563-567.
    [58]Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes [J]. Science,1996, 274(5287):546,563-567.
    [59]Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays[J]. Nature Biotechnology, 1996,14(13):1675-1680.
    [60]舒薇,郭勇.人类基因组及后基因组研究进展及其应用与开发研究现状[J].生物技术通报,2000,4:1-5.
    [61]Mullner S, Neumann T, Lottspeich F. Proteomics--a new way for drug target discovery [J]. Arzneimittelforschung,1998,48(1):93-95.
    [62]Panagopoulos I, Moller E, Collin A, et al. The POU5F1P1 pseudogene encodes a putative protein similar to POU5F1 isoform 1[J]. Oncol Rep,2008,20(5): 1029-1033.
    [63]Kastler S, Honold L, Luedeke M, et al. POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma[J]. Prostate,2010, 70(6):666-674.
    [1]International HapMap Consortium. The international HapMap project[J]. Nature,2003,426(6968):789-796.
    [2]Nelson MR, Marnelbs G, Kammerer S, et al. Large-scale validation of single nucleotide polymorphisms in pene regions[J]. Genome Res,2004,14(8):1664-1668.
    [3]Jiang R, Duan J,Windemuth A, et al. Genome wide evaluation of the public SNP databases[J]. Pharmacogenomics,2003,4(6):779-789.
    [4]Halushka MK, Fan JB, Bentley K, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis[J]. Nat Genet,1999,22(3):239-247.
    [5]Sunyaev S, Ramensky V, Koch I, et al. Prediction of deleterious human alleles[J]. Hum Mol Genet,2001,10(6):591-597.
    [6]Sherry ST, Ward MH, Kholodov M, et al. dbSNP:the NCBI database of genetic variation[J].Nucleic Acids Res,2001,29(1):308-311.
    [7]Sun SH,Yang SL. Single nucleotide polymorphism and complex diseases [J].Acad J Sec Mil Med Univ,2004,25(2):117-9.
    [8]Salisbury BA, Pungliya M, Choi JY, et al. SNP and haplotype variation in the humangenome[J]. Mutat Res,2003,526(1-2):53-61.
    [9]Marnellos G.High-throughput SNP analysis for genetic association studies[J]. Curr Opin Drug Discov Devel,2003,6(3):317-321.
    [10]Hoskins RA, Phan AC, Naeemuddin M, et al. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster[J]. Genome Res,2001, 11(6):1100-1113.
    [11]Shastry BS. SNP and haplotypes:genetic markers for disease and drug response[J]. Int J Mol Med,2003,11(3):379-382.
    [12]Hirunsatit R, Kongruttanachok N, Shotelersuk K, et al. Polymeric immunoglobulin receptor polymorphisms and risk of nasopharyngeal cancer [J]. BMC Genet,2003,4:3.
    [13]Tseng LH, Chen PJ, Lin MT, et al. Simultaneous genotyping of single nucleotide polymorphisms in the IL-1 gene complex by multiplex polymerase chain reaction-restriction fragment length polymorphism[J]. J Immunol Methods,2002,267(2):151-156.
    [14]Wen AQ, Wang J, Feng K, et al. Analysis of polymorphisms in the promoter region of interleukin-1beta by restriction fragment length polymorphism-PCR[J]. Chin J Traumatol,2004,7(5):271-274.
    [15]Zhang XF, Wang YM, Wang R, et al. Correlation of E-cadherin polymorphisms to esophageal squamous cell carcinoma and gastric cardiac adenocarcinoma[J]. Ai Zheng,2005,24(5):513-519.
    [16]Hamai Y, Matsumura S, Matsusaki K, et al. A single nucleotide polymorphism in the 5'untranslated region of the EGF gene is associated with occurrence and malign -nant progression of gastric cancer[J]. Pathobiology,2005,72 (3):133-138.
    [17]朱南山,李立丽,张彬.变性梯度凝胶电泳技术的原理及其在畜牧业中的应用[J].广东畜牧兽医科技,2007,32(2):14-16.
    [18]吴梅筠,刘明俊,王保捷,等.聚合酶链反应技术的改进.法医物证学[M].第2版,1998,201-205.
    [19]刘雅诚,郝金萍,严江伟,等.用dHPLC技术检测线粒体DNA编码区单核苷酸多态性[J].中国法医学杂志,2006,21(3):142-146.
    [20]秦效英,李国选,江滨,等.应用变性高效液相色谱检测CD31563位点单核苷酸多态性[J].中华检验医学杂志,2006,29(7):627-630.
    [21]Han W, Yip SP, Wang J, et al. Using denaturing HPLC for SNP discovery and establishing the linkage disequilibrium pattern for the all-trans-retinol dehydroge—nase(RDH8)gene[J].J Human Genetics,2004,49(1):16-23.
    [22]刘雅诚,郝金萍,严江伟,等.用DHPLC技术检测线粒体DNA编码区单核苷酸多态性[J].中国法医学杂志,2006,21(3):142-146.
    [23]秦效英,李国选,江滨,等.应用变性高效液相色谱检测CD31563位点单核苷酸多态性[J].中华检验医学杂志,2006,29(7):627-630.
    [24]HanW, Yip S P, Wang J, et al. Using denaturing HPLC for SNP discovery and establishing the linkage disequilibrium pattern for the all-trans-retinol dehydrogenase (RDH8) gene [J]. Journal of Human Genetics,2004,49(1): 16-23.
    [25]Sauser S, Lechner D, Berlin K, et al. A novel procedure for efficient genotyping of single nucleotide polymorphisms [J]. Nucleic Acids Res,2000,28(5):E 13.
    [26]杨明星,高志贤,王升启.基因芯片及其应用[J].传感器技术,2002,21:54-59.
    [27]Gilles PN, Wu DJ, Foster CB, et al. Single nucleotide polymorphic discrimination by an electric dotblotassay on semiconductor micro-chips [J]. Nature Biotechnology,1999,17(4):365-370.
    [28]Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome[J]. Science,1998,280(5336):1077-1082.
    [29]Pastinen T, Raitio M, Lindroos K, et al. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays[J].Genome Res, 2000,10(7):1031-1042.
    [30]Pastinen T,Kurg A,Metspalu A, et al. Minisequencing:a specific tool for DNA analysis and diagnosticson oligonucleotide arrays[J].Genome Res,1997,7(6): 606-614.
    [31]Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome[J]. Nature,2001,411(6834):199-204.
    [32]Belmont JW, Gibbs RA.Genom-wide linkage disequitlibrium and Haplotype maps[J]. Am J Pharmacogenomics,2004,4(4):253-262.
    [33]Murray GI.Martix metalloporteniases:a multiufnetional group of moleeules[J]. J Phatol,2001,195 (2),135-137.
    [34]Gambaro G, Anglani F, D'Angelo A, et al. Association studies of genetic polymorphisms andcomplex disease[J]. The Lancet,2000,355(9200):308-311.
    [35]Lazzeroni LC, Lange K. A conditional inference framework for extendingthe transmission/disequilibrium test[J]. Hum Hered,1998,48(2):67-81.
    [36]Shriver MD, Parra EJ, Dios S, et al. Skin pigmentation, biogeo-graphical ancestry and admixture mapping[J]. Hum Genet,2003,112(4):387-399.
    [37]Pritchard JK, Stephens M, Rosenberg NA, et al. Association mapping in structured populations [J]. Am J Hum Genet,2000,67(1):170-181.
    [38]Collins FS, Guyer MS,Charkravarti A.Variations on a theme:cataloging human DNA sequence variation[J].Science,1997,278(5343):1580-1581.
    [39]Terada N, Tsuchiya N, Ma Z, et al. Association of genetic polymorphisms at 8q24 with the risk of prostate cancerin a Japanese population [J]. Prostate,2008, 68(15):1689-1695.
    [40]Tan YC, Zeigler-Johnson C, Mittal RD, et al. Common 8q24 sequence variations are associated with Asian Indian advanced prostate cancer risk [J].Cancer Epidemiol Biomarkers Prev,2008,17(9):2431-2435.
    [41]Amundadottir LT, Sulem P, Gudmundsson J, et al.A common variant associated with prostate cancer in European and African populations [J]. Nat Genet,2006, 38(6):652-658.
    [42]Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 [J]. Nat Genet,2007, 39(5):645-649.
    [43]Gudmundsson J, Sulem P, Steinthorsdottir V, et al.Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes [J].Nat Genet,2007,39(8):977-983.
    [44]Duggan D, Zheng SL, Knowlton M, et al.Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP[J]. J Natl Cancer Inst,2007,99(24):1836-1844.
    [45]Thomas G, Jacobs KB, Yeager M, et al. Multiple loci identified in a genome-wide association study of prostate cancer[J]. Nat Genet,2008,40(3): 310-315.
    [46]Zheng SL, Sun J, Wiklund F, et al. Cumulative Association of Five Genetic Variants with Prostate Cancer [J]. N Engl J Med,2008,358(9):910-919.
    [47]Gudmundsson J, Sulem P, Rafnar T, et al. Common sequence variants on2p15 and Xp11.22 confer susceptibility to prostate cancer[J]. Nat Genet,2008,40(3): 281-283.
    [48]Ghoussaini M, Song H, Koessler T, et al. Multiple loci with different cancer specificities within the 8q24 gene desert[J] J Natl Cancer Inst,2008,100(13): 962-966.
    [49]Beebe-Dimmer JL, Levin AM, Ray AM, et al. Chromosome 8q24 markers: Risk of early-onset and familial prostate cancer [J]. Int J Cancer 2008,122: 2876-2879.
    [50]Freedman ML, Haiman CA, Patterson N, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men [J]. Proc Natl Acad Sci U S A,2006,103(38):14068-14073.
    [51]Haiman CA, Patterson N, Freedman ML,et al. Multiple regions within 8q24 independently affect risk for prostate cancer [J]. Nat Genet,2007,39 (5):638-644.
    [52]Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24 [J]. Nature Genet,2007,39(5):631-637.
    [53]Robbins C, Torres JB, Hooker S, et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus [J]. Genome Res,2007,17(12):1717-1722.
    [54]Salinas CA, Kwon E, Carlson CS, et al. Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk [J]. Cancer Epidemiol Biomarkers Prev,2008,17(5):1203-1213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700