双T-DNA共转化获得转基因番木瓜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番木瓜采后贮藏期间和鲜切加工后的迅速软化所导致果实的腐败变质,已成为制约其商品化生产的重要因素。在前人对番木瓜进行采后生理研究与反义ACS和ACO基因遗传转化的基础上,本文从中锁定了与番木瓜果实后熟软化密切相关的关键细胞壁水解酶β-GAL,从分子水平再次探讨了其与番木瓜果实软化的关系。通过构建含果实特异性启动子的RNAi双T-DNA植物表达载体,经由农杆菌介导转化番木瓜胚性愈伤组织,获得了共转化转基因再生植株,为进一步选育生理上可以正常成熟、且适于鲜切加工的无选择标记基因抗软化转基因番木瓜奠定基础。主要结果如下:
     1.建立了适于番木瓜遗传转化的体胚发生系统。以‘漳红’番木瓜组培苗的叶片和叶柄为外植体,在改良MS + 0.5 mg·L~(-1) KT + 1.0 mg·L~(-1) 2, 4-D + 0.5 mg·L~(-1) BA + 0.1 mg·L~(-1) NAA + 400 mg·L~(-1) Glu + 30 g·L~(-1)蔗糖的固体培养基上诱导出了胚性愈伤组织。其中,CⅡa型胚性愈伤在一定条件下能够继代增殖,并能向CⅡb型转变,CⅡb型胚性愈伤则容易发生体胚。采用两步生根法,将胚性愈伤所形成的体胚再生植株先接种于1/2 MS +0.5 mg·L~(-1) IBA + 1.0 g·L~(-1) AC + 30 g·L~(-1)蔗糖的固体培养基中暗培养7天后,转移至1/2 MS + 1.0 g·L~(-1) AC + 25μM·L~(-1) VB12 + 30 g·L~(-1)蔗糖的固体培养基上光照培养,生根效果最好。移栽成活率可达45%以上。
     2.克隆并分析了番木瓜果肉中第一类β-Gal基因。通过一对简并引物,研究番木瓜果实后熟软化过程中β-Gal基因家族表达水平的总体变化趋势,从分子水平证实了β-GALs与番木瓜果实软化的相关性,并从50%成熟度果实中克隆了果肉加速软化时表达丰度最高的第一类β-Gal基因。分离了该类β-Gal基因4501 bp的基因组序列,经比对,其共含有17个内含子,外显子部分核苷酸序列与GenBank中的cDNA只有1个碱基的差异。生物信息学分析结果表明,该番木瓜β-GAL属于糖苷水解酶超级家族42中家族35的成员,在进化过程中与拟南芥具有较近的亲缘关系,与鳄梨和北美云杉则关系较远。同时,它还具有一段定位于胞外的信号肽,推测它可能参与细胞壁的降解。
     3.分离了番木瓜第一类β-Gal基因启动子,并进行了初步的功能鉴定。利用反向PCR技术,分离了第一类β-Gal基因1143 bp的5'端调控序列。在线预测结果表明,该片段含有核心启动子元件TATA盒,转录起始位点在起始密码子上游-133处。同时,还发现了与如乙烯等植物激素和胁迫应答元件,根部和胚胎器官特异性元件,以及增强子区域。利用该片段取代pCAMBIA 1301载体上GUS基因前的CaMV 35S启动子,经由农杆菌EHA 105介导侵染番木瓜不同组织器官,发现其具有明显的启动子功能,为伤诱导类型,并与特定器官的发育相关。GUS活性在果肉中最强,其次为胚和根部,其它器官中则不表达。
     4.构建了用于番木瓜遗传转化的植物表达载体。将β-Gal基因保守区反向重复插入载体pKANNIBAL构建RNAi中间表达载体pKAN/RG。将其上发夹结构取代经改造的载体pCAMBIA 1300上hptⅡ基因,构建中间表达载体p1300-/MFRG。分离其上单T-DNA区段,与载体pCAMBIA 2301构建RNAi双T-DNA植物表达载体p2301/TTRG。将两端含有BamHⅠ和SalⅠ粘性末端的β-Gal基因启动子片段、p2301/TTRG经XbaⅠ和BamHⅠ双酶切后的大片段和p2301/TTRG经XbaⅠ和SalⅠ双酶切后的小片段相连接,构建含有果实特异性启动子的RNAi双T-DNA植物表达载体。酶切分析和PCR检测表明,p2301/TTRG和p2301/BPTTRG均被成功导入农杆菌EHA 105,可用于后续的遗传转化研究。
     5.开展了以携带植物表达载体p2301/TTRG的农杆菌EHA 105介导的番木瓜遗传转化方法和体系优化的研究。探索了液体振荡转化法、浸泡转化法、体胚针刺法和茎段转化对番木瓜转化效率和共转化效率的影响,以前两种方法的效果较好,以浸泡转化法的“100μmol·L~(-1) AS +菌液OD为0.2 +侵染20 min +共培养2 d”为本试验的最佳转化组合;“100μmol·L~(-1) AS +菌液OD为0.2 +侵染20 min +共培养3 d”为最佳的共转化组合。后两种方法则不太适于番木瓜的遗传转化。最终,获得了5株转基因再生植株,经PCR和Southern杂交检测结果表明,只有2株为共转化的结果,诱导了其中1株生根并移栽。
     6.开展了番木瓜转BPTTRG基因和转MFRG的初步研究。利用浸泡转化法,以携带植物表达载体p2301/BPTTRG和p1300-/MFRG的农杆菌EHA 105,分别侵染CⅡb型胚性愈伤组织。前者获得了经GUS染色、PCR检测和Southern杂交结果为阳性的共转化转基因番木瓜再生植株。后者从198株再生植株的62个DNA混合池中,PCR检测出了两个阳性池。进一步对混合池中的单株分别进行PCR检测,则未能成功分离出转基因植株,在不含抗生素选择压的条件下的遗传转化可能出现了嵌合体现象。
     以上研究获得的双T-DNA共转化的转RNAi-β-Gal基因番木瓜植株,有望通过一次有性杂交,选育无选择标记基因的抗软化转基因番木瓜,在一定程度上解决转基因食品的安全性问题。
The main factor limiting the commercial production of Carica papaya L. lies in the deterioration of fruit caused by rapid softening during postharvest storage and fresh-cut processing. In this paper, the key hydrolytic enzymeβ-GALs, which were responsible for the cell wall degradation and thus the fruit softening during postharvest ripening of papaya, were aimed at for the determination of relationship between its expression and fruit softening at the molecular level, on the advances of researches of postharvest physiology and genetic transformation of antisense ACS and ACO gene for papaya. The co-transformation transgenic papaya was obtained using co-cultivation of embryogenic calli with Agrobacterium tumefaciens harboring a RNAi-two-T-DNA plant expression vector driven by promoter characterized with fruit specificity, which facilitated the breeding of softening-resistant and marker-free transgenic papaya ripening normally and good for fresh-cut processing. The main results were as follows:
     1. Establishment of papaya embryogenesis system for genetic transformation. Explants of leaves and petioles of in vitro culture“zhanghong”papaya plantlets were inoculated on the modified MS media supplemented with 0.5 mg·L~(-1) KT and 1.0 mg·L~(-1) 2, 4-D and 0.5 mg·L~(-1) BA and 0.1 mg·L~(-1) NAA and 400 mg·L~(-1) Glu and 30 g·L~(-1) sucrose and two kinds of the embryogenic calli were induced. Embryogenic calli of CⅡa type could be subcultured and multiplied and turn into CⅡb type, which were prone to forming somatic embryo. Two-step method for rooting showed the best rooting induction rate. Regenerated plantlets via somatic embryogenesis were firstly inoculated on the 1/2 MS media containing 0.5 mg·L~(-1) IBA and 1.0 g·L~(-1) AC and 30 g·L~(-1) sucrose in dark for 7 days, and then transferred onto 1/2 MS media containing 1.0 g·L~(-1) AC and 25μM·L~(-1) VB12 and 30 g·L~(-1) sucrose. After transplantation, the viability rate reached over 45%.
     2. Cloning and analysis of the first kind ofβ-Gal gene in papaya pulp. The total change tendency of expression level ofβ-Gal gene family during ripening and softening of papaya fruit was determined using a pair of degenerate primers, indicating the close relationship betweenβ-GALs and fruit softening. And the first kind ofβ-Gal gene cDNA with the highest expression abundance at the stage of 50% maturity, when the fruit pulp became rapid softening, was cloned. A 4501 bp genomic sequence coding for this gene was isolated, containing 17 introns and exons being one base different from the cDNA sequence. Bioinformatic analysis of this gene revealed that the protein belonged to 35 family of glycoside hydrolyase 42 superfamily, genetic relationship of which was closer with Arabidopsis thaliana and further with Persea americana and Picea sitchensis. Additionally, the predicted protein included a signal peptide located extracellularly, indicating the possible involvement of this enzyme in the degradation of cell wall matrix thus in the fruit softening.
     3. Isolation and preliminary characterization of the promoter of first kindβ-Gal gene. A 1143 bp of 5' regulated sequence of the first kindβ-Gal gene was isolated using inverse PCR. Online database prediction identified core promoter elements of TATA box and a predicted transcription start at -133 upstream of the start coden, motifs for responsiveness of phytohormone especially for ethylene, and stress, and for organ specificity, and enhancer region. Characterization of this putative promoter which, by driving GUS on pCAMBIA 1301 and using Agrobacterium tumefaciens co-cultivation with different organs, was wound-inducible and organ development-related, revealed that the GUS activity was the most in fruit pulp, moderate in embryo and root and none in other organs tested.
     4. Construction of plant expression vectors for the genetic transformation of papaya. Conserved region ofβ-Gal gene, which coded for a key enzyme ofβ-galactosidase involved in the cell wall degradation, with the highest expression abundance at the stage of rapid softening of papaya pulp was cloned. The RNAi intermediate expression vector of pKAN/RG was constructed containingβ-Gal genes in an inverted repeat orientation with the help of pKANNIBAL vector. hptⅡgene of the modified pCAMBIA 1300 vector was replaced by the hairpin structure of pKAN/RG, which resulted in the formation of intermediate expression vector of p1300-/MFRG. Single T-DNA region of p1300-/MFRG was isolated and incorporated into the pCAMBIA 2301 vector to produce the RNAi Two-T-DNA plant expression vector of p2301/TTRG. The transformation of p2301/TTRG into Agrobactrium tumefaciens EHA 105 was confirmed by restriction enzyme analysis and PCR assay. Embryogenic calli of papaya which showed kanamycin resistance and GUS positive were obtained via genetic transformation.
     5. Establishment and optimization of methods for the papaya genetic transformation mediated by Agrobacterium tumefaciens EHA 105 harboring plant expression vector p2301/TTRG. Methods of shaking in liquid media, infusion, pricking, and stem-infection for papaya genetic transformation were compared and optimized according to their efficiency of transformation or co-transformation. The first two methods both applied to the regeneration of transgenic papaya, with the optimized protocol that the concentration of 100μmol·L~(-1) AS for the preparation of Agrobacterium before diluting culture to OD 0.2 and the time of 20 min for infection and of 2 d for co-cultivation, for transformation; and the one consisting of 100μmol·L~(-1) AS and OD 0.2 and 20 min and 3 d, for co-transformation. However, the last two methods did not work well. Five regenerated transgenic plantlets were obtained, of which two were proved to be the result of co-transformation using PCR assay and southern blot, and a co-transformed one was induced to root and transplanted.
     6. Regenerated of BPTTRG-transformed plantlet and a preliminary study on the transformation of MFRG in papaya. CⅡb type of embryogenic calli were co-cultivated with Agrobacterium tumefaciens EHA 105 harboring plant expression vector p2301/BPTTRG and p1300-/MFRG, respectively, using infusion method. The BPTTRG transformation produced a co-transformed transgenic papaya showing positivity in GUS staining, PCR assay and southern blot. DNAs of the 198 regenerated plantlets from the MFRG transformation were extracted and divided into sixty-two multiple pools. Of two positive pools after PCR assay, none of individual plantlet from either pool was PCR positive, possibly indicating the chimeric phenomenon occurred during the co-transformation of papaya without selection pressure of antibiotics.
     In summary, the two-T-DNA co-transformed transgenic papaya with a RNAi-β-Gal structure introduced into genome was obtained. For the subsequent work, it is promising to breed a softening-resistant and marker-free papaya through sexual hybridization of the co-transformed transgenic plants, for the issue of safety of transgenic food.
引文
1.杨连珍,韦家少.世界番木瓜生产与发展分析.中国热带农业, 2005, (6): 18-20.
    2. Fitch M M M, Manshardt R M, Gonsalves D, et al. Stable transformation of papaya via microprojectile bombardment. Plant Cell Reports, 1990, 9: 189-194.
    3. Gonsalves D, Cai W Q, Tennant P, et al. Effective development of papaya ringspot virus resistant papaya with untranslatable coat protein gene using a modified microprojectile transformation method. Acta Horticulturae, 1998, 461: 311-314.
    4. Fitch M M M, Manshardt R M, Gonsalves D, et al. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology, 1992, 10: 1466-1472.
    5. Gonsalves D. Control of papaya ringspot virus in papaya: a case study. Annual Review of Phytopathology, 1998, 36: 415-437.
    6.李亚新.首例商品化的转基因果树—番木瓜.园艺学报, 2000, 28(1): 51.
    7.许鼎钟.番木瓜(Carica L.)花性观察——雌雄花的性变.植物学报, 1958, 7(4): 237-246.
    8.许鼎钟.番木瓜(Carica L.)花性观察——雌株.植物学报, 1958, 7(4): 231-236.
    9. Allan P, McChlery J, and Biggs D. Environmental Effects on Clonal Female and Male Carica papaya L. Plants. Scientia Horticulturae, 1987, 32: 221-232.
    10. Iorns M J. Observations on Change of Sex in Carica Papaya. Science, 1908, 28(708): 125-126.
    11.沈延松.季节变迁对番木瓜(Carica papaya)性别改变的观察.植物生理学通讯, 1955, (6): 18-20.
    12. Yu Q, Moore P H, Albert H H, et al. Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Research, 2005, 15(8): 576-584.
    13. Ackerman C M, Yu Q, Kim S, et al. B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta, 2008, 227: 741-753.
    14. Yu Q. Cloning and characterization of flower development genes in papaya. Honolulu: University of Hawaii, 2003, Ph.D. dissertation.
    15. Yu Q, Steiger D, Kramer E M, et al. Floral MADS-box Genes in Trioecious Papaya: Characterization of AG and AP1 Subfamily Genes Revealed a Sex-type-specific Gene. Tropical Plant Biology, 2008, 1(2): 97-107.
    16. Sondur S N, Manshardt R M, and Stiles J I. A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theoretical and Applied Genetics, 1996, 93: 547-553.
    17. Santos S C, Ruggiero C, Silva C L S P, et al. A microsatellite library for Carica papaya L. cv, Sunrise Solo. Revista Brasileira de Fruticultura, 2003, 25(2): 263-267.
    18. Eustice M, Yu Q, Lai C W, et al. Development and application of microsatellite markers for genomic analysis of papaya. Tree Genetics & Genomes, 2008, 4: 333-341.
    19. Chen C, Yu Q, Hou S, et al. Construction of a Sequence-Tagged High-Density Genetic Map of Papaya for Comparative Structural and Evolutionary Genomics in Brassicales. Genetics, 2007, 177: 2481-2491.
    20. Ming R, Moore P H, Zee F, et al. Construction and characterization of a papaya BAC libraryas a foundation for molecular dissection of a tree-fruit genome. Theoretical and Applied Genetics, 2001, 102: 892-899.
    21. Ma Hao, Moore P H, Liu Z, et al. High-Density Linkage Mapping Revealed Suppression of Recombination at the Sex Determination Locus in Papaya. Genetics, 2004, 166: 419-436.
    22. Liu Z, Moore P H, Ma H, et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 2004, 427: 348-352.
    23. Urasaki N, Tokumoto M, and Tarora K. A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theoretical and Applied Genetics, 2002, 104: 281-285.
    24. Chaves-Bedoya G and Nuňez V. A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica, 2007, 153: 215-220.
    25. Lemos E G M L, Silva C L S P, and Zaidan H A. Identification of sex in Carica papaya L. using RAPD markers. Euphytica, 2002, 127: 179-184.
    26. Parasnis A S, Ramakrishna W, Chowdari K V, et al. Microsatellite (GATA)n reveals sex-specific differences in Papaya. Theoretical and Applied Genetics, 1999, 99: 1047-1052.
    27. Deputy J C, Ming R, Ma H, et al. Molecular markers for sex determination in papaya (Carica papaya L.). Theoretical and Applied Genetics, 2002, 106: 107-111.
    28. Urasaki N, Tarora K, Uehara T, et al. Rapid and highly reliable sex diagnostic PCR assay for papaya (Carica papaya L.). Breeding Science, 2002, 52: 333-335.
    29. Jamilena M, Mariotti B, and Manzano S. Plant sex chromosomes: molecular structure and function. Cytogenetics Genome Research, 2008, 120: 255-264.
    30. Ming R, Yu Q, and Moore P H. Sex Determination in Papaya. Seminars in Cell and Developmental Biology, 2007, 18: 401-408.
    31. Yu Q, Hou S, Hobza R, et al. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Molecular Genetics and Genomics, 2007, 278: 177-185.
    32. Yu Q, Hou S, Feltus F A, et al. Low X/Y divergence in four pairs of papaya sex-linked genes. The Plant Journal, 2008, 53: 124-132.
    33. Yu Q, Navajas-Pérez R, Tong E, et al. Recent Origin of Dioecious and Gynodioecious Y Chromosomes in Papaya. Tropical Plant Biology, 2008, 1: 49-57.
    34. Ming R and Moore P H. Genomics of sex chromosomes. Current Opinion in Plant Biology, 2007, 10: 123-130.
    35. Ming R, Hou S, Feng Yun, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991-997.
    36. Lyons E, Pedersen B, Kane J, et al. Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids. Plant Physiology, 2008, 148: 1772-1781.
    37. Kimura M, Roriguez-Amaya D B, and Yokoyama S M. Cultivar differences and geographic effects on the carotenoid composition and vitamin A value of papaya. Lebensmittel-Wissenschaft und-Technologie, 1991, 24: 415-418.
    38. Chandrika U G, Jansz E R, Wickramasinghe S N, et al. Carotenoids in yellow- and red-fleshed papaya (Carica papaya L.). Journal of the Science of Food and Agriculture, 2003, 83(12): 1279-1282.
    39. Yamamoto H. Differences in carotenoid composition between red- and yellow-fleshed papaya. Nature, 1964, 201: 1049-1050.
    40. Selvarajah Y, Pal D K, Subranmanyam D, et al. Changes in the chemical composition of fourcultivars of papaya (Carica Papaya L.) during growth and development. Journal of Horticultural Science, 1982, 57: 135-143.
    41. Paull R E and Chen N J. Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during ripening. Plant Physiology, 1983, 72: 382-385.
    42. Jones W W and Kubota Hisashi. Some chemical and respirational changes in the papaya fruit during ripening, and the effects of cold storage on these changes. Plant Physiology, 1940, 15: 711-717.
    43. Jones W W. Respiration and chemical changes of the papaya fruit in relation to temperature. Plant Physiology, 1942, 17: 481-486.
    44. Paull R E. Ripening behavior of papaya (Carica papaya L.) exposed to gamma irradiation. Postharvest Biology and Technology, 1996, 7: 359-370.
    45. Sozzi G O, Camperi S A, Cascone O, et al. Galactosidases in tomato fruit ontogeny: decreased galactosidase activities in antisense ACC synthase fruit during ripening and reversal with exogenous ethylene. Australian Journal of Plant Physiology, 1998, 25(2): 237-244.
    46. Chaves A L S and de Mello-Farias P C. Ethylene and fruit ripening: From illumination gas to the control of gene expression, more than a century of discoveries. Genetics and Molecular Biology, 2006, 29(3): 508-515.
    47. Ergun M. 1-Methylcyclopropene treatment efficacy in preventing ethylene perception and ripening in intact and fresh-cut ' Galia' melon and ' Sunrise Solo' papaya fruits. Gainesville: University of Florida, 2003, Ph.D. Dissertation.
    48. Tang C S. Benzyl isothiocyanate of papaya fruit. Phytochemistry, 1971, 10(1): 117-121.
    49. Patil S S and Tang C S. Inhibition of ethylene evolution in papaya pulp tissue by benzyl isothiocyanate. Plant Physiology, 1974, 53: 585-588.
    50. Keegstra K, Talmadge K W, Bauer W D, et al. The structure of plant cell walls. III. A model of the walls of suspensioncultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiology, 1973, 51: 188-196.
    51. Schols H A, Voragen A G J, and Colquhoun I J. Isolation and characterization of rhamnogalacturonan oligomers, liberated during degradation of pectic hairy regions by rhamnogalacturonase. Carbohydrate Research, 1994, 256: 97-111.
    52. Seymour G B, Colquhoun I J, Dupont M S, et al. Composition and structural features of cell wall polysaccharides from tomato fruits. Phytochemistry, 1990, 29(3): 725-731.
    53. Femenia A, Rigby N M, Selvendran R R, et al. Investigation of the occurrence of pectic-xylan-xyloglucan complexes in the cell walls of cauliflower stem tissue. Carbohydrate Polymers, 1999, 39: 151-164.
    54. Thompson J E and Fry S C. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta, 2000, 211: 275-286.
    55. Biswas A B and Rao C V N. Structural investigation of the galactan component of the pectic substance from Carica papaya. Australian Journal of Chemistry, 1969, 22: 2001-2004.
    56. Westerlund E, Aman P, Andersson R, et al. Chemical Characterization of Water-Soluble Pectin in Papaya Fruit. Carbohydrate Polymers, 1991, 15: 67-78.
    57. Koh T H and Ali Z M. Analysis of papaya cell wall polysaccharides. ASEAN Food Journal, 1994, 9: 101-106.
    58. Lazan H, Selamat M K, and Ali Z M.β-galactosidase, polygalacturonase and pectin esterase in differential softening and cell wall modification during papaya fruit ripening. PhysiologiaPlantarum, 1995, 95: 106-112.
    59. Manrique G D and Lajolo F M. Cell-wall polysaccharide modifications during postharvest ripening of papaya fruit (Carica papaya). Postharvest Biology and Technology, 2004, 33: 11-26.
    60. Paull R E, Gross K, and Qiu Y. Changes in papaya cell walls during fruit ripening. Postharvest Biology and Technology, 1999, 16: 79-89.
    61. Jiang C M, Wu M C, Wu C L, et al. Pectinesterase and Polygalacturonase Activities and Textural Properties of Rubbery Papaya (Carica papaya Linn.) Journal of Food Science, 2003, 68(5): 1590-1594.
    62. Zhao M, Moy J, and Paull R E. Effect of gamma-irradiation on ripening papaya pectin. Postharvest Biology and Technology, 1996, 8: 209-222.
    63. Ali Z M, Ng S Y, Othman R, et al. Isolation, characterization and significance of papayaβ-galactosidases to cell wall modification and fruit softening during ripening. Physiologia Plantarum, 1998, 104: 105-115.
    64. Cosgrove D J. Loosening of plant cell walls by expansins. Nature, 2000, 407: 321-326.
    65. Rose J K C and Bennett A B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends in Plant Science, 1999, 4: 176-183.
    66. Trainotti L, Spinello R, Piovan A, et al.β-Galactosidases with a lectin-like domain are expressed in strawberry. Journal of Experimental Botany, 2001, 52: 1635-1645.
    67. Tateishi A, Shiba H, Ogihara J, et al. Differential expression and ethylene regulation ofβ-galactosidase genes and isozymes isolated from avocado (Persea americana Mill.) fruit. Postharvest Biology and Technology, 2007, 45: 56-65.
    68. Smith D L and Gross K C. A Family of at Least Sevenβ-Galactosidase Genes Is Expressed during Tomato Fruit Development. Plant Physiology, 2000, 123: 1173-1183.
    69. Smith D L, Starrett D A, and Gross K C. A Gene Coding for Tomato Fruitβ-Galactosidase II Is Expressed during Fruit Ripening-Cloning, Characterization, and Expression Pattern. Plant Physiology, 1998, 117: 417-423.
    70. Tateishi A, Nagashima K, Mathooko F M, et al. Differential Expression of Members of theβ-Galactosidase Gene Family during Japanese Pear (Pyrus pyrifolia L.) Fruit Growth and On-tree Ripening. Journal of American Society of Horticultural Science, 2005, 130(6): 819-829.
    71. Ogasawara S, Abe K, and Nakajima T. Pepperβ-Galactosidase 1 (PBG1) Plays a Significant Role in Fruit Ripening in Bell Pepper (Capsicum annuum). Bioscience, Biotechnology, and Biochemistry, 2007, 71(2): 309-322.
    72. Moctezuma E, Smith D L, and Gross K C. Effect of ethylene on mRNA abundance of threeβ-galactosidase genes in wild type and mutant tomato fruit. Postharvest Biology and Technology, 2003, 28: 207-217.
    73. Carey A T, Holt K, Picard S, et al. Tomato Exo-(l→4)-β-D-Galactanase. Plant Physiology, 1995, 108: 1099-1107.
    74. Konno H, Nakato T, and Katoh K. Characteristics, hydrolysis of cell wall polymers, and response to calcium deficiency of a cell wall-associatedβ-galactosidase from carrot cells. Journal of Plant Physiology, 2002, 159: 1-8.
    75.史益敏,颜季琼,费雪南,等.番茄叶片胞外β-半乳糖苷酶的纯化和性质.植物生理学报,1994, 20(2): 113-120.
    76. Pressey R.β-Galactosidases in Ripening Tomatoes. Plant Physiology, 1983, 71: 132-135.
    77. Smith D L, Abbott J A, and Gross K C. Down-Regulation of Tomatoβ-Galactosidase 4 Results in Decreased Fruit Softening. Plant Physiology, 2002, 129: 1755-1762.
    78. Carey A T, Smith D L, Harrison E, et al. Down-regulation of a ripening-relatedβ-galactosidase gene (TBG1) in transgenic tomato fruits. Journal of Experimental Botany, 2001, 52(357): 663-668.
    79. Tateishi A, Inoue H, Shiba H, et al. Molecular Cloning ofβ-Galactosidase from Japanese Pear (Pyrus pyrifolia) and its Gene Expression with Fruit Ripening. Plant and Cell Physiology, 2001, 42(5): 492-498.
    80. Mwaniki M W, Mathooko F M, Matsuzaki M, et al. Expression characteristics of seven members of theβ-galactosidase gene family in ' La France' pear (Pyrus communis L.) fruit during growth and their regulation by 1-methylcyclopropene during postharvest ripening. Postharvest Biology and Technology, 2005, 36: 253-263.
    81. De Veau E J L, Gross K C, Huher D J, et al. Degradation and sotubilization of pectin byβ-galactosidases purified from avocado mesocarp. Physiologia Plantarum, 1993, 87(3): 279-284.
    82. Tateishi A, Inoue H, and Yamaki S. Fluctuations in activities of threeβ-galactosidase isoforms from ripening avocado (Persea americana) fruit and their different activities against its cell wall polysaccharides as substrates. Journal of Japanese Society of Horticultural Science, 2001, 70: 586-592.
    83.庄军平,苏菁,陈维信.香蕉果实β-半乳糖苷酶基因cDNA克隆及序列分析.西北植物学报, 2006, 26(1): 18-22.
    84. Zhuang J P, Su J, Li X P, et al. Cloning and Expression Analysis ofβ-Galactosidase Gene Related to Softening of Banana (Musa sp.) Fruit. Journal of Plant Physiology and Molecular Biology, 2006, 32(4): 411-419.
    85. Bartley I M.β-Galactosidase activity in ripening apples. Phytochemistry, 1974, 13: 2107-2111.
    86. Ross C S, Wegrzyn T, MacRae E A, et al. Appleβ-Galactosidase-Activity against Cell Wall Polysaccharides and Characterization of a Related cDNA Clone. Plant Physiology, 1994, 106: 521-528.
    87.金昌海,水野雅史,汪志君,等.苹果β-半乳糖苷酶对细胞壁多糖降解特性的研究.扬州大学学报(农业与生命科学版), 2002, 23(4): 71-75.
    88.金昌海,汪志君,陆兆新,等.苹果β-半乳糖苷酶同工酶的分离纯化与动力学性质.江苏农业学报, 2003, 19(1): 28-32.
    89.陈昆松,张上隆, Ross G S.β-半乳糖苷酶基因在猕猴桃果实成熟过程的表达.植物生理学报, 2000, 26(2): 117-122.
    90. Ross G S, Redgwell R J, and MacRae E A. Kiwifruitβ-galactosidase: Isolation and activity against specific fruit cell-wall polysaccharides. Planta 1993, 189: 499-506.
    91.阚娟,金昌海,汪志君,等.β-半乳糖苷酶及多聚半乳糖醛酸酶对桃果实成熟软化的影响.扬州大学学报(农业与生命科学版), 2006, 27(3): 76-80.
    92. Jin C H, Kan J, Wang Z J, et al. Activity ofβ-Galactosidase andα-L-Arabinofuranosidase, Ethylene biosynthetic enzymes during peach ripening and softening. Journal of Food Processing and Preservation, 2006, 30(5): 515-526.
    93. Kang S G, Suh S G, Lee D H, et al. Purification and characterization of aβ-galactosidase from peach (Prunus persica). Molecules and Cells, 2003, 15(1): 68-74.
    94. Balasubramaniam S, Lee H C, Lazan H, et al. Purification and properties of aβ-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides. Phytochemistry, 2005, 66: 153-163.
    95. Ali Z M, Armugam S, and Lazan H.β-galactosidase and its significance in ripening mango fruit. Phytochemistry, 1995, 38(5): 1109-1114.
    96. Barnavona L, Docoa T, Terrier N, et al. Analysis of cell wall neutral sugar composition,β-galactosidase activity and a related cDNA clone throughout the development of Vitis vinifera grape berries. Plant Physiology and Biochemistry, 2000, 38(4): 289-300.
    97. Ranwala A P, Suematsu C, and Masuda H. The Role ofβ-Galactosidases in the Modification of Cell Wall Components during Muskmelon Fruit Ripening. Plant Physiology, 1992, 100: 1318-1325.
    98.罗自生,席玙芳,金勇丰,等.贮前热处理减轻柿果实冷害与细胞壁水解酶活性的关系.园艺学报, 2001, 28(6): 554-556.
    99. Nakamura A, Maeda H, Mizuno M, et al.β-Galactosidase and its significance in ripening of "Saijyo"Japanese Persimmon Fruit. Bioscience, Biotechnology, and Biochemistry, 2003, 67(1): 68-76.
    100.陆胜民,席玙芳,张耀洲.梅果采后软化与细胞壁组分及其降解酶活性的变化.中国农业科学, 2003, 36(5): 595-598.
    101. Ketsaa S and Daengkanit T. Firmness and activities of polygalacturonase, pectinesterase, b-galactosidase and cellulase in ripening durian harvested at different stages of maturity. Scientia Horticulturae, 1999, 80: 181-188.
    102. Biles C L, Bruton B D, Russo V, et al. Characterisation ofβ-Galactosidase Isozymes of Ripening Peppers. Journal of the science of food and agriculture, 1997, 75: 237-243.
    103. Esteban R, Dopico B, Mu?oz F J, et al. Cloning of a Cicer arietinumβ-Galactosidase with Pectin-Degrading Function. Plant and Cell Physiology, 2003, 44(7): 718-725.
    104. Esteban R, Labrador E, and Dopico B. A family ofβ-galactosidase cDNAs related to development of vegetative tissue in Cicer arietinum. Plant Science, 2005, 168: 457-466.
    105. Golden K D, Johna M A, and Kean E A.β-Galactosidase from Coffea Arabica and its role in fruit ripening. Phytochemistry, 1993, 34(2): 355-360.
    106. Lazan H, Ng S Y, Goh L Y, et al. Papayaβ-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiology and Biochemistry, 2004, 42: 847-853.
    107. Ali Z M, Chin L H, and Lazan H. A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Science, 2004, 167: 317-327.
    108. Thumdee S, Manenoi A, and Paull R E. Activity of papaya fruit hydrolases during natural softening and modified softening. Acta Horticulturae, 2007, 740: 317-322.
    109. Othman R, Choo T-S, Ali Z M, et al. A Full-Length Beta-galactosidase cDNA Sequence From Ripening Papaya (Carica Papaya L. Cv. Eksotika). Plant Physiology, 1998, 118: 1102.
    110. King C A and Davies K M. Cloning of a Harvest-lnducedβ-Galactosidase from Tips of Harvested Asparagus Spears. Plant Physiology, 1995, 108: 419-420.
    111. Devitt L C, Tim S, Timothy A H, et al. Discovery of genes associated with fruit ripening inCarica papaya using expressed sequence tags. Plant Science, 2006, 170: 356-363.
    112. Karakurt Y and Huber D J. Characterization of wound-regulated cDNAs and their expression in fresh-cut and intact papaya fruit during low-temperature storage. Postharvest Biology and Technology 2007, 44(2): 179-183.
    113. Karakurt Y and Huber D J. Activities of several membrane and cell-wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronide degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit. Postharvest Biology and Technology, 2003, 28(2): 219-229.
    114. Soh C P, Ali Z M, and Lazan H. Characterisation of an alpha-galactosidase with potential relevance to ripening related texture changes. Phytochemistry, 2006, 67(3): 242-254.
    115. Chen N J and Paull R E. Endoxylanase expressed during papaya fruit ripening: purification, cloning and characterization. Functional Plant Biology, 2003, 30(4): 433-441.
    116. Manenoi A and Paull R E. Papaya fruit softening, endoxylanase gene expression, protein and activity. Physiologia Plantarum, 2007, 131: 470-480.
    117. Manrique G D and Lajolo F M. FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biology and Technology, 2002, 25: 99-107.
    118. Pal D K and Selvaraj Y. Biochemistry of papaya (Carica papaya L.) fruit. Journal of Horticultural Science, 1987, 62(1): 117-124.
    119. Chan H T, Jr Tam S Y T, and Seo S T. Papaya polygalacturonase and its role in thermally injured ripening fruit. Journal of Food Science, 1981, 46: 190-197.
    120. Chan H T and Tam S Y T. The characterization of endopolygalacturonase and exopolygalacturonase from papaya. Journal of Food Science, 1982, 47: 1478-1483.
    121. Lazan H and Ali Z M. Cell wall hydrolases and their potential in the manipulation of ripening of tropical fruits. ASEAN Food Journal, 1993, 8: 47-53.
    122.林莹.番木瓜果胶裂解酶基因的克隆.福州:福建农林大学, 2006,硕士学位论文.
    123.申艳红,陈晓静,何玮毅,等.番木瓜果肉果胶裂解酶基因克隆及反义植物表达载体的构建.热带作物学报, 2009, 30(1): 59-63.
    124. Huber D J, Karakurt Y, and Jeong Jiwon. Pectin degradation in ripening and wounded fruits. Revista Brasileira de Fisiologia Vegetal, 2001, 13(2): 224-241.
    125. Lopez M E, Vattuone M A, and Sampietro A R. Partial purification and properties of invertase from Carica papaya fruits. Phytochemistry, 1988, 27(10): 3077-3081.
    126. Zhou L, Chen C C, Ming R, et al. Apoplastic Invertase and Its Enhanced Expression and Post-translation Control during Fruit Maturation and Ripening. Journal of the American Society for Horticultural Science, 2003, 128(5): 628-635.
    127. Azevedo I G, Oliveira J G, da Silva M G, et al. P-type H+-ATPases activity, membrane integrity, and apoplastic pH during papaya fruit ripening. Postharvest Biology and Technology, 2008, 48: 242-247.
    128. Gomez M, Lajolo F, and Cordenunsi B. Evolution of Soluble Sugars During Ripening of Papaya Fruit and its Relation to Sweet Taste. Journal of Food Science, 2002, 67(1): 442-447.
    129. Chang L W S, Morita L L, and Yamamoto H Y. Papaya pectin methylesterase inhibition by sucrose. Journal of Food Science, 1965, 30: 218-222.
    130. Mason M G and Botella J R. Identification and characterisation of two 1-aminocyclopropane -1-carboxylate (ACC) synthase cDNAs expressed during papaya (Carica papaya) fruitripening. Australian Journal of Plant Physiology, 1997, 24(2): 239-244.
    131. Lin C T, Fu K Y, Lin M T, et al. Cloning and Characterization of a cDNA for 1-Aminocyclopropane-1-Carboxylate Synthase from Papaya Fruit. Plant Physiology, 1998, 116: 1193.
    132. Neupane K R, Mukatifa U T, Kato C, et al. Cloning and characterization of fruit expressed ACC synthase and ACC oxidase from papaya (Carica papaya L.). Acta Horticulturae, 1998, 461: 329-337.
    133. Laurena A C, Magdalita P M, Hidalgo M S P, et al. Cloning and molecular characterization of ripening-related ACC synthase from papaya fruit (Carica papaya L.). Acta Horticulturae, 2002, 575: 163-169.
    134. Hidalgo M S P, Tecson-Mendoza E M, Laurena A C, et al. Hybrid ' Sinta' Papaya Exhibits Unique ACC Synthase 1 cDNA Isoforms. Journal of Biochemistry and Molecular Biology, 2005, 38(3): 320-327.
    135. Lin C T, Lin M T, and Shaw J F. Cloning and characterization of a cDNA for 1-aminocyclopropane-1 carboxylate oxidase from papaya fruit. Journal of Agricultural and Food Chemistry, 1997, 45(2): 526-530.
    136. Chen Y T, Lee Y R, Yang C Y, et al. A novel papaya ACC oxidase gene (CP-ACO2) associated with late stage fruit ripening and leaf senescence. Plant Science, 2003, 164: 531-540.
    137. Sew Y.S, Lam P F, and Abu Bakar U K. Isolation and cloning of 1-aminocyclopropane-1-carboxylate oxidases from Carica papaya var. Eksotika I and Eksotika II. Acta Horticulturae, 2007, 740: 153-162.
    138. López-Gómez R, Morales-Domínguez F, Alcázar O M, et al. Identification of a genomic clone to ACC oxidase from Papaya (Carica papaya L.) and expression studies. Journal of Agricultural and Food Chemistry, 2004, 52: 794-800.
    139.王晓飞.若干核果类果树及番木瓜β-半乳糖苷酶同源基因的克隆.福州:福建农林大学, 2005,硕士学位论文.
    140.牛艳梅,沈文涛,卢雅薇,等.番木瓜果实膨胀素基因部分序列的克隆及分析.热带作物学报, 2007, 28(4): 47-50.
    141.牛艳梅,沈文涛,卢雅薇,等.番木瓜果实扩展蛋白Cp-EXP1基因表达的荧光定量PCR分析.生物技术通讯, 2008, 19(1): 84-86.
    142. Jo-Feng A and Paull R E. Storage temperature and ethylene influence on ripening of papaya fruit. Journal of the American Society for Horticultural Science, 1990, 115: 949-953.
    143. Widjanarko S B and Wills R B H. Effects of storage at subambient temperatures on ripening of Australian papaya. Australian Journal of Experimental Agriculture, 1997, 37(1): 126-129.
    144. Purwoko B S, Kesmayanti N, Susanto S, et al. Effect of polyamines on quality changes in papaya and mango fruits. Acta Horticulturae, 1998, 464: 510-512.
    145. Chen N M and Paull R E. Development and prevention of chilling injury in papaya fruit. Journal of the American Society for Horticultural Science, 1986, 111: 639-643.
    146.李增平.番木瓜果实腐烂病原菌、防腐及贮藏.热带农业科学, 2000, (1): 74-80.
    147. Lam P F. Production and skin colour change of papaya at different temperature. Acta Horticulturae, 1990, 269: 257-266.
    148.李潮生.国外番木瓜研究进展.福建热作科技, 1985, (1): 50-52.
    149. Miller W R and McDonald R B. Irradiation, stage of maturity at harvest, and storage temperature during ripening affect papaya fruit quality. HortScience, 1999, 34(6): 1112-1115.
    150. Maharaj R and Sankat C K. Storability of papayas under refrigerated and controlled atmosphere. Acta Horticulturae, 1990, 269: 375-383.
    151. Gaikwad R V, Khandare V S, Wakle K, et al. Effect of different packaging material and pretreatment on shelf life of papaya. Journal of Soils and Crops, 2000, 10(1): 57-59.
    152. González-Aguilar G A, Buta J G , and Wang C Y. Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya ' Sunrise' . Postharvest Biology and Technology, 2003, 28: 361-370.
    153. Mosca J L and Durigan J F. Post-harvesting conservation of papaya fruits Carica papaya L. ' Improved Sunrise Solo Line 72/12' , with utilization of protector films and wax, associated with refrigeration. Acta Horticulturae, 1995, 370: 217-222.
    154.夏元熙,郑晓英.冬季番木瓜催熟试验.福建热作科技, 1990, (1): 32-33.
    155. Xiao L and Kiyota M. Effects of ethylene removal on retaining freshness of imported avocado, papaya and mango fruits under modified atmosphere packages at normal temperature. Environment Control in Biology, 2002, 40(1): 111-116.
    156. Cenci S A, Soares A G, de Lourdes M, et al. Study of Storage Sunrise ' Solo' papaya fruit under controlled atmosphere. Controlled Atmosphere, 1997, 3: 205-211.
    157. Nazeeb M and Broughton W J. Storage conditions and ripening of papaya ' Bentong' and ' Taiping' . Scientia Horticulturae, 1978, 9: 265-277.
    158. Alvarez A M and Nishijima W T. Postharvest diseases of papaya. Plant Disease, 1987, 71: 681-686.
    159. Chau K F and Alvarez A M. Postharvest fruit rot of papaya caused by Stemphylium lycopersici. Plant disease, 1983, 67: 1279-1281.
    160.林兰清.番木瓜的贮藏保鲜与加工.广西热作科技, 2000, (4): 45.
    161.刘元寿,颉敏华. 1-MCP在果蔬贮藏保鲜中的应用.甘肃农业科技, 2005, (4): 31-33.
    162. Jacomino A P, Kluge R A, Brackmann A, et al. Ripening and senescence of papaya with 1-methylcyclopropene. Scientia Agricola, 2002, 59(2): 303-308.
    163. Manenoi A, Bayogan E R V, Thumdee Siwaporn, et al. Utility of 1-methylcyclopropene as a papaya postharvest treatment. Postharvest Biology and Technology, 2007, 44: 55-62.
    164. Hofman P J, Jobin-Decor M, Meiburg G F, et al. Ripening and quality responses of avocado, custard apple, mango and papaya fruit to 1-methylcyclopropene. Australian Journal of Experimental Agriculture, 2001, 41(4): 567-572.
    165. Ergun M, Huber D J, Jeong J, et al. Extended Shelf Life and Quality of Fresh-cut Papaya Derived from Ripe Fruit Treated with the Ethylene Antagonist 1-Methylcyclopropene. Journal of the American Society for Horticultural Science, 2006, 131(1): 97-103.
    166. Pang S Z and Sanford J C. Agrobacterium-mediated Gene Transfer in Papaya. Journal of the American Society for Horticultural Science, 1988, 113(2): 287-291.
    167.马英,林顺权,吕柳新.草莓、番木瓜、猕猴桃遗传转化研究初报.园艺学进展(第五辑), 2002: 343-366.
    168.姜玲, Tetsuo M, Sadao K,等.超声波辅助农杆菌介导CP基因转化番木瓜(Carica papaya L.)的有效方法.实验生物学报, 2004, 37(3): 189-198.
    169. Yu T A, Yeh S D, and Yang J S. Comparison of the effects of kanamycin and geneticin on regeneration of papaya from root tissue. Plant Cell, Tissue and Organ Culture, 2003, 74:169-178.
    170. Dhekney S A. Molecular investigations, cryopreservation and genetic transformation studies in papaya (Carica papaya L.) for cold hardiness. Gainesville: University of Florida, 2004, Ph.D. Dissertation.
    171. Dhekney S A, Litz R E, Amador D A M, et al. Potential for introducing cold tolerance into papaya by transformation with C-repeat binding factor (CBF) genes. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(3): 195-202.
    172.张更林.结核杆菌分泌蛋白ESAT-6基因转化番木瓜的研究.海口:华南热带农业大学, 2002,硕士学位论文.
    173. Souza J M T, Venturoli M F, Coelho M C F, et al. Analysis of marker gene/selective agent systems alternatives to positive selection of transgenic papaya (Carica papaya L.) somatic embryos. Revista Brasileira de Fisiologia Vegetal, 2001, 13(3): 365-372.
    174. Zhu Y J, Agbayani R, McCafferty H, et al. Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Reports, 2005, 24: 426-432.
    175. Cabrera-Ponce J L, Vegas-Garcia A, and Herrera-Estrella L. Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Reports, 1995, 15: 1-7.
    176. Zhu Y J, Agbayani R, and Moore P H. Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.) transformation. Plant Cell Reports, 2004, 22: 660-667.
    177. Yu T A, Yeh S D, and Yang J S. Effects of carbenicillin and cefotaxime on callus growth and somatic embryogenesis from adventitious roots of papay. Botanical Bulletin of Academia Sinica, 2001, 42: 281-286.
    178.周鹏,郑学勤.根癌农杆菌介导的环斑病毒外壳蛋白基因转化番木瓜的研究.热带作物学报, 1993, 14(2): 71-77.
    179. Fitch M M M, Manshardt R M, Gonsalves D, et al. Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Reports, 1993, 12: 245-249.
    180. Cheng Y H, Yang J S, and Yeh S D. Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with caborundum. Plant Cell Reports, 1996, 16: 127-132.
    181. Ying Z, Yu X, and Davis M J. New method for obtaining transgenic papaya plants by Agrobacterium-mediated transformation of somatic embryos. Proceedings of the Florida State Horticultural Society 1999, 112: 201-205.
    182. Yang J S, Yu T A, Cheng Y H, et al. Transgenic papaya plants from Agrobacterium-mediated transformation of petioles of in vitro propagated multishoots. Plant Cell Reports, 1996, 15: 459-464.
    183.周鹏,郑学勤. PRSV-外壳蛋白基因在转基因番木瓜中的表达.热带作物学报, 1995a, 16(S): 36-39.
    184. Cabrera-Ponce J L, Vegas-Garcia A, and Herrera-Estrella L. Regneration of transgenic papaya plants via somatic embryogenesis induced by Agrobacterium Rhizogenes. In Vitro Cellular & Developmental Biology - Plant, 1996, 32: 86-90.
    185. Mahon R E, Bateson M F, Chamberlain D A, et al. Transformation of an Australian Variety of Carica papaya using Microprojectile Bombardment. Australian Journal of Plant Physiology, 1996, 23: 679-685.
    186. Cai W, Gonsalves C, Tennant P, et al. A protocol for efficient transformation and regeneration of Carica papaya L. In Vitro Cellular & Developmental Biology - Plant, 1999, 35: 61-69.
    187. Tennant P, Fermin G, Fitch M M M, et al. Papaya ringspot virus resistance of transgenic Rainbow and SunUp is affected by gene dosage, plant development, and coat protein homology. European Journal of Plant Pathology, 2001, 107: 645–653.
    188.叶长明,叶寅,骆学海,等.番木瓜环斑病外壳蛋白基因的构建.植物病理学报, 1991, 21(3): 161-164.
    189.刘俊军,彭学贤,莽克强.番木瓜环斑病毒分离物(SM)外壳蛋白基因克隆及序列分析.微生物学通报, 1991, 18(6): 350-351.
    190.刘俊军,彭学贤,李荔,等.番木瓜环斑病毒外壳蛋白基因的克隆和在大肠杆菌中的表达.病毒学报, 1998, 9(1): 78-84.
    191.周鹏,郑学勤. PRSV-CP转基因番木瓜表达与抗病能力关系的研究.热带作物学报, 1996, 17(2): 77-83.
    192. Fermin G, Inglessis V, Garboza C, et al. Engineered resistance against Papaya ringspot virus in Venezuelan transgenic papayas. Plant Disease, 2004, 88: 516-522.
    193.刘俊军,彭学贤,莽克强.番木瓜环斑病毒复制酶(亚基)的克隆、序列分析及其植物表达载体的构建.生物工程学报, 1994, 10(3): 283-287.
    194.周鹏,郑学勤.病毒RNA复制酶——Nib基因转化番木瓜的研究.热带作物学报, 1995b, 16(S): 40-43.
    195.叶长明,陈谷,黄俊潮,等.番木瓜环斑病毒复制酶基因的克隆和序列分析.中山大学学报, 1996, 35(6): 125-127.
    196.陈谷,叶长明,黄俊潮,等.番木瓜环斑病毒复制酶基因转化番木瓜的研究.遗传, 1998, 20(S): 9-11.
    197.叶长明,魏祥东,陈东红,等.转基因番木瓜的抗病性及分子鉴定.遗传, 2003, 25(2): 181-184.
    198.魏祥东,蓝崇钰,卢志菁. T4转基因番木瓜遗传性和果实品质分析.生态学报, 2005, 25(12): 3301-3306.
    199.阮小蕾,周国辉,李华平,等.转PRSV复制酶基因番木瓜的抗病性测定.福建农业大学学报, 2001, 30(S): 218-222.
    200.阮小蕾,李华平,周国辉.转PRSV复制酶基因T2代番木瓜植株的抗病性测定.华南农业大学学报, 2004, 25(4): 12-15.
    201.冯黎霞,阮小蕾,周国辉,等.转基因番木瓜抗病性测定和纯合系的获得.仲恺农业技术学院学报, 2005, 18(4): 12-15.
    202.赵志英,周鹏,曾宪松,等.核酶基因转化番木瓜的研究.热带作物学报, 1998, 19(2): 20-26.
    203.周鹏,郭安平,黎小瑛.海南PRSV-CP与rhIFNα-2b双价载体构建新策略.热带作物学报, 2003, 24(3): 58-62.
    204.周鹏,赵志英,郑学勤.人α-干扰素2b基因转化番茄、番木瓜的研究(Ⅰ)——人α-干扰素2b基因植物表达载体构建方法的研究.热带作物学报, 1998, 19(1): 52-57.
    205.张宏,胡春香,张德禄,等.植物防御素研究进展.西北师范大学学报(自然科学版), 2006, 42(5): 112-117.
    206. Zhu Y J, Agbayani R, and Moore P H. Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta, 2007, 226(1): 87-97.
    207. Zhu Y J, Agbayani R, Jackson M C, et al. Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta, 2004, 220: 241–250.
    208.周鹏,郑学勤,陈向民.木瓜环斑病毒外壳蛋白与核酸酶嵌合基因转化番木瓜胚状体的研究.热带作物学报, 1995c, 16(S): 31-35.
    209.周鹏,郑学勤. PRSV-CP转基因番木瓜表达与抗病能力关系的研究.热带作物学报, 1996, 17(2): 77-83.
    210.饶雪琴,周国辉,张曙光,等.番木瓜环斑病毒Ys株系复制酶和Vb株系衣壳蛋白融合基因的克隆和转化.中国植物病理学会2005年学术年会暨植物病理学报创刊50周年纪念会论文集, 2005: 58.
    211.张锡炎,郑学勤,伍世平,等.番木瓜环斑病毒外壳蛋白基因及抗菌素肽D基因双抗表达载体的构建.热带作物学报, 1994, 15(S): 49-54.
    212.王志斌,张秀梅,郭三堆.在转基因植物中利用植物凝集素防治害虫的研究.植物学通报, 2000, 17(2): 108-113.
    213. McCafferty H, Moore P H, and Zhu Y J. Towards Improved Insect Resistance of Papaya by Transgenic Expression of Snowdrop Lectin. In Vitro Cellular & Developmental Biology, 2004, 40: 52A.
    214. Kramer KJ and Muthukrishnan S. Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochemistry and Molecular Biology, 1997, 27(11): 887-900.
    215. McCafferty H R K, Moore P H, and Zhu Y J. Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Research, 2006, 15: 337-347.
    216. de la Fuente J M, Ramírez-Rodríguez V, Cabrera-Ponce J L, et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 1997, 276: 1566-1568.
    217. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-106.
    218. Neupane K R. Genetic engineering of papaya (Carica papaya L.) for modified ethylene biosynthesis. Honolulu: University of Hawaii, 1997, Ph.D. Dissertation.
    219. Manshardt R M and Drew R A. Biotechnology of papaya. Acta Horticulturae, 1998, 461: 65-73.
    220. Magdalita P M, Laurena A C, Yabut-Perez B M, et al. Progress in the development of transgenic papaya: transformation of Solo papaya using ACC synthase antisense construct. Acta Horticulturae, 2002, 575: 171-176.
    221.张更林,周鹏,郭安平,等.转基因番木瓜作为抗结核植物口服疫苗的初步研究.云南植物研究, 2003, 25(2): 223-229.
    222. Hernández M, Cabrera-Ponce J L, Fragoso G, et al. A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine, 2007, 25: 4252-4260.
    223. Sakuanrungsirikul S, Sarindu N, Prasartsee V, et al. Update on the development of virus-resistant papaya: virus-resistant transgenic papaya for people in rural communities of Thailand. Food and nutrition bulletin, 2005, 26(4): 422-426.
    224. Iwaki M and Arakawa Y. Transformation of Acinetobacter sp. BD413 with DNA from commercially available genetically modified potato and papaya. Letters in Applied Microbiology, 2006, 43: 215-221.
    225. Lo C C, Chen S C, and Yang J Z. Use of real-time polymerase chain reaction (PCR) andtransformation assay to monitor the persistence and bioavailability of transgenic genes released from genetically modified papaya expressing nptⅡand PRSV genes in the soil. Journal of Agricultural and Food Chemistry, 2007, 55: 7534-7540.
    226. Hsieh Y T and Pan T M. Influence of planting papaya ringspot virus resistant transgenic papaya on soil microbial biodiversity. Journal of Agricultural and Food Chemistry, 2006, 54: 130-137.
    227. Wei X D, Zou H L, Chu L M, et al. Field released transgenic papaya affects microbial communities and enzyme activities in soil. Plant Soil, 2006, 285: 347-358.
    228. Davidson S N. Forbidden Fruit: Transgenic Papaya in Thailand. Plant Physiology, 2008, 147: 487-493.
    229. Scutt C P, Elena Z, and Peter M. Techniques for the removal of marker genes from transgenic plants. Biochimie, 2002, 84: 1119-1126.
    230.姚琴,丛玲,汪越胜,等.无载体框架序列转基因小麦中外源基因表达框的遗传分析.遗传, 2006, 28(6): 695-698.
    231. Kato C Y. Characterization of the fruit specific 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene promoter in papaya (Carica papaya L.). Honolulu: University of Hawaii, 2004, Ph.D. Dissertation.
    232. Skelton R L, Yu Q, Srinivasan R, et al. Tissue differential expression of lycopene beta-cyclase gene in papaya. Cell Research, 2006, 16(8): 731-739.
    233.杨英军,周鹏.番木瓜proteinase omega基因启动子的克隆及功能初步研究.云南植物研究, 2005, 27(5): 545-551.
    234.杨英军,周鹏,李艳梅,等.番木瓜凝乳蛋白酶基因启动子的克隆及功能研究.园艺学报, 2008, 35(7): 973-978.
    235. Burns P, Chubunmee S, Pinon P, et al. Identification of two 1-aminocyclopropane-1-carboxylate oxidase genes (CP-Aco1 and CP- Aco2) from Carica papaya and characterisation of putative CP-Aco1 promoter using agrobacterium infiltration. Acta Horticulturae, 2007, 740: 163-168.
    236. Spolaro S, Trainotti L, and Casadoro G. A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. Journal of Experimental Botany, 2001, 52: 845-850.
    237.梁栋.番木瓜β-半乳糖苷酶同源基因启动子克隆与功能鉴定.福州:福建农林大学, 2008,硕士学位论文.
    238. Porter B W, Aizawa K S, Zhu Y J, et al. Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. Plant Science, 2008, 174: 38-50.
    239. Magdalita P M, Laurena A C, Yabut-Perez B M, et al. Progress in the development of transgenic papaya: transformation of Solo papaya using ACC synthase antisense construct. Acta Horticulturae, 2002, 575(171-176).
    240. Brummell D A and Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 2001, 47: 311-340.
    241. Paull R E and Chen N J. Minimal processing of papaya (Carica papaya L.) and the physiology of halved fruit. Postharvest Biology and Technology, 1997, 12: 93-99.
    242. Rivera-López J, Vázquez-Ortiz F A, Ayala-Zavala J F, et al. Cutting Shape and Storage Temperature Affect Overall Quality of Fresh-cut Papaya cv. ' Maradol' . Journal of Food Science, 2005, 70(7): 482-489.
    243. O' Connor-Shaw R, Roberts R, Ford A, et al. Shelf life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. Journal of Food Science, 1994, 59(6): 1202-1206.
    244. Brecht J K. Physiology of lightly processed fruits and vegetables. HortScience, 1995, 30: 18-22.
    245. Fitch M M M, Moore P H, Terryl C W, et al. Clonally Propagated and Seed-derived Papaya Orchards: I. Plant Production and Field Growth. HortScience, 2005a, 40(5): 1283-1290.
    246. Fitch M M M, Moore P H, Terryl C W, et al. Clonally Propagated and Seed-derived Papaya Orchards: II. Yield Comparison. HortScience, 2005b, 40(5): 1291-1297.
    247. Fitch M M M and Manshardt R M. Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Reports, 1990, 9: 320-324.
    248.饶雪琴,李华平.红肉小果型番木瓜品种'美中红'体胚的诱导.植物生理学通讯, 2007, 43(1): 73-76.
    249.邹韵霞,郭惠珊.番木瓜胚珠高频率体胚发生和植株再生.中山大学学报(自然科学版), 1992, 31(3): 60-65.
    250. Monmarson S, Michaux-Ferriere N, and Teisson C. Production of high-frequency embryogenic calli from integuments of immature seeds of Carica papaya L. Journal of Horticultural Science, 1995, 70(1): 57-64.
    251. Fitch M M M. High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell, Tissue and Organ Culture, 1993, 32: 205-212.
    252.曾继吾,易干军,张秋明.番木瓜体胚发生及植株再生研究.果树学报, 2003, 20(6): 471-474.
    253. Chen M H, Wang P J, and Maeda E. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants. Plant Cell Reports, 1987, 6: 348-351.
    254. Yang J S and Ye C A. Plant regeneration from petioles of in vitro regenerated papaya (Carica papaya L.) shoots. Botanical Bulletin of Academia Sinica, 1992, 33: 375-381.
    255. Hossain M, Rahman S M, Islam R, et al. High efficiency plant regeneration from petiole explants of Carica papaya L. through organogenesis. Plant Cell Reports, 1993, 13: 99-102.
    256.周鹏,郑学勤,曾宪松.番木瓜叶片再生植株初探.热带农业科学, 1992, (4): 35-42.
    257.朱西儒,张云开.番木瓜叶片愈伤组织形成、分化及再生植株移栽.广西植物, 2001, 21(1): 59-62.
    258.徐海峰,栾爱业,曾黎辉,等.雪柑试管苗不定根高频率诱导和高效再生体系的建立.江西农业大学学报, 2007, 29(1): 148-151.
    259.赖钟雄,陈春玲,黄素华,等.龙眼胚性愈伤组织长期继代培养及其染色体数目变异.福建农业大学学报, 2001, 30(1): 29-32.
    260. Drew R A, Jen A M, and John A C. Rhizogenesis and root growth of Carica papaya L. in vitro in relation to auxin sensitive phases and use of riboflavin. Plant Cell, Tissue and Organ Culture, 1993, 33: 1-7.
    261.林莹,陈晓静.番木瓜果肉RNA提取方法的比较.亚热带农业研究, 2008, 4(3): 229-232.
    262.肖璇,孙敏,王心燕,等.顽拗植物龙眼基因组DNA提取方法的研究.生物技术, 2005, 15(1): 46-49.
    263. Dellaporta S L, Wood J, and Hicks J B. A plant DNA minipreparation: Version II. PlantMolecular Biology Reporter, 1983, 1(4): 19-21.
    264. Gasteiger E, Hoogland C, Gattiker A, et al, Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook, ed. Walker J M, Humana Press: 571-607, 2005
    265. Marchler-Bauer A, Anderson J B, Derbyshire M K, et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Research, 2007, 35: 237-240.
    266. Geourjon C and Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments Bioinformatics, 1995, 11(6): 681-684.
    267. Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195-201.
    268. Gupta R and Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing, 2002, 7: 310-322.
    269. Bendtsen J D, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 2004, 340: 783-795.
    270. Kyte J and Doolittle R. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 1982, 157: 105-132.
    271. Emanuelsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 2000, 300: 1005-1016.
    272. Nakai K and Horton P. PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends in Biochemical Sciences, 1999, 24(1): 34-35.
    273. Jensen L J, Gupta R, Blom N, et al. Prediction of human protein function from post-translational modifications and localization features. Journal of Molecular Biology, 2002, 319: 1257-1265.
    274. Breathnach R and Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annual Review of Biochemistry, 1981, 50: 349-383.
    275. Yang L, Jin G, Zhao X, et al. PIP: a database of potential intron polymorphism markers. Bioinformatics, 2007, 23(16): 2174-2177.
    276.尹涛,张上隆,刘敬梅,等.提高外源基因在转基因植物中表达效率的途径.农业生物技术学报, 2005, 13(6): 808-814.
    277. Ochman H, Gerber A S, and Hartl D L. Genetic Applications of an Inverse Polymerase Chain Reaction. Genetics, 1988, 120: 621-623.
    278. Lescot M, Déhais P, Moreau Y, et al. PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30: 325-327.
    279. Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research, 1999, 27: 297-300.
    280. Reese M G. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Computers & Chemistry, 2001, 26: 51-56.
    281.崔武,刘炜,吴光耀.高效、快速地将外源DNA导入根癌土壤杆菌.生物工程学报, 1995, 11(4): 350-355.
    282.崔武,刘炜,郑海燕.将外源DNA直接导入根瘤土壤农杆菌的新方法.植物生理学通讯, 1995, 31(1): 48-49.
    283. Jefferson R A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 1987, 5: 387-405.
    284. Lewin B, Genes VIII. San Francisco, California, United States, Benjamin-Cummings Publisher, 2003
    285. Montgomery J, Goldman S, Deikman J, et al. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90: 5939-5943.
    286. Saito S, Tamura K, and Aotsuka T. Replication origin of mitochondrial DNA in insects. Genetics, 2005, 171: 1695-1705.
    287. Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 2001, 27(6): 581-590.
    288. Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811.
    289. Abbott A. Youthful duo snags a swift Nobel for RNA control of genes. Nature, 2006, 443: 488.
    290. Couzin J. Method to silence genes earns loud praise. Science, 2006, 314(5796): 34.
    291. Denli A M and Hannon G J. RNAi: an ever-growing puzzle. Trends in Biochemical Sciences, 2003, 28: 196-201.
    292. Smith N A, Surinder P S, Wang M B, et al. Total silencing by intron-spliced hairpin RNAs. Science, 2000, 407: 319-320.
    293. Matthew L. RNAi for plant functional genomics. Comparative and Functional Genomics, 2004, 5: 240-244.
    294. Mansoor S, Amin I, Hussain M, et al. Engineering novel traits in plants through RNA interference. Trends in Plant Science, 2006, 11(11): 559-565.
    295.冯斗,张春发,张颖.香蕉乙烯受体基因RNA干扰表达载体的构建.广西农业生物科学, 2004, 23(2): 149-153.
    296.曹艳红,章镇,姚泉洪,等.苹果多酚氧化酶双链RNA干扰(RNAi)研究实验生物学报, 2004, 37(6): 487-493.
    297.胡钟东,乔玉山,王三红,等.梨ACC氧化酶基因(ACO)的片段克隆及其RNAi载体构建.果树学报, 2006, 23(6): 877-879.
    298. Krubphachaya P, Ju?í?ek M, and Kertbundit Sunee. Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W. Journal of Biochemistry and Molecular Biology, 2007, 40(3): 404-411.
    299.姜玲,秦长平,伏卉. GatewayTM系统快速构建番木瓜环斑病毒CP基因反向重复序列表达载体.农业生物技术学报, 2008, 16(3): 526-529.
    300.魏军亚,刘德兵,蔡群芳,等.番木瓜环斑病毒CP基因同源区段的克隆及植物表达载体的构建.热带作物学报, 2007, 28(2): 54-59.
    301.魏军亚,刘德兵,周鹏. dsRNA介导的PRSV-CP基因3' -端同源序列瞬时表达对番木瓜环斑病毒侵染的影响.热带作物学报, 2007, 28(3): 78-82.
    302. De Block M and Debrouwer D. Two T-DNA' s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theoretical and Applied Genetics, 1991, 82: 257-263.
    303. Daley M, Knauf V C, Summerfelt K R, et al. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-freetransgenic plants. Plant Cell Reports, 1998, 17: 489-496.
    304. Komari T, H iei Y, Saito Y, et al. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal, 1996, 10: 165-174.
    305. Lu H J, Zhou X R, Gong Z X, et al. Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vector. australian Journal of Plant Physiology, 2001, 28: 241-248.
    306. Cregg J M and Madden K R. Use of site-specific recombination to regenerate selectable markers. Molecular and General Genetics, 1989, 219: 320-323.
    307. Dale E C and David W Ow. Intra and intermolecular site-specific recombination in plant cell mediated by bacterphage P1 recombinase. Gene, 1990, 91: 79-85.
    308. Onouchi H, Nishihama R, Kuodo M, et al. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Molecular and General Genetics, 1995, 247: 653-660.
    309. Maeaer S and Kahmann R. The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplast. Molecular and General Genetics, 1991, 230: 170-176.
    310. Sugita K, Kasahara T, Matsunaga E, et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. The Plant Journal, 2000, 22(5): 461-469.
    311. Ebinuma H, Sugita K, Matsunaga E, et al. Selection of marker-free transgenic plants using isopentenyl transferase gene. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 2117-2121.
    312. Goldsbrough A P, Lastrella C N, and YoderJ I. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology, 1993, 11: 1286-1292.
    313. Zubko E, Scutt C, and Meyer P. Intrachromosomal recombination between attp region as a tool to remove selectable marker gene from tobacco transgenes. Nature Biotechnology, 2000, 18: 442-445.
    314. de Vetten N, Wolters A M, Raemakers K, et al. A transformation method for obtaining marker-free plants of a crosspollinating and vegetatively propagated crop. Nature Biotechnology, 2003, 21: 439-442.
    315. Depicker A, Herman L, Jacobs A, et al. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Molecular and General Genetics, 1985, 201: 477-484.
    316. de Framond A J, Back E W, Chilton W S, et al. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Molecular and General Genetics, 1986, 202: 125-131.
    317. McCormac A C, Fowler M R, Chen D F, et al. Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Research, 2001, 10: 143-155.
    318. Matthews P R, Wang M B, Waterhouse P M, et al. Marker gene elimination from transgenic barley, using co-transformation with adjacent ' twin T-DNAs' on a standard Agrobacterium transformation vector. Molecular Breeding, 2001, 7: 195-202.
    319. Miller M, Tagliani L, Wang N, et al. High efficiency transgene segregation in co-transformedmaize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Research, 2002, 11: 381-396.
    320. Breitler J C, Meynard D, Boxtel J V, et al. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Research, 2004, 13: 271-287.
    321. Supartana P, Shimizu T, Shioiri H, et al. Development of Simple and Efficient in Planta Transformation Method for Rice (Oryza sativa L.) Using Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 2005, 100(4): 391-397.
    322. Supartana P, Shimizu T, Nogawa M, et al. Development of Simple and Efficient in Planta Transformation Method for Wheat (Triticum aestivum L.) Using Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 2006, 102(3): 162-170.
    323. Kojima M, Arai Y, Iwase N, et al. Development of a simple and efficient method for transformation of Buckwheat plants (Fagopyrum esculentum) using Agrobacterium tumefaciens. Bioscience, Biotechnology, and Biochemistry, 2000, 64(4): 845-847.
    324. Kojima M, Shioiri H, Nogawa M, et al. In planta Transformation of Kenaf Plants (Hibiscus cannabinus var. aokawa No. 3) by Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 2004, 98(2): 136-139.
    325. Lu X P, Nogawa M, Shioiri H, et al. In Planta Transformation of Mulberry Trees (Morus alba L.) by Agrobacterium tumefaciens. Journal of Insect Biotechnology and Sericology, 2003, 72: 177-184.
    326. Fuchs R L, Ream J E, Hammond B G, et al. Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Bio/Technology, 1993, 11: 1543-1547.
    327. Nap J P, Bijvoet J, and Stiekema W J. Biosafety of kanamycin-resistant transgenic plants. Transgenic Research, 1992, 1: 239-249.
    328. Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes Development, 2002, 16: 1616-1626.
    329. Xie Z, Kasschau K D, and Carrington J C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Current Biology, 2003, 13: 784-789.
    330. Labavitch J M, Freeman L E, and Albersheim P. Structure of plant cell walls. Purification and characterization of a ,8-1,4-galactanase which degrades a structural component of the primary cell walls of dicots. Journal of Biological Chemistry, 1976, 251: 5904-5910.
    331. Gross K C and Wallner S J. Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening. Plant Physiology, 1979, 63: 117-120.
    332. Wallner S J and Walker J.E. Glycosidases in cell wall degrading extracts of ripening tomato fruits. Plant Physiology, 1975, 55: 94-98.
    333. Wallner S J and Bloom H L. Characteristics of tomato cell wall degradation in vitro--implications for the study of fruit softening enzymes. Plant Physiology, 1977, 60: 207-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700