参与脂肪酸和糖类合成的两个酶的克隆、表达纯化及晶体学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物中的各种酶类具有巨大的潜在应用价值。它的开发和利用,对于提高人们生活质量有重要意义。对于这些蛋白酶的理化性质、生物活性和催化机理等方面的基础研究有助于发现它更广阔的应用前景。如今,酶类在食品发酵工业生产,生物制剂等方面已得到广泛的应用。
     本文借助结构生物学中晶体学的方法,通过获悉蛋白酶的空间结构来推测酶的功能,探讨催化机理。研究中以激烈火球菌(Pyrococcus furiosus)中潜在的参与脂肪酸合成酶类PFS(PF2046)和脆弱拟杆菌(Bacteroides.fragilis 9343)中的糖合成酶FKP为研究对象,将其基因构建至原核表达载体pMCSG7中,使用大肠杆菌E.coli BL21(DE3)大量表达出带有His标签的可溶性融合蛋白,经镍离子柱亲和层析,离子交换及分子筛层析纯化后,得到纯度达95%以上蛋白。使用商品化试剂盒进行晶体生长条件筛选,解析了PFS的三维结构,并对其功能进行初步研究。同时得到了FKP蛋白的微晶,经过结晶条件优化获得分辨率3.5 ?的晶体,为FKP蛋白的结构解析奠定基础。对这两个酶的性质和结构的认识,为深度利用这两种酶开发食品制剂或在食品及相关工业上的广泛应用提供详了理论切入点。
Many microbiology enzymes have great potential in industrial application and have played very important roles in human life. Studies on the Physiochemical Characteristics、biological activity and catalytic mechanism of enzymes are important for their possible wider applications. Nowadays, enzymes have been commonly applied in food fermentation and biomedical regent development.
     In this thesis, two enzymes were selected to probe the crystal structures in order to provide clue to understand their function and catalytic mechanism, including a putative fatty acid synthetase PFS (PF2046) from Pyrococcus furio sus and a pyrophosphorylase FKP from Bacteroides.fragilis 9343. Both of these genes were cloned into the expression vector pMCSG7 and used E.coli BL21 (DE3) as a host for large-scale protein expression. The bacteria were broken and the soluble portion was purified by nickel affinity column, followed by ion-exchange and size-exclusion chromatography. The purity of the two enzymes was above 95%. Protein crystallization was performed by using commercial screening kits. PFS’s structure was solved through the B-factor sharpening method when protein crystal was big enough for data collection. FKP's small crystal was diffracted to 3.5 ? and was very close to structure solving. Structure and biochemistry characterization of these two enzymes will provide people more information to develop new food additives or their extensive application in food and related industry.
引文
1迟桂荣.极端环境微生物的研究概况[J].德州学院学报,2001,17(2):74-76
    2大岛太郎.好热性细菌[M].北京:科学出版社,1983.55-60
    3周得庆.微生物学教程[M].北京:高等教育出版社,1993.111-113
    4 Woese C,Fox GE.Phylogenetic structure of the prokaryotie domain:the primary kingdoms[J].Proe Natl Acad Sci,1977,74:5088-5090
    5 Woses C.R.,Kandler O et al.Toward a natural system of organisms:proposal for the domains archaea,bacteria and eucaryai[J].Proe Natl Acad Sci,1990,81:4576-4579.
    6 Wiegel J,Canganella F.Extreme Thermophiles,Encyclopedia of Life Science [M].Nature Publishing Group,2001.33-36
    7沈萍.微生物学[M].北京:高等教育出版社,2000.205-213
    8 Melchior D.L.Lipid phase transitions and regulation of membrane fluidity in prokaryotes [J].CurrTop Membranes Transp,1982,17:263-316
    9 Yokoyama A,Shizuri Y, Hoshino T, et al.Arch Microbiol[M].1996,165,342-345
    10 Jack L.C.M, Van de Vossenberg.The essence of being extremophilic:the role of the unique archaeal membrane lipids Extremophiles[J]. J Mol Biol,1998, 2:163-170
    11 Brown J.W,Haas E,et al. Characterization of ribonuclease P RNAs from the rmophilic bacteria[J].Nucleic Acids Research,1993,2l(3):671—679
    12郦惠燕,邵靖字.嗜热菌的耐热分子机制[J].生命科学,2000,12(1):30-33
    13 Sandman IL Reeve J.N.Structure and functional relationship O arehaeal and eukaryal histones and nucleosomes[J].Arch Microbiol,2000,173:165-169
    14 Julie Hollien,Susan Marqusee.Structural distribution of stability in a thermophilic enzyme[J].PNAS,1999, 96(24): 13674-13678
    15卢柏松,王国力等.嗜热与嗜常温微生物的蛋白质氨基酸组成比较[J].微生物学报,1998,38(1):20-25
    16 Jaenicki R . Stability of proteins in extreme environments : erystallins and enz3anes[J].FASEB,1996,10:84-92
    17 Rothschild L.J.,Mancinelli R.L.Life in extreme environment[J].Nature,2001,409:1092-1101
    18钟旭美,张宝善等.耐热性酶在食品中的应用研究进展[J].食品研究与开发,2005,26(2):30-33
    19 Hanzawa S,Hoaki T et al.An extremelythermostable serine protease from a hyperthermophilic archaeon desulfurococcus strain SY,isolated from a deepsea hydrothermal vent[J].J Mar Biotechnol,1996,4:121-126
    20 Mayr J,Lupas A, et al. A hyperthermostable protease of the subtilisin family bound to the surface of the layer of the archaeonStaphylothermus marinus[J].Curr Biol, 1996,6:739-749
    21 Klingeberg M, Galunsky B, et al. Purification and properties of highly thermostable,SDS resistant and stereospecific proteinase from the extremether mophilic archaeon Thermococcus stetteri[J]. Appl Environ Microbiol.1995, 61:3098-3104
    22 Hyeung jang,Byoung Kim, et al. A novel subtilisin like serine protease fromThermoanaerobacter yonseiensisKB-1:its cloning, expression, and biochemical properties[J]. Extre mephiles, 2002,6(3):233-243
    23 Koch R, Canganella F et al. Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium[J] Appl.Environ Microbiol,1997,63(5):1088-1094
    24 Brown S H,Sjholm C et al.Purification and characterization of a highly thermostable glucose isomerase produced by the extremely thermophilic eubacterium Thermotoga maritime[J]. Biotechnol Bioeng, 1993,41:878-886
    25 Schuliger J W,Brown S H et al.Purification and characterization of a novel amylolytic enzyme from ES4,a marine hyperthermophilic archaeum[J].Mol.Mar. Biol.Biotechnol,1993,2:76-78
    26 Dong G,Vieille C et al.Cloning, sequencing, and expression of the gene encoding extracellularɑ-amylase form Pyrococcus furiosus and biochemical characterization of the recombinant enzyme[J].Appl Environ Microbiol,1997b,63:3577-3584
    27陈卫,张灏.一种高温乳糖酶的酶学性质及对牛乳中乳糖的水解[J].中国乳品工业2002,30(6):15-18
    28 Fiala,G,Steen, K O et al. Pyrococcus furiosus sp.nov represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100℃[J].Arch. Microbiol, 1986, 145:56-61
    29 Peeples, T. L., Kelly et al. Bioenergetic response of the extreme thermoacidophile Metallosphaera sedula to thermal and nutritional stress[J]. Appl.Environ. Microbiol,1995,61: 2314-2321
    30和致中.超高温古生菌强烈炽热球菌(Pyrococcus furiosus)的生理代谢[J].生命科学,2000,12(4): 189-193
    31 Schafer T, Schonheit P. Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus: Acetate formation from acetyl-CoA and ATP synthesis arecatalyzed by an acetyl-CoA synthetase (ADP-forming)[J].Arch Microbiol, 1991,155:366-377
    32 Bryant F O,Adams M W W. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus[J]. J Biol Chem,1989,264:5070-5079
    33 Schafer T , Schonheit P.Maltose fermentation to acetate、CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus fuciosus:evidence for the operation of a novel sugar fermentation pathway[J].Arch Microbiol,1992,158:188-202
    34 Mukund S, Adams M W . Characterization of a tungsten-iron-sulfur protein exhibiting novel spectroscopic and redox properties from the hyperthermophilic archaebacterium Pyrococcus furiosus[J]. J Biol Chem, 1990,265: 11508-11516
    35 Mukund S, Adams M W . The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway[J]. J Biol Chem, 1991,266: 14208-14216
    36 Schafer T,Schonheit P. Acetyl-CoA synthetase (ADP-forming) in a archaea,a novel enzyme involved in acetate formation and ATP synthesis[J].Arch Microbiol,1993,159:354-363
    37石宣明,刘淑珍等.嗜热酶耐热机制的研究进展[J].科学技术与工程,2004,4(9):805-808
    38 Koch R, Zablowski P et al. Extremely thermostable amylolytic enzyme from the archaehacterium Pyrococcus furiosus[J],FEMS Microbiology Letters,1990,71:21-26
    39 Stephen HB,Henry RC et al. Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus[J]. Applied and Environmental Microbiology,1990,56(7):1985-1991
    40 Steen J, Constantin E.V et al.Cloning, sequencing, characterization,and expression of an extracellular a-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and bacillus subtilis[J]. The Journal of Biological Chemistry,1997,272(26): 16335-16342
    41 Dong GQ,Clare V et al.Cloning, Sequencing, and expression of the gene encoding extracellular a-amylase from Pyrococcus furiosus. and biochemical characterization of the recombinant enzyme[J].Applied and Environmental Microbiology,1997,63(9): 3569-3576
    42沈微,王正祥等.古细菌Pyrococcus furiosus高嗜热ɑ-淀粉酶基因在大肠杆菌中的分泌表达[J].中国酿造,2003(1):12-14
    43郭建强,李运敏等.超耐热酸性ɑ-淀粉酶基因的克隆及其在酵母细胞中的表达[J].生物工程学报,2006,22(2):237-242
    44孔显良,王俊英.α-淀粉酶的研究及应用[J].微生物学通报,1989,16(5):282-287
    45 Thornton, J.M. et al., From structure to function: approaches and limitations[J]. Nat Struct Biol, 2000. 7 Suppl: 991-994
    46余亦华.蛋白质三维空间结构研究的里程碑[J].科学,2003,55(2):57-58
    47 Brunger,A.T., Adams, P.D. et al. New applications of simulated annealing in X-ray crystallography and solution NMR[J]. Structure, 1997,5: 325-336
    48 Dennis S,Kortvelyesi T. Computational mapping identifies the binding sites of organic solvents on proteins[J]. Proc.Natl.Acad.Sei.,2002,99(35):4290-4295
    49 Ducruix A, Giege R. Crystallization of nucleic acids and proteins:a practical approach[M]. 2nd ed. Enland: Oxford University Press. 1999.409-413
    50周先碗,胡小倩.生物化学仪器分析与实验技术[M].北京:化学工业出版社,2003.7-8
    51汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2002.273
    52卢光莹,华子千.生物大分子晶体学基础[M].北京:北京大学出版社,1994.3-5
    53 McPherson,A.Crystallization of macromolecules:General Principles[J].Methods in Enzymology,1985,14:112-120
    54 McPherson A.Introduction to protein crystallization[J].Methods,2004,34:254-265
    55曹树煜,吴汝林等.生物大分子结晶方法研究进展[J].化工生产与技术,2003,10:28-32
    56赵南明,周海梦.生物物理学[M].北京:施普林格出版社,2000. 49-56
    57 J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南[M].黄培堂等译.第三版.北京:科学出版社,2002.1228-1232
    58 R.J.辛普森.蛋白质纯化实验指南[M].北京:科学出版社,2004.121-178
    59 Otwinowski,Z.,and Minor,W..Processing of X-ray diffraction data collected in oscillation mode[J].Methods Enzymol,1997, 276,307-326
    60 Pearl,F.,Todd,A. et al.The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis[J].Nucleic Acids Res. 2004, 33, D247251
    61 Davies,J.F.,Hostomska,Z. et al.Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase[J]. Science.1991,252: 8895
    62 Katayanagi,K.,Miyagawa,M. et al.Three dimensional struc ture of ribonuclease H from E.coli[J].Nature. 1990 347,306309
    63 Ohtani,N.,Yanagawa,H. et al.Cleavage of double-stranded RNA by RNaseHI from a thermoacidophilic archaeon,Sulfolobus tokodai[J]. Nucleic Acids Res ,2004,32: 58095819
    64 Katayanagi,K.,Miyagawa,M. et al.. Three dimensional stru cture of ribonuclease H fromE.coli[J].Nature,1990,347:306-309
    65 Dyda,F.,Hickman,A.B. et al.Crystal structure of the cat alytic domain of HIV-1 integrase:similarity to other polynucleotidyl trans ferases[J].Science, 1994,266:19811986
    66 Rice,P., Mizuuchi,K..Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration[J]. Cell ,1995,82:209220
    67 Ariyoshi,M.,Vassylyev,D.G. et al.Atomic structure of the RuvC resolvase: a holliday junction-speci?c endonuclease from E.coli[J]. Cell,1994,78:10631072.
    68 D.J.Becker, J.B.Lowe. Fucose: biosynthesis and biological function in mammals[J] Glycobiology 2003.13:41
    69 Ma B,Simala-Grant JL.Fucosylation in prokaryotes and eukaryotes[J]. Glycobiology 16:158R-184R
    70 H.R.Gaskins,in Gastrointestinal Microbes and Host Interactions[M]. R.I. Mackie,B.A.White,R.E Isaacson,Eds. 1997, 2:537-587
    71 K.Andrianopoulos, L.Wang et al. Identification of the Fucose Synthetase Gene in the Colanic Acid Gene Cluster of Escherichia coli K-12 [J].Bacteriol. 1998,180:998
    72 Ichikawa Y, Sim MM. Efficient chemical synthesis of GDP-fucose.[J] J.Org Chem 1992,57:2943-2946
    73 L.V. Hooper,J.Xu et al.A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem[J]. Proc,Natl Acad.Sci. 1999,96: 9833-9838
    74 L.Bry.P.G.Falk,T.Midtvedt et al.A Model of Host-Microbial Interactions in an Open Mammalian Ecosystem.[J].Science 1996, 273:1380
    75 Niittymaki J,Mattila P et al.Cloning and expression of murine enzymes involved in the salvage pathway of GDP-L-fucose[J].Eur J Biochem 2004, 271:78-86
    76 Coyne MJ, Reinap B et al.Human symbionts use a host-like pathway for surface fucosylation[J]. Science .2005,307:1778-1781
    77 S.Bjork,M.E.Breimer et al. Structures of blood group glycosphingo lipids of human small intestine. A relation between the expression of fucolipids of epithelial cells and the ABO,Le and Se phenotype of the donor[J].J.Biol.Chem.1987, 262:6758-6765
    78 J.Finne,M E Breimer et al. Novel polyfucosylated N-linked glycopep tides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells[J].J.Biol Chem. 1989,264:5720-5735
    79 Wen Yi,Xianwei Liu et al.Remodeling bacterial polysaccharides by metabolic pathway engineering[J].PNAS.2009.11(106):4207-4212
    80 Wei Wang,Tianshun Hu et al Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan dericatives[J].PNAS.2009.38(106):16096-16101
    81 Ichilkawa Y,et al.Chemical-enzymatic synthesis and conformational-analysis of sialyl Lewis-X and derivatives[J].J Am Chem Soc. 1992,114:9283-9298
    82 Stephen Q, Katherine L,Seley R.Purification,crystallization and preliminary X-ray characterization of the human GTP fucos pyrophosphorylase[J].Acta Crystallogra phica Section F.2006.F62:392-394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700