仿真假体视觉下面孔识别的神经生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工视觉假体研究已经证实基于光幻点模式的假体视觉可以恢复非先天性失明患者的一部分视觉功能(例如,物体识别和文字阅读)。在这些视觉功能中,面孔识别对人类是十分重要的,因为它在日常社交活动中发挥着举足轻重的作用。尽管行为学实验已经证实了假体视觉下面孔识别的有效性,但幻点面孔的早期处理机制仍然需要通过神经生理学研究来阐明。
     本论文旨在通过神经电生理实验和数学计算方法研究仿真假体视觉下面孔处理的早期机制。这不仅会为评价光幻点模式视觉假体的有效性提供一个客观的依据,也将有助于测试和改进假体视觉设计中使用到的图像处理策略。本文主要研究内容包括事件相关电位(ERP)成分分析和数学计算(ICA,溯源分析)两个部分:
     在第一部分,我们在ERP实验中使用面孔和物体的照片和它们对应的光幻点形式的图片作为刺激图,并在实验中记录了皮层脑电信号,然后通过叠加平均得到各类刺激对应的ERP。我们通过在枕颞叶区(TP7/8, P7/8, PO7/8和O1/2)测量并分析面孔敏感的ERP成分来探索假体视觉下面孔识别的早期机制。我们的结果表明(1)正常面孔和光幻点面孔都可以诱发显著的P1和N170;(2)光幻点面孔刺激诱发的N170较正常面孔刺激要小,但这一现象对P1而言是不显著的;(3)光幻点面孔刺激导致了P1和N170潜伏期的延迟。因此,我们认为:(1)早期面孔处理在光幻点模式下被诱发;(2)光幻点面孔在图像上的不连续性和高频段的信息丢失主要削弱了面孔处理的精细处理阶段而非粗略处理阶段;(3)光幻点刺激模式干扰了面孔处理的整个阶段,不仅干扰了精细处理阶段而且还包括了粗略处理阶段。
     在第二部分,我们通过对在第一部分中记录到的多通道脑电信号进行独立成分分析(ICA),寻找到了与面孔敏感的EEG独立成分,并用偶极子溯源分析算法和四层头部模型BESA 2000来对其进行溯源。最后,研究该独立成分对面孔敏感的ERP成分P1和N170的贡献,以及光幻点模式面孔对该独立的成分的影响。我们的研究发现:(1)独立成分IC-FS是面孔敏感的,其偶极子源位于梭状回(fusiform gyrus,FG)区域;(2)IC-FS是造成面孔刺激下大幅值P1和N170的主要独立成分,它与面孔的构形处理有关;(3)光幻点模式影响了面孔的构形处理,进而对面孔敏感独立成分(IC– FS)造成影响,最后导致P1的潜伏期和N170的潜伏期和幅值的改变。
     综上所述,本文阐明了光幻点(假体视觉)模式对面孔处理机制的影响,使得我们对假体视觉环境下面孔识别神经电生理机制有了一个更深入的了解。同时,这也将为测试现有视觉假体的有效性提供了一个新的手段,即通过测量神经电生理数据(EEG),分析面孔敏感ERP成分和独立成分的变化来评价假体视觉环境对面孔识别的影响。
Artificial vision studies have validated that phosphene-based prosthetic vision could functionally recover some basic visual abilities (e.g., object perception and text reading) of non-congenitally blind individuals. Among these visual abilities, face perception is very important to humans due to its critical role in daily social interactions. Behavioral studies have tested and demonstrated the feasibility of face perception under phosphene-based prosthetic vision; however, neurophysiologic studies are required to elucidate the early visual processing mechanisms of phosphene faces.
     This thesis aimed to investigate the early face processing mechanism underlying the simulated prosthetic vision via electro-neurophysiologic and computational methods, which may not only provide an objective criterion for evaluating the efficacy of phosphene-based visual prostheses but also help test and improve the image processing strategies used in visual prosthesis design. The content of the thesis includes two main sections:
     In the first section, a face perception experiment was implemented using photographs of normal faces, non-face objects and their corresponding phosphene images. Electroencephalogram (EEG) was recorded with scalp electrodes during the experiment; and event-related potentials (ERPs) were derived by grand averaging the trials corresponding to each type of stimuli. We measured and analyzed face-sensitive ERP components at or near occipito-temporal areas (the ventral visual pathway), i.e., TP7/8, P7/8, PO7/8 and O1/2, to explore the early mechanism of face perception under prosthetic vision. Our results showed that (1) both normal and phosphene face stimuli could elicit prominent P1 and N170; (2) phosphene face stimuli caused significant amplitude suppression on N170 but not on P1 compared with normal stimuli; and (3) phosphene face stimuli also resulted in a significant delay on the latencies of both P1 and N170. Therefore, it was suggested that (1) early face processing was triggered in phosphene face perception; (2) the phosphene face pattern mainly impaired the fine processing stage rather than the coarse processing stage due to spatial discontinuity and information loss in high frequency; and (3) the phosphene pattern also disrupted the entire early processing of faces including both coarse and fine processing stages.
     In the second section, we employed independent component analysis (ICA) on the multi-channel EEGs that we recorded in the first section to seek for the independent face-sensitive EEG component. Then, we used source tracing algorithm and spherical four-shell BESA 2000 model to locate its source. Finally, we tested whether it contributed to face-sensitive ERP components P1 and N170 and whether it was modulated under phosphene faces. Our results showed that (1) an independent component IC-FS was found to be sensitive to face and the source of IC-FS located in fusiform gyrus; (2) IC-FS contributed to the face-sensitive P1 and N170 and related to face configural processing; (3) phosphene face pattern affected face configural processing so as the independent component IC-FS, leading to latency modulation on P1 and amplitude/latency modulation on N170.
     To sum up, this thesis systematically clarified how phosphene patterns affect the early face processing, offering a basic understanding of the neural representation of faces under phosphene vision. Meanwhile, it also provide a novel method for testing the efficacy of visual prosthesis, that is, evaluating the effect of prosthetic vision on face perception via recording electro-neurophysiologic data (EEG) and analysis the modulation of face sensitive ERPs and independent EEG components.
引文
[1] S. Resnikoff, D. Pascolini, D. Etya'ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, "Global data on visual impairment in the year 2002," Bulletin of the World Health Organization, vol. 82, pp. 844-851, 2004.
    [2]张虎军,黄晓明,顾建文, "人工视觉的最新进展,"中国医学装备, vol. 2, pp. 8-10, 2005.
    [3]李莹辉,吴开杰,柴新禹,任秋实, "视觉假体的发展与研究,"中国医学物理学杂志, vol. 24, pp. 338-341, 2007.
    [4] G. J. Suaning, L. E. Hallum, S. C. Chen, P. J. Preston, and N. H. Lovell, "Phosphene vision: development of a portable visual prosthesis system for the blind," 2003.
    [5]石萍,邱意弘,朱贻盛,童善保, "视觉假体系统组成及关键技术,"国际生物医学工程杂志, vol. 31, 2008.
    [6]吴开杰,柴新禹,李丽明,陆一樑,任秋实, "基于视神经的视觉假体研究与设计,"中国科学: G辑, vol. 37, pp. 146-152, 2007.
    [7] G. Dagnelie, D. Barnett, M. S. Humayun, and R. W. Thompson, "Paragraph text reading using a pixelized prosthetic vision simulator: parameter dependence and task learning in free-viewing conditions," Investigative ophthalmology & visual science, vol. 47, pp. 1241-1250, 2006.
    [8] G. Dagnelie, P. Keane, V. Narla, L. Yang, J. Weiland, and M. Humayun, "Real and virtual mobility performance in simulated prosthetic vision," Journal of Neural Engineering, vol. 4, pp. S92-S101, 2007.
    [9] G. Dagnelie, A. J. Kelley, and L. Yang, "Effects of image stabilization on face recognition and virtual mobility using simulated prosthetic vision," Investigative Ophtalmology and Visual Science, vol. 45, pp. 4223, 2004.
    [10]周业,牛金海,刘易非,牛帅,周阳,吴开杰,任秋实, "视觉功能修复方法,"中国生物医学工程学报, vol. 27, pp. 615-620, 2008.
    [11]石萍,邱意弘,朱贻盛,童善保, "人工视觉假体研究综述(Ⅰ)——视网膜假体研究现状,"生物医学工程学杂志, vol. 3, 2008.
    [12] P. Hossain, I. W. Seetho, A. C. Browning, and W. M. Amoaku, "Artificial means for restoring vision," vol. 330: BMJ Publishing Group Ltd., 2005, pp. 30-33.
    [13] G. S. Brindley and W. S. Lewin, "The sensations produced by electrical stimulation of the visual cortex," The Journal of Physiology, vol. 196, pp. 479-493, 1968.
    [14] N. R. Srivastava, P. R. Troyk, V. L. Towle, D. Curry, E. Schmidt, C. Kufta, and G. Dagnelie, "Estimating Phosphene Maps for Psychophysical Experiments used in Testing a Cortical Visual Prosthesis Device," Neural Engineering, pp. 130-133, 2007.
    [15]石萍,邱意弘,朱贻盛,童善保, "人工视觉假体研究综述(Ⅱ)——视皮层,视神经束,感觉替代假体的研究现状,"生物医学工程学杂志, vol. 4, 2008.
    [16] C. Veraart, C. Raftopoulos, J. T. Mortimer, J. Delbeke, D. Pins, G. Michaux, A. Vanlierde, S. Parrini, and M. C. Wanet-Defalque, "Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode," Brain research, vol. 813, pp. 181-186, 1998.
    [17] C. Veraart, M. C. Wanet-Defalque, B. Gerard, A. Vanlierde, and J. Delbeke, "Pattern recognition with the optic nerve visual prosthesis," Artificial organs, vol. 27, pp. 996-1004, 2003.
    [18]庄松林, "视觉功能修复的基础理论与关键科学问题,"光学与光电技术, vol. 4, pp. 16-20, 2006.
    [19] Q. Ren, X. Chai, K. Wu, and C. Zhou, "‘Development of C-Sight visual prosthesis based on optical nerve stimulation with penetrating electrode array," Invest. Ophthalmol. Vis. Sci, vol. 48.
    [20] L. Li, P. Cao, M. Sun, X. Chai, K. Wu, X. Xu, X. Li, and Q. Ren, "Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits," Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 247, pp. 349-361, 2009.
    [21] L. Li, M. Sun, P. Cao, C. Cai, X. Chai, X. Li, P. Chen, and Q. Ren, "A visual prosthesis based on optic nerve stimulation: in vivo electrophysiological study in rabbits," 2008.
    [22] M. S. Humayun, E. De Juan, G. Dagnelie, R. J. Greenberg, R. H. Propst, and D. H. Phillips, "Visual perception elicited by electrical stimulation of retina in blind humans," Archives of Ophthalmology, vol. 114, pp. 40-46, 1996.
    [23] M. S. Humayun, J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. Van Boemel, and G. Dagnelie, "Visual perception in a blind subject with a chronic microelectronic retinal prosthesis," Vision Research, vol. 43, pp. 2573-2581, 2003.
    [24] E. Zrenner, "Will retinal implants restore vision?," Science, vol. 295, pp. 1022-1025, 2002.
    [25] A. Y. Chow and V. Y. Chow, "Subretinal electrical stimulation of the rabbit retina," Neuroscience letters, vol. 225, pp. 13-16, 1997.
    [26] E. Zrenner, A. Stett, S. Weiss, R. B. Aramant, E. Guenther, K. Kohler, K. D. Miliczek, M. J. Seiler, and H. Haemmerle, "Can subretinal microphotodiodes successfully replace degenerated photoreceptors?," Vision Research, vol. 39, pp. 2555-2567, 1999.
    [27] S. C. Chen, L. E. Hallum, N. H. Lovell, and G. J. Suaning, "Visual acuity measurement of prosthetic vision: a virtual-reality simulation study," Journal of Neural Engineering, vol. 2, pp. S135-S145, 2005.
    [28] S. C. Chen, G. J. Suaning, J. W. Morley, and N. H. Lovell, "Simulating prosthetic vision: I. Visual models of phosphenes," Vision Research, 2009.
    [29] S. C. Chen, G. J. Suaning, J. W. Morley, and N. H. Lovell, "Simulating prosthetic vision: II. Measuring functional capacity," Vision Research, vol. 49, pp. 2329-2343, 2009.
    [30] G. Dagnelie, "Psychophysical evaluation for visual prosthesis," Annual review of biomedical engineering, vol. 10, pp. 339-368, 2008.
    [31] S. C. Chen, N. H. Lovell, and G. J. Suaning, "Effect on prosthetic vision visual acuity by filtering schemes, filter cut-off frequency and phosphene matrix: a virtual reality simulation," presented at Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE, 2004.
    [32]乐国安, "心理物理学的发展和现状评述,"心理学报, vol. 1, 1983.
    [33]张学民,何莉,舒华, "国外心理学实验技术的发展趋势与国内实验室建设的思考与实践,"中国现代教育装备, vol. 2, 2007.
    [34] H. Guo, Y. Qiu, Y. Zhu, and S. Tong, "Psychophysical Study of Object Categorization With Simulated Prosthetic Vision," Investigative Ophthalmology & Visual Science, vol. 50, pp. E-abstract 4219, 2009.
    [35] K. Cha, K. W. Horch, and R. A. Normann, "Mobility performance with a pixelized vision system," Vision Research, vol. 32, pp. 1367, 1992.
    [36] K. Cha, K. W. Horch, R. A. Normann, and D. K. Boman, "Reading speed with a pixelized vision system," Journal of the Optical Society of America A, vol. 9, pp. 673-677, 1992.
    [37] H. Guo, Y. Wang, Y. Yang, S. Tong, Y. Zhu, and Y. Qiu, "Object Recognition with Distorted Prosthetic Vision," Artificial Organs, vol. (in press), pp. doi:10.1111/j.1525-1594.2009.00976.x, 2010.
    [38] X. Chai, W. Yu, J. Wang, Y. Zhao, C. Cai, and Q. Ren, "Recognition of pixelized Chinese characters using simulated prosthetic vision," Artificial Organs, vol. 31, pp. 175-182, 2007.
    [39] V. Bruce and A. Young, "Understanding face recognition," British journal of psychology, vol. 77, pp. 305-327, 1986.
    [40] R. W. Thompson, G. D. Barnett, M. S. Humayun, and G. Dagnelie, "Facial recognition using simulated prosthetic pixelized vision," Investigative ophthalmology & visual science, vol. 44, pp. 5035-5042, 2003.
    [41] H. Guo, R. Qin, Y. Qiu, Y. Zhu, and S. Tong, "Configuration-based Processing of Phosphene Pattern Recognition for Simulated Prosthetic Vision," Artificial Organs, vol. (in press), pp. doi:10.1111/j.1525-1594.2009.00863.x, 2010.
    [42] T. Nakashima, K. Kaneko, Y. Goto, T. Abe, T. Mitsudo, K. Ogata, A. Makinouchi, and S. Tobimatsu, "Early ERP components differentially extract facial features: Evidence for spatial frequency-and-contrast detectors," Neuroscience Research, vol. 62, pp. 225-235, 2008.
    [43] D. Maurer, R. L. Grand, and C. J. Mondloch, "The many faces of configural processing," Trends in Cognitive Sciences, vol. 6, pp. 255-260, 2002.
    [44] J. Liu, A. Harris, and N. Kanwisher, "Stages of processing in face perception: an MEG study," Nature Neuroscience, vol. 5, pp. 910-916, 2002.
    [45] R. J. Itier and M. J. Taylor, "Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: a repetition study using ERPs," Neuroimage, vol. 15, pp. 353-372, 2002.
    [46] R. J. Itier and M. J. Taylor, "Effects of repetition learning on upright, inverted and contrast-reversed face processing using ERPs," Neuroimage, vol. 21, pp. 1518-1532, 2004.
    [47] M. Eimer, "The face-specific N170 component reflects late stages in the structural encoding of faces," Neuroreport, vol. 11, pp. 2319, 2000.
    [48] R. J. Itier and M. J. Taylor, "Source analysis of the N170 to faces and objects," Neuroreport, vol. 15, pp. 1261, 2004.
    [49] M. Eimer, "Does the face-specific N170 component reflect the activity of a specialized eye processor?," Neuroreport, vol. 9, pp. 2945, 1998.
    [50] R. J. Itier and M. J. Taylor, "N170 or N1? Spatiotemporal differences between object and face processing using ERPs," Cerebral Cortex, vol. 14, pp. 132-142, 2004.
    [51] C. Joyce and B. Rossion, "The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site," Clinical Neurophysiology, vol. 116, pp. 2613-2631, 2005.
    [52] V. Goffaux and B. Rossion, "Faces are" Spatial"--holistic face perception is supported by low spatial frequencies," Journal of Experimental Psychology-Human Perception and Performance, vol. 32, pp. 1023-1038, 2006.
    [53] R. J. Itier, C. Alain, K. Sedore, and A. R. McIntosh, "Early face processing specificity: It's in the eyes!," Journal of Cognitive Neuroscience, vol. 19, pp. 1815-1826, 2007.
    [54] R. J. Itier, M. Latinus, and M. J. Taylor, "Face, eye and object early processing: What is the face specificity?," Neuroimage, vol. 29, pp. 667-676, 2006.
    [55] N. Sagiv and S. Bentin, "Structural encoding of human and schematic faces: holistic and part-based processes," Journal of Cognitive Neuroscience, vol. 13, pp. 937-951, 2001.
    [56]杨阳,徐青, "面孔类别识别的N170和VPP的时空特异性研究,"应用心理学, vol. 12, pp. 207-213, 2006.
    [57] K. Kazai, K. Konishi, P. J. Bennett, A. B. Sekular, A. Yagi, H. Katayose, and M. Nagai, "Structural encoding of schematic face: an event-related brain potential investigation," Neuroimage, vol. 47, pp. 157-157, 2009.
    [58] M. Latinus and M. J. Taylor, "Face processing stages: Impact of difficulty and the separation of effects," Brain research, vol. 1123, pp. 179-187, 2006.
    [59] M. T. Posamentier and H. Abdi, "Processing faces and facial expressions," Neuropsychology Review, vol. 13, pp. 113-143, 2003.
    [60] S. Johannes, T. F. Münte, H. J. Heinze, and G. R. Mangun, "Luminance and spatial attention effects on early visual processing," Cognitive Brain Research, vol. 2, pp. 189-205, 1995.
    [61] J. Mishra and S. A. Hillyard, "Endogenous attention selection during binocular rivalry at early stages of visual processing," Vision Research, vol. 49, pp. 1073-1080, 2009.
    [62] M. J. Taylor, "Non-spatial attentional effects on P1," Clinical Neurophysiology, vol. 113, pp. 1903-1908, 2002.
    [63] M. J. Herrmann, A. C. Ehlis, H. Ellgring, and A. J. Fallgatter, "Early stages (P100) of face perception in humans as measured with event-related potentials (ERPs)," Journal of Neural Transmission, vol. 112, pp. 1073-1081, 2005.
    [64] K. Linkenkaer-Hansen, J. M. Palva, M. Sams, J. K. Hietanen, H. J. Aronen, and R. J. Ilmoniemi, "Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto-and electroencephalography," Neuroscience Letters, vol. 253, pp. 147-150, 1998.
    [65] D. A. Jeffreys, "The influence of stimulus orientation on the vertex positive scalp potential evoked by faces," Experimental Brain Research, vol. 96, pp. 163-172, 1983.
    [66] D. A. Jeffreys, "A face-responsive potential recorded from the human scalp," Experimental Brain Research, vol. 78, pp. 193-202, 1989.
    [67] D. A. Jeffreys and E. S. A. Tukmachi, "The vertex-positive scalp potential evoked by faces and by objects," Experimental Brain Research, vol. 91, pp. 340-350, 1992.
    [68] S. Bentin and L. Y. Deounell, "Structural encoding and identification in face processing: ERP evidence for separate mechanisms," The cognitive neuroscience of face processing, 2000.
    [69] T. A. Ito, E. Thompson, and J. T. Cacioppo, "Tracking the timecourse of social perception: The effects of racial cues on event-related brain potentials," Personality and Social Psychology Bulletin, vol. 30, pp.1267, 2004.
    [70] B. Jemel, A. M. Schuller, Y. Cheref-Khan, V. Goffaux, M. Crommelinck, and R. Bruyer, "Stepwise emergence of the face-sensitive N170 event-related potential component," Neuroreport, vol. 14, pp. 2035, 2003.
    [71] B. Rossion, J. F. Delvenne, D. Debatisse, V. Goffaux, R. Bruyer, M. Crommelinck, and J. M. Guérit, "Spatio-temporal localization of the face inversion effect: An event-related potentials study," Biological Psychology, vol. 50, pp. 173-189, 1999.
    [72] Y. Tang, D. Liu, Y. Li, and Y. Zhu, "The time-frequency representation of the ERPs of face processing," presented at Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008. , 2008.
    [73] T. Iidaka, K. Yamashita, K. Kashikura, and Y. Yonekura, "Spatial frequency of visual image modulates neural responses in the temporo-occipital lobe. An investigation with event-related fMRI," Cognitive Brain Research, vol. 18, pp. 196-204, 2004.
    [74] C. Schiltz and B. Rossion, "Faces are represented holistically in the human occipito-temporal cortex," Neuroimage, vol. 32, pp. 1385-1394, 2006.
    [75] S. Bentin, T. Allison, A. Puce, E. Perez, and G. McCarthy, "Electrophysiological studies of face perception in human," Journal of Cognitive Neuroscience, vol. 8, pp. 551-565, 1996.
    [76] R. F. Schwarzlose, C. I. Baker, and N. Kanwisher, "Separate face and body selectivity on the fusiform gyrus," vol. 25: Soc Neuroscience, 2005, pp. 11055-11059.
    [77] Y. Sugase, S. Yamane, S. Ueno, and K. Kawano, "Global and fine information coded by single neurons in the temporal visual cortex," Nature, vol. 400, pp. 869-873, 1999.
    [78] N. Yeung, R. Bogacz, C. B. Holroyd, and J. D. Cohen, "Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods," Psychophysiology, vol. 41, pp. 822-832, 2004.
    [79] S. Makeig, M. Westerfield, T. P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T. J. Sejnowski, "Dynamic brain sources of visual evoked responses," Science, vol. 295, pp. 690-694, 2002.
    [80] A. Cellerino, D. Borghetti, D. R. Valenzano, G. Tartarelli, A. Mennucci, L. Murri, and F. Sartucci, "Neurophysiological correlates for the perception of facial sexual dimorphism," Brain research bulletin, vol. 71, pp. 515-522, 2007.
    [81] A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," Journal of Neuroscience Methods, vol. 134, pp. 9-21, 2004.
    [82] S. Makeig, A. J. Bell, T. P. Jung, and T. J. Sejnowski, "Independent component analysis of electroencephalographic data," Advances in neural information processing systems, pp. 145-151, 1996.
    [83] F. S. Samaria and A. C. Harter, "Parameterisation of a stochastic model for human faceidentification," presented at Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, 1994.
    [84] T. Nakashima, Y. Goto, T. Abe, K. Kaneko, T. Saito, A. Makinouchi, and S. Tobimatsu, "Electrophysiological evidence for sequential discrimination of positive and negative facial expressions," Clinical Neurophysiology, vol. 119, pp. 1803-1811, 2008.
    [85] M. A. Goodale and A. D. Milner, "Separate visual pathways for perception and action," Trends in neurosciences(Regular edition), vol. 15, pp. 20-25, 1992.
    [86] T. W. James, J. Culham, G. K. Humphrey, A. D. Milner, and M. A. Goodale, "Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study," Brain, vol. 126, pp. 2463, 2003.
    [87] A. V. Flevaris, L. C. Robertson, and S. Bentin, "Using spatial frequency scales for processing face features and face configuration: An ERP analysis," Brain Research, 2007.
    [88] T. W. Picton, S. Bentin, P. Berg, E. Donchin, S. A. Hillyard, R. Johnson, G. A. Miller, W. Ritter, D. S. Ruchkin, and M. D. Rugg, "Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria," Psychophysiology, vol. 37, pp. 127-152, 2000.
    [89] R. Palermo and G. Rhodes, "Are you always on my mind? A review of how face perception and attention interact," Neuropsychologia, vol. 45, pp. 75-92, 2007.
    [90] Y. Yang, H. Guo, S. Tong, Y. Zhu, and Y. Qiu, "Neurophysiology study of early visual processing of face and non-face recognition under simulated prosthetic vision," presented at Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. , Minneapolis, MN, USA 2009.
    [91] P. H. Vlamings, V. Goffaux, and C. Kemner, "Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information?," Journal of vision, vol. 9, pp. 12.1, 2009.
    [92] P. Vuilleumier, J. L. Armony, J. Driver, and R. J. Dolan, "Distinct spatial frequency sensitivities for processing faces and emotional expressions," Nature Neuroscience, vol. 6, pp. 624-631, 2003.
    [93] K. Lander, V. Bruce, and H. Hill, "Evaluating the effectiveness of pixelation and blurring on masking the identity of familiar faces," Applied Cognitive Psychology, vol. 15, pp. 101-116, 2001.
    [94] V. Goffaux, I. Gauthier, and B. Rossion, "Spatial scale contribution to early visual differences between face and object processing," Cognitive Brain Research, vol. 16, pp. 416-424, 2003.
    [95] H. Wiese, J. Stahl, and S. R. Schweinberger, "Configural processing of other-race faces is delayed but not decreased," Biological Psychology, vol. 81, pp. 103-109, 2009.
    [96] V. A. F. Lamme, H. Super, R. Landman, P. R. Roelfsema, and H. Spekreijse, "The role of primary visual cortex (V1) in visual awareness," Vision Research, vol. 40, pp. 1507-1521, 2000.
    [97] A. Polonsky, R. Blake, J. Braun, and D. J. Heeger, "Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry," Nature Neuroscience, vol. 3, pp. 1153-1159, 2000.
    [98] R. B. H. Tootell, N. K. Hadjikhani, W. Vanduffel, A. K. Liu, J. D. Mendola, M. I. Sereno, and A. M. Dale, "Functional analysis of primary visual cortex (V1) in humans," Proceedings of the National Academy of Sciences of the United States of America, vol. 95, pp. 811-817, 1998.
    [99] M. Valdes-Sosa, M. A. Bobes, V. Rodriguez, and T. Pinilla, "Switching attention without shifting the spotlight: Object-based attentional modulation of brain potentials," Journal of Cognitive Neuroscience, vol. 10, pp. 137-151, 1998.
    [100] S. I. Amari, A. Cichocki, and H. H. Yang, "A new learning algorithm for blind source separation," Advances in neural information processing systems, vol. 8, pp. 757–763, 1996.
    [101] A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural computation, vol. 7, pp. 1129-1159, 1995.
    [102] T. W. Lee, M. Girolami, and T. J. Sejnowski, "Independent component analysis using an extendedinfomax algorithm for mixed subgaussian and supergaussian sources," Neural Computation, vol. 11, pp. 417-441, 1999.
    [103] A. Delorme, S. Makeig, M. Fabre-Thorpe, and T. Sejnowski, "From single-trial EEG to brain area dynamics," Neurocomputing, vol. 44, pp. 1057?4, 2002.
    [104] G. McCarthy, A. Puce, J. C. Gore, and T. Allison, "Face-specific processing in the human fusiform gyrus," Journal of Cognitive Neuroscience, vol. 9, pp. 605-610, 1997.
    [105] T. Allison, A. Puce, D. D. Spencer, and G. McCarthy, "Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli," Cerebral Cortex, vol. 9, pp. 415-430, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700