一种脑MRI图像的混合分割模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MRI作为医学领域中一种重要的成像技术,具有辐射小、分辨率高以及对软组织分辨力强的特点,为人脑的研究提供了一种有效的途径,并已广泛应用于医学、神经科学、认知科学和心理学等方面的研究和临床应用中。脑灰质、脑白质与脑脊液是三种主要的脑组织,脑部的老化和病理常常与这三种组织的体积、形态等特征变化相联系。对这三种组织准确、快速的分割是后续可视化、量化的诊断和分析、手术规划、治疗跟踪与评估等处理和操作的基础,无论对于医学研究还是临床应用都具有十分重要的意义。
     但是由于技术上的原因,以及成像条件上的限制,MRI图像的质量常常受到噪声、局部体效应和偏移场效应的影响,呈现出模糊和灰度均匀性的特点。此外,人脑解剖结构复杂、个体间的差异大、临床应用对医学图像分割的精确度和算法执行的速度要求高,现有的算法还远远没有达到理想的效果。因此,脑MRI图像的分割仍旧是医学图像分割领域中的热点问题。
     本文重点研究了基于分水岭变换的分割算法和基于可形变模型的分割算法,提出了一种基于优化的分水岭变换和Chan-Vese模型的混合分割模型,本文的主要工作和创新点包括以下几个方面:
     1.针对分水岭变换的过分割问题,我们提出了一种优化的分水岭变换算法。相对于传统基于前处理或后处理的改进方法,我们通过引入一个差异度函数,将逐层浸没的方式修改成为多层次浸没的方式,在分水岭变换的执行过程中对过分割进行抑制。这种方式能够有效的利用分水岭变换过程的中间结果,同时避免了预处理或后处理带来的额外开销。此外,我们在多层次浸没的框架中加入了对边缘线显著性的限制,保证在抑制过分割的同时不会破坏感兴趣区域的边界。实验证明,本文提出的优化的分水岭算法,在过分割抑制、分割速度和分割精确度等方面的性能都有显著的提高,不仅解决了传统的分水岭变换中的过分割问题,而且显示出较ITK的优化分水岭变换算法更高的分割精确度。为后续与几何形变模型的结合打下了坚实的基础。
     2.针对分水岭变换分割结果平滑性差的问题,我们提出了一种基于优化的分水岭变换与CV模型的混合分割模型。在该模型中,我们使用Chan-Vese模型对优化的分水岭算法得到的感兴趣区域的初始轮廓进行演化。这样的结合,一方面解决了分水岭变换分割结果平滑性差的问题;另一方面克服了Chan-Vese模型对初始轮廓位置敏感、计算复杂以及收敛速度慢的弱点。能够在不增加计算复杂度的情况下进一步提高分割的精确度。
     3.在混合分割模型的基础上,设计并实现了一套分割系统,并将该系统应用于实际的脑MRI图像数据的分割。实现了非脑组织与脑组织的分离,以及脑灰质、脑白质和脑脊液的分割,取得了较为满意的结果。实验结果证明,本文提出的混合分割模型无论在分割的精确度、分割的速度,还是自动化程度方面都有显著的提高。
As one of the leading techniques for medical imaging, MRI provides a useful tool for human brain research, and has been widely used in medicine, neuroscience, cognitive science,psychology, etc. Grey matter, white matter and cerebrospinal fluid (CFS) are three major brain tissues. Accurate segmentation of these three tissues has both clinical and academic significance.Accurate measurement of the volume and morphology of these tissues can help early diagnosis of pathology, as well as understanding the way they change during development,aging, and pathology. Besides, accurate measurement and localization of these tissue, are prerequisite of subsequent analysis, such as visualization, surgical planning, computer integrated surgery, treatment tracing, etc.
     However, the performance of automatic segmentation of brain MRI images is still hindered by following factors:The complexity nature of the brain anatomy, as well as the inter and intra variations of the these structure bring diffculty to brain modeling; Intensity inhomogeneity caused by inhomogeneity of magnetic field and biological variation within the same tissue;Partial volume effect. Therefore, the existing methods are still far from the clinical requirement for segmentation accuracy, speed, and automation. Therefore, automatic segmentation of brain MRI is still a challenge work.
     In this thesis, a hybrid model for medical image segmentation, which combines an improved watershed transform and geometric deformable model is proposed. Achievements and innovation points in this thesis are described below:
     1.We proposed a saliency measurement constrained multilevel immersion watershed transform method. The innovation of our method is that, in contrast to the traditional preprocessing and postprocessing method used to overcome oversegmenation, our method can suppress the oversegmenation during the watershed transform. Besides, additional saliency measurement was added as constraint to avoid important contours from being destroyed. Experiment results demonstrate the superior performance of our method over the traditional watershed method and the improved watershed method provided by ITK, in terms of segmentation accuracy and speed,and thus lays a concrete foundation for the subsequent combination with geometric model.
     2.Chan-Vese model was used to propagate the initial contour of object of interest which produced by our improved watershed transform, in order to correct its smoothness. This combination can avoid manual initial contour specifying, improve the speed of convergence, and further segmentation accuracy.
     3.A segmentation system was designed and realized for the proposed hybrid segmentation system, and was tested on real brain MRI image. We provide experiment of brain skull stripping, as well as grey matter, white matter and cerebrospinal fluid (CFS) segmentation to explain the effectiveness of these proposed methods in terms of segmentation accuracy, time complexity and automation.
引文
[1] M.J. McAuli?e, F.M. Lalonde, D. McGarry, W. Gandler, K. Csaky, B.L. Trus. Med-ical image processing, analysis and visualization in clinical research. IEEE CBMS.2001:381–386
    [2] J.S. Duncan, N. Ayache. Medical image analysis: Progress over two decades and thechallenges ahead. IEEE Transactions on Pattern Analysis and Machine Intelligence.2000:85–106
    [3] SM Lawrie, SS Abukmeil. Brain abnormality in schizophrenia. A systematic and quan-titative review of volumetric magnetic resonance imaging studies. The British Journal ofPsychiatry. 1998, 172(2):110
    [4] A.P. Zijdenbos, B.M. Dawant. Brain segmentation and white matter lesion detection inMR images. Crit Rev Biomed Eng. 1994, 22(5/6):401–465
    [5] R.H. Taylor, S. Lavalle′e, R. M”osges. Computer-integrated surgery: technology and clinical applications. The MITpress, 1995
    [6] A.J. Worth, N. Makris, V.S. Caviness, D.N. Kennedy. Neuroanatomical segmentation inMRI: technological objectives. International Journal of Pattern Recognition and ArtificialIntelligence. 1997, 11(8):1161–1188
    [7] V.S. Khoo, D.P. Dearnaley, D.J. Finnigan, A. Padhani, S.F. Tanner, M.O. Leach. Mag-netic resonance imaging (MRI): considerations and applications in radiotherapy treat-ment planning. Radiotherapy and Oncology. 1997, 42(1):1–15
    [8] W.E.L. Grimson, GJ Ettinger, T. Kapur, M.E. Leventon, WM Wells, R. Kikinis. Uti-lizing segmented MRI data in image-guided surgery. International Journal of PatternRecognition and Artificial Intelligence. 1997, 11(8):1367–1402
    [9] HW Muller-Gartner, J.M. Links, J.L. Prince, RN Bryan, E. McVeigh, JP Leal, C. Da-vatzikos, JJ Frost. Measurement of radiotracer concentration in brain gray matter usingpositron emission tomography: MRI-based correction for partial volume e?ects. J CerebBlood Flow Metab. 1992, 12(4):571–83
    [10] D.L. Pham, C. Xu, J.L. Prince. C URRENT M ETHODS IN M EDICAL I MAGE SEGMENTATION 1. Annual Review of Biomedical Engineering. 2000, 2(1):315–337
    [11] JC Bezdek, LO Hall, LP Clarke. Review of MR image segmentation techniques usingpattern recognition. MEDICAL PHYSICS-LANCASTER PA-. 1993, 20:1033–1033
    [12] Y. Zhang, M. Brady, S. Smith. Segmentation of brain MR images through a hiddenMarkov random field model and the expectation-maximization algorithm. IEEE Transactionson Medical Imaging. 2001, 20(1):45–57
    [13] K. Held, E.R. Kops, B.J. Krause, WM Wells, R. Kikinis, H.W. Muller-Gartner. Markovrandom field segmentation of brain MR images. IEEE Transactions on Medical Imaging.1997, 16(6):878–886
    [14] A.P. Dempster, N.M. Laird, D.B. Rubin, et al. Maximum likelihood from incomplete datavia the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological).1977, 39(1):1–38
    [15] M. Sonka, V. Hlavac, R. Boyle. Image Processing, Analysis, and Machine Vision SecondEdition. International Thomson. 1999
    [16] E. Angelini, Y. Jin, A. Laine. State of the art of level set methods in segmentation andregistration of medical imaging modalities. Handbook of Medical Image Analysis: AdvancedSegmenation and Registration Models
    [17] J. Shi, J. Malik. Normalized cuts and image segmentation. IEEE Transactions on patternanalysis and machine intelligence. 2000, 22(8):888–905
    [18] J.K. Udupa, P.K. Saha. Fuzzy connectedness and image segmentation. Proceedings ofthe IEEE. 2003, 91(10):1649–1669
    [19] J. Serra. Image analysis and mathematical morphology. New York. 1982
    [20] L. Vincent, P. Soille. Watersheds in digital spaces: an ecient algorithm based on immersionsimulations. IEEE transactions on pattern analysis and machine intelligence.1991, 13(6):583–598
    [21] S. Beucher, F. Meyer. The morphological approach to segmentation: the watershedtransformation. OPTICAL ENGINEERING-NEW YORK-MARCEL DEKKERINCORPORATED-. 1992, 34:433–433
    [22] M. Egmont-Petersen, D. De Ridder, H. Handels. Image processing with neural networks―a review. Pattern Recognition. 2002, 35(10):2279–2301
    [23] DW Piraino, SC Amartur, BJ Richmond, JP Schils, JM Thome, PB Weber. Segmentationof magnetic resonance images using an artificial neural network. Proceedings ofthe Annual Symposium on Computer Application in Medical Care. American MedicalInformatics Association, 1991, 470
    [24] A. Wismuller, F. Vietze, J. Behrends, A. Meyer-Baese, M. Reiser, H. Ritter. Fully au-tomated biomedical image segmentation by self-organized model adaptation. NeuralNetworks. 2004, 17(8-9):1327–1344
    [25] SC Amartur, D. Piraino, Y. Takefuji. Optimization neural networks for the segmenta-tion of magnetic resonance images. IEEE Transactions on Medical Imaging. 1992,11(2):215–220
    [26] P.A. Van den Elsen, E.J.D. Pol, M.A. Viergever. Medical image matching-a review withclassification. IEEE Engineering in Medicine and Biology Magazine. 1993, 12(1):26–39
    [27] L.H. Staib, J.S. Duncan. Boundary finding with parametrically deformable models. IEEETransactions on Pattern Analysis and Machine Intelligence. 1992, 14(11):1061–1075
    [28] A.K. Jain, Y. Zhong, M.P. Dubuisson-Jolly. Deformable template models: A review.Signal Processing. 1998, 71(2):109–129
    [29] G. Matheron. Random sets and integral geometry. Wiley New York, 1975
    [30] S.R. Sternberg. Grayscale morphology. Computer Vision, Graphics, and Image Process-ing. 1986, 35(3):333–355
    [31] J.B.T.M. Roerdink, A. Meijster. The watershed transform: Definitions, algorithms andparallelization strategies. Mathematical Morphology. 41:187–228
    [32] A.N. Moga, M. Gabbouj. Parallel image component labeling with watershed transforma-tion. IEEE transactions on pattern analysis and machine intelligence. 1997, 19(5):441–450
    [33] H. Digabel, C. Lantuejoul. Iterative algorithms, Actes du Second Symposium Eu-ropeen d”Analyse Quantitative des Microstructures en Sciences des Materiaux, Biologieet Medecine, Caen, 4-7 October 1977, J.-L. Chermant, Ed, 1978
    [34] C. Lantuejoul. La squelettisation et son application aux mesures topologiques des mo-saiques polycristallines. Thse, cole Nationale Sup rieure des Mines de Paris. 1978
    [35] S. Beucher, C. Lantue′joul. Use of watersheds in contour detection. International Work-shop on image processing, real-time edge and motion detection/estimation. 1979, 17–21
    [36] URL http://www.epa.gov/watershed/whatis.html
    [37] F. Meyer. Topographic distance and watershed lines. Signal Processing. 1994, 38(1):113–125
    [38] L. Najman, M. Schmitt. Watershed of a continuous function. Signal Processing. 1994,38(1):99–112
    [39] F. Preteux. On a distance function approach for gray-level mathematical morphology.OPTICAL ENGINEERING-NEW YORK-MARCEL DEKKER INCORPORATED-.1992, 34:323–323
    [40] F. Meyer, S. Beucher. Morphological segmentation. Journal of visual communicationand image representation. 1990, 1(1):21–46
    [41] L. Vincent. Algorithmes morphologiques a base de files d’attente et de lacets: Extensionaux graphes. E′cole Nationale Supe′rieure de Mines de Paris, PhD thesis. 1990
    [42] V. Grau, AUJ Mewes, M. Alcaniz, R. Kikinis, S.K. Warfield. Improved watershed trans-form for medical image segmentation using prior information. IEEE Transactions onMedical Imaging. 2004, 23(4):447–458
    [43] J.M. Gauch. Image segmentation and analysis via multiscale gradient watershed hierar-chies. IEEE Transactions on Image Processing. 1999, 8(1):69–79
    [44] J. Weickert. Fast segmentation methods based on partial di?erential equations and thewatershed transformation. Mustererkennung 1998, 20. DAGM-Symposium. Springer-Verlag, 1998, 100
    [45] J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. Van Dyck, E. Raman.Watershed-based segmentation of 3D MR data for volume quantization. Magnetic Reso-nance Imaging. 1997, 15(6):679–688
    [46] L. Vincent. Morphological grayscale reconstruction in image analysis: Applications ande?cient algorithms. IEEE transactions on image processing. 1993, 2(2):176–201
    [47] M. Grimaud. New measure of contrast: the dynamics. Proceedings of SPIE. 1769, vol.292, 1992
    [48] L. Najman, M. Schmitt. Geodesic saliency of watershed contours and hierarchical seg-mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996,18(12):1163–1173
    [49] D.H. Ballard, C.M. Brown. Computer Vision. Englewood Clis, 1982
    [50] X. Wu. Adaptive split-and-merge segmentation based on piecewise least-square approx-imation. IEEE Trans Putt Anal Machine Intell vol. 12(5):117434
    [51] K. Haris, S.N. Efstratiadis, N. Maglaveras, A.K. Katsaggelos. Hybrid image segmenta-tion using watersheds and fast region merging. IEEE Transactions on Image Processing.1998, 7(12):1684–1699
    [52] A.P. Mangan, R.T. Whitaker. Partitioning 3 D surface meshes using watershed segmenta-tion. IEEE Transactions on Visualization and Computer Graphics. 1999, 5(4):308–321
    [53] W. Yang, L. Guo, T. Zhao, G. Xiao. Improving Watersheds Image Segmentation Methodwith Graph Theory. 2nd IEEE Conference on Industrial Electronics and Applications,2007. ICIEA 2007. 2007, 2550–2553
    [54] R. Nock, F. Nielsen. Statistical region merging. IEEE Transactions on Pattern Analysisand Machine Intelligence. 2004, 26(11):1452–1458
    [55] L.H. Guo, J.H. Li, S.T. Yang, S.N. Lu. Image segmentation using an improved watershedalgorithm. Journal of Shanghai Jiaoting University(Science). 2004, 9(2):16–19
    [56] F. Meyer, C. Vachier. Image segmentation based on viscous ?ooding simulation. Math-ematical morphology: proceedings of the VIth International Symposium–ISMM 2002:Sydney, 3-5 April, 2002. Csiro, 2002, 69
    [57] C. Vachier, F. Meyer. The viscous watershed transform. Journal of Mathematical Imagingand Vision. 2005, 22(2):251–267
    [58] T. McInerney, D. Terzopoulos. Deformable models in medical image analysis: a survey.Medical image analysis. 1996, 1(2):91–108
    [59] M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active contour models. Internationaljournal of computer vision. 1988, 1(4):321–331
    [60] V. Caselles, F. Catte′, T. Coll, F. Dibos. A geometric model for active contours in imageprocessing. Numerische Mathematik. 1993, 66(1):1–31
    [61] R. Malladi, JA Sethian, BC Vemuri. Evolutionary fronts for topology-independent shapemodeling and recovery. Proceedings of the third European conference on Computervision (vol. 1). Springer-Verlag New York, Inc., 1994, 13
    [62] V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contours. International journal ofcomputer vision. 1997, 22(1):61–79
    [63] S. Osher, J.A. Sethian. Fronts propagating with curvature-dependent speed: algo-rithms based on Hamilton-Jacobi formulations. Journal of computational physics. 1988,79(1):12–49
    [64] L.D. Cohen. Note on active contour models and balloons. CVGIP: Image understanding.1991, 53(2):211–218
    [65] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi. Conformal curvature?ows: from phase transitions to active vision. Archive for Rational Mechanics and Anal-ysis. 1996, 134(3):275–301
    [66] D. Terzopoulos, A. Witkin, M. Kass. Constraints on deformable models: Recovering 3Dshape and nonrigid motion* 1. Artificial Intelligence. 1988, 36(1):91–123
    [67] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum. A geometric snakemodel for segmentation of medical imagery. IEEE Transactions on Medical Imaging.1997, 16(2):199–209
    [68] D. Mumford, J. Shah. Optimal approximations by piecewise smooth functions and asso-ciated variational problems. Comm Pure Appl Math. 1989, 42(5):577–685
    [69] T.F. Chan, L.A. Vese. Active contours without edges. IEEE Transactions on imageprocessing. 2001, 10(2):266–277
    [70] N. Paragios, R. Deriche. Geodesic active regions and level set methods for supervisedtexture segmentation. International Journal of Computer Vision. 2002, 46(3):223–247
    [71] R. Ronfard. Region-based strategies for active contour models. International Journal ofComputer Vision. 1994, 13(2):229–251
    [72] A. Yezzi Jr, A.T.A. Willsky. A statistical approach to snakes for bimodal and trimodalimagery. measurements. 1:1
    [73] SC Zhu. YUILLE A Region competition: unifying snakes, region growing, and Bayes.MDL for multiband image segmentation. 1996
    [74] L.D. Cohen. On active contour models. NATO ASI SERIES F COMPUTER ANDSYSTEMS SCIENCES. 1993, 83:599–599
    [75] C. Xu, J.L. Prince. Snakes, shapes, and gradient vector ?ow. IEEE Transactions onimage processing. 1998, 7(3):359–369
    [76] S.G.E.M. AN, D.G.E.M. AN. Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images. IEEE Trans Pattern Anal Machine Intell. 1984, 6:721–741
    [77] A. Blake, A. Zisserman. Visual reconstruction. MIT press Cambridge, MA, 1987
    [78] D. Geman, S. Geman, C. Gra?gne, P. Dong. Boundary detection by constrained op-timization. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990,12(7):609–628
    [79] Y.G. Leclerc. Constructing simple stable descriptions for image partitioning. Interna-tional Journal of Computer Vision. 1989, 3(1):73–102
    [80] K. Keeler. Map representations and coding-based priors for segmentation. IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, 1991. Proceed-ings CVPR’91. 1991, 420–425
    [81] T. Kanungo, B. Dom, W. Niblack, D. Steele. A fast algorithm for MDL-based multi-bandimage segmentation. Image Technology: Advances in Image Processing, Multimedia andMachine Vision. 1996:147
    [82] J. Park, J.M. Keller. Snakes on the watershed. IEEE Transactions on Pattern Analysisand Machine Intelligence. 2001:1201–1205
    [83] H.T. Nguyen, M. Worring, R. Van Den Boomgaard. Watersnakes: Energy-driven wa-tershed segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.2003:330–342
    [84] V. Kiran, PK Bora. Watersnake: integrating the watershed and the active contour algo-rithms. TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Re-gion. 2003, vol. 2
    [85] I. Dagher, K.E. Tom. WaterBalloons: A hybrid watershed Balloon Snake segmentation.Image and Vision computing. 2008, 26(7):905–912
    [86] D. Jayadevappa, S.S. Kumar, DS Murty. A Hybrid Segmentation Model based on Water-shed and Gradient Vector Flow for the Detection of Brain Tumor
    [87] D.W. Chakeres, P. Schmalbrock. Fundamentals of magnetic resonance imaging. Journalof Computer Assisted Tomography. 1993, 17(6):1006
    [88] URL http://des.cmu.edu.cn/jiaoxue/xueke/txk/yxx/%B5%DA4%D5%C2%20%B4%C5%B9%B2%D5%F1.ppt
    [89] URL http://neurocog.psy.tufts.edu/images/mri-scanner1.gif
    [90] URL http://med.qe.cn/HTML/127657.html
    [91] N.C. Fox, J.M. Schott. Imaging cerebral atrophy: normal ageing to Alzheimer’s disease.The Lancet. 2004, 363(9406):392–394
    [92] L. Durelli, E. Verdun, P. Barbero, M. Bergui, E. Versino, A. Ghezzi, E. Montanari, M.Za?aroni. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a formultiple sclerosis: results of a 2-year prospective randomised multicentre study (IN-COMIN). The Lancet. 2002, 359(9316):1453–1460
    [93] DW Paty, DKB Li, et al. Interferon beta-1b is e?ective in relapsing-remitting multiplesclerosis: II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993, 43(4):662
    [94] PM Thompson, A.W. Toga. A surface-based technique for warping 3-dimensional imagesof the brain. IEEE Transactions on Medical Imaging. 1996, 15(4):1–16
    [95] D. Shen, C. Davatzikos. HAMMER: hierarchical attribute matching mechanism for elas-tic registration. IEEE Trans Med Imaging. 2002, 21(11):1421–1439
    [96] N.F. Kalkers, N. Ameziane, J.C.J. Bot, A. Minneboo, C.H. Polman, F. Barkhof. Longitu-dinal brain volume measurement in multiple sclerosis: rate of brain atrophy is indepen-dent of the disease subtype. Archives of Neurology. 2002, 59(10):1572
    [97] A.M. Dale, B. Fischl, M.I. Sereno. Cortical surface-based analysis I. Segmentation andsurface reconstruction. Neuroimage. 1999, 9(2):179–194
    [98] D.W. Shattuck, S.R. Sandor-Leahy, K.A. Schaper, D.A. Rottenberg, R.M. Leahy. Mag-netic resonance image tissue classification using a partial volume model. NeuroImage.2001, 13(5):856–876
    [99] J. Sharma, M.P. Sanfilipo, R.H.B. Benedict, B. Weinstock-Guttman, F.E. MunschauerIII, R. Bakshi. Whole-brain atrophy in multiple sclerosis measured by automated versussemiautomated MR imaging segmentation. American Journal of Neuroradiology. 2004,25(6):985
    [100] K. Boesen, K. Rehm, K. Schaper, S. Stoltzner, R. Woods, E. L”uders, D. Rottenberg. Quantitative comparison of four brain extraction algorithms. Neu-roImage. 2004, 22(3):1255–1261
    [101] C. Fennema-Notestine, I.B. Ozyurt, C.P. Clark, S. Morris, A. Bischo?-Grethe, M.W.Bondi, T.L. Jernigan, B. Fischl, F. Segonne, D.W. Shattuck, et al. Quantitative evaluationof automated skull-stripping methods applied to contemporary and legacy images: e?ectsof diagnosis, bias correction, and slice location. Human brain mapping. 2006, 27(2):99
    [102] LP Clarke, RP Velthuizen, MA Camacho, JJ Heine, M. Vaidyanathan, LO Hall, RWThatcher, ML Silbiger. MRI segmentation: methods and applications. Magnetic Reso-nance Imaging. 1995, 13(3):343–368- 90 -
    [103] ME Brummer, RM Mersereau, RL Eisner, RRJ Lewine. Automatic detection of braincontours in MRI data sets. Information processing in medical imaging: 12th InternationalConference, IPMI’91, Wye, UK, July 7-12, 1991, proceedings. Springer, 1991, 188
    [104] C. Tsai, BS Manjunath, R. Jagadeesan. Automated segmentation of brain MR images.Pattern Recognition. 1995, 28(12):1825–1837
    [105] S.M. Smith. Fast robust automated brain extraction. Human Brain Mapping. 2002,17(3):143–155
    [106] A.H. Zhuang, D.J. Valentino, A.W. Toga. Skull-stripping magnetic resonance brain im-ages using a model-based level set. NeuroImage. 2006, 32(1):79–92
    [107] L. Lemieux, G. Hagemann, K. Krakow, F.G. Woermann. Fast, accurate, and reproducibleautomatic segmentation of the brain in T 1-weighted volume MRI data
    [108] Z.Y. Shan, G.H. Yue, J.Z. Liu. Automated histogram-based brain segmentation inT1-weighted three-dimensional magnetic resonance head images. NeuroImage. 2002,17(3):1587–1598
    [109] J. Chiverton, K. Wells, E. Lewis, C. Chen, B. Podda, D. Johnson. Statistical morpholog-ical skull stripping of adult and infant MRI data. Computers in Biology and Medicine.2007, 37(3):342–357
    [110] RK Justice, E.M. Stokely, J.S. Strobel, R.E. Ideker, W.M. Smith. Medical image seg-mentation using 3D seeded region growing. Proceedings of SPIE. 1997, vol. 3034, 900
    [111] R. Adams, L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysisand Machine Intelligence. 1994, 16(6):641–647
    [112] C. Lee, S. Huh, T.A. Ketter, M. Unser. Unsupervised connectivity-based thresholdingsegmentation of midsagittal brain MR images. Computers in biology and medicine. 1998,28(3):309–338
    [113] S. Huh, T.A. Ketter, K.H. Sohn, C. Lee. Automated cerebrum segmentation from three-dimensional sagittal brain MR images. Computers in biology and medicine. 2002,32(5):311–328
    [114] M.S. Atkins, B.T. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEETransactions on Medical Imaging. 1998, 17(1):98–107
    [115] F. Segonne, AM Dale, E. Busa, M. Glessner, D. Salat, HK Hahn, B. Fischl. A hybridapproach to the skull stripping problem in MRI. Neuroimage. 2004, 22(3):1060–1075
    [116] D. Marr, E. Hildreth. Theory of edge detection. Proceedings of the Royal Society ofLondon Series B, Biological Sciences. 1980:187–217
    [117] A.L.W. Bokde, P. Pietrini, V. Ibanez, M.L. Furey, G.E. Alexander, N.R. Gra?-Radford,S.I. Rapoport, M.B. Schapiro, B. Horwitz. The e?ect of brain atrophy on cerebral hy-pometabolism in the visual variant of Alzheimer disease. Archives of Neurology. 2001,58(3):480
    [118] HS Choi, DR Haynor, Y. Kim. Partial volume tissue classification of multichannel mag-neticresonance images-a mixel model. IEEE Transactions on Medical Imaging. 1991,10(3):395–407
    [119] S. Lankton, A.R. Tannenbaum. Localizing region-based active contours. 2008
    [120] W.J. Schroeder, K. Martin, L.S. Avila, C.C. Law. The VTK user’s guide. Kitware, 2001
    [121] L. Ibanez, W. Schroeder, L. Ng, J. Cates, et al. The ITK software guide. Citeseer, 2005
    [122] C.A. Cocosco, V. Kollokian, RKS Kwan, A.C. Evans. Brainweb: Online interface to a3D MRI simulated brain database. NeuroImage. 1997, 5(4):425
    [123] R.K.S. Kwan, AC Evans, GB Pike. MRI simulation-based evaluation of image-processing andclassification methods. IEEE Transactions on Medical Imaging. 1999,18(11):1085–1097
    [124] R. Beare, G. Lehmann. The Watershed Transform in ITK–Discussion and New Devel-opments. The Insight Journal, viewed. 2009, 8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700