冷休克蛋白力致去折叠的动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质折叠和去折叠机制是蛋白质研究的重要领域。蛋白质的正确折叠是体现生物功能的基础,也是生物学中最基本和最普遍的自组装模式。肽链在体内如何折叠主要取决于其一级结构和肽链所位于的细胞环境,一般来说,蛋白质能自发的折叠成具有特定空间结构和生物功能的分子。但是环境因素的改变会使肽链构象发生变化,也就是说蛋白质采取何种空间结构不仅受肽链自身热力学稳定性的控制,还受到蛋白质分子所处的微环境和动力学过程的影响。
     蛋白质的构象转换在生物体内是一个普遍的现象,近年来的医学研究发现,蛋白质在人体内的错误折叠会引起严重的疾病;另一方面重组蛋白质的高效表达常常导致无活性的蛋白质聚集体生成。因此,研究蛋白质的折叠机理和促使蛋白质复性的方法无论在理论上还是在应用上都有很重要的意义。
     除了一系列试验技术(例如原子力显微镜、光镊等等)以外,计算机模拟对于研究这些问题具有不可替代的作用,分子动力学模拟是研究蛋白质分子动态性质的主要方法之一,与实验方法互补,在生物大分子体系研究中得到了广泛的应用,它能够给出皮秒(10-12秒)到微秒(10-6秒)时间尺度内蛋白质在原子水平上的动力学信息。生物大分子的计算机模拟在这个领域开展时间并不是很长,但是已经在研究蛋白质折叠和去折叠以及功能因素等方面取得了很多成就,并且还在进一步的发展完善之中。
     我们研究嗜热和嗜温两种冷休克蛋白在外力作用下的去折叠过程和机制,采用分子动力学软件包NAMD在相同的外力情况下进行两组分子动力学模拟,都以蛋白质的完全去折叠作为模拟终点。我们着重从氢键相互作用,静电相互作用和疏水相互作用这三个方面讨论了影响冷休克蛋白的去折叠因素,本论文主要包括以下部分:
     1.概括的论述了分子动力学理论的基本原理,以及蛋白质的相关基本概念。
     2.主要论述了嗜温冷休克蛋白在常速和常力两种动力学模拟中的去折叠过程,研究发现在两种拉伸过程中,嗜温冷休克蛋白都是C端β片层首先破裂,随后N端β片层破裂,然后讨论了决定嗜温冷休克蛋白去折叠的内部相互作用力。
     3.论述了嗜热冷休克蛋白和嗜温冷休克蛋白在常速和常力两种动力学模拟中去折叠的异同,在常速去折叠的过程中,嗜温冷休克蛋白C端β片层的破裂需要更大的力,但是嗜热冷休克蛋白在N端β片层的破裂中需要更大的外力。
     随着计算机运算能力的大幅度提高和算法的发展,计算机模拟技术将在更大体系,更长时间尺度内的蛋白质动力学研究方面发挥更大的作用。
The mechanisms of protein folding and unfolding, is the important field of protein research. The proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Protein folding is the most fundamental and universal example of biological self-assembly. How a polypeptide chain folds into a stable, native structure in vivo is dependent on amino acid sequence and native solution environment. Generally, the polypeptide chain with given amino acid sequence can spontaneously fold into a certain three-dimensional structure with unique biological function. But structual transition could take place when the environment of protein is changed, that is to say, the three-dimensional strunture of protein is determined by not only its thermodynamic stability, but also the micro-environment of protein and kinetic process.
     Structual transition of protein is common phenomena in organism. The research found that the structural transition and misfolding of protein could lead to serious diseases. On the other hand, the overexpression of recombinant proteins in Escherichia coli often results in the accumulation of the protein, producing inactive insoluble deposits inside the cells, called inclusion bodies. Therefore, the study on the mechanism of protein folding and the development of more efficient folding methods is very important in theory and practice.
     Besides a series of experimental techniques(AFM, optical tweezers etc.), the molecular dynamics simulation posses irreplaceable effect for such research.Molecular dynamics, one of the most populars simulation methods, has been proved to be a p powerful tool in simulating dynamic properties of protein. Molecular dynamics simulations can provide a atomical realistic view of the folding and unfolding process from picosecond to millisecond. even though MD simulation about biomacromolecule is in a short time, MD simulations have succeed in these field, and it need further development to overcome its disadvantage.
     Thermophilic and mesophilic cold shock protein,which have been employed to model forced unfolding of cold shock protein. We study the unfolding process and mechanism of the proteins by external force with dynamics software package NAMD. The completely unfolding of the proteins were thought as end of dynamics simulation.
     We chiefly study the unfolding mechanism of the proteins under the interaction of hydrogen bond; electrostatic and hydrophobe, come to the conclusion as follow:
     1. We not only introduced the basic principle of molecular dynamics simulation, concept of steered molecular dynamics simulation, and basic principle of protein.
     2. Using steered molecular dynamics simulation, we explored the unfolding process of mesophilic cold shock protein by constant velocity and constant force. The results indicate thatβsheet of C terminal of mesophilic cold shock protein is reptured, susequentlyβsheet of N terminal. Then we explored the interior force that determine the unfolding process.
     3. Using steered molecular dynamics in constant velocity and constant force, we explored the Similarities and Differences in the Forced Unfolding of Thermophilic and Mesophilic Cold Shock Proteins. The results indicate that the proteins follow same unfolding process, in the course of constant velocity unfolding, the C terminal is reptured at first, susequently N terminal. But the mestphilic cold shock protein need a bigger force in the beginning.
     With continuing advances in both computers and algorithms, computer simulations will play an even more important role for understanding of protein folding/unfolding and functional motions in the future.
引文
[1] Branden, C., Tooze, J., Introduction to protein structure. Garland Pulishing, Inc. NY and London. 1998
    [2] Creigbton, T. E., Proteins: structure and molecular properties. Freeman. NY. 1993
    [3] McCammon, J. A., Gelin, B. R., Karplus, M., Dynamics of folded proteins. Nature. 1997, 267: 585-590
    [4]王克夷,蛋白质导论,北京,科学出版社,2007
    [5] Daggett, V. 2002. Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res. 35:422–429.
    [6] Simmerling, C., B. Strockbine, and A. E. Roitberg. 2002. All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc. 124:11258–11259.
    [7] Garcia, A. E., and J. N. Onuchic. 2003. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. USA. 100:13898–13903.
    [8] Clementi, C., A. E. Garcia, and J. N. Onuchic. 2003. Interplay among tertiary contacts, secondary structure formation and side-chain packing in the protein folding mechanism: all-atom representation study of protein L. J. Mol. Biol. 326:933–954.
    [9] Ca′rdenas, A. E., and R. Elber. 2003. Kinetics of cytochrome C folding: atomically detailed simulations. Proteins. 51:245–257.
    [10] Snow, C. D., E. J. Sorin, Y. M. Rhee, and V. S. Pande. 2005. How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct. 34:43–69.
    [11] Adams, D. J., Introduction to Monte Carlo simulation Techniques. In Physics of Superionic Conductors and Electrode Materials, Perran J W. New York, Plenum. 1983: 177-195
    [12] Berendsen, H. J., van Gunsteren, W. F., molecular dynamics simulations: techniques and approached in barnes. Molecuar liquids, Dyanmica and Interactions. NATO ASI series C135. New York, Reidel. 1984: 475-600
    [13] Thieringer HA, Jones PG, Inouye M. Cold Shock and Adaptation. BioEssays 20: 49-57, 1998.
    [14] De Vries AL, Wohlschlag DE. Freezing Resistance in Some Antarctic Fishes. Science 163: 1073-5, 1969.
    [15] Boyer BB, Barnes BM. Molecular and Metabolic Aspects of Mammalian Hibernation. Bioscience 49: 713-24, 1999.
    [16] Yang DSC, Sax M, Chakrabartty A, Hew CL. Crystal Structure of an Antifreeze Polypeptide and Its Mechanistic Implications. Nature 333: 232-7, 1988.
    [17] De Vries AL. Glycoproteins as Biological Antifreeze Agents in Antarctic Fishes. Science 172: 1152-5, 1971.
    [18] De Vries AL, Komatsu SK, Feeney RE. Chemical and Physical Properties of Freezing Point-Depressing Glycoproteins from Antarctic Fishes. J Biol Chem 245: 2901-8, 1970.
    [19] Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede, Feeney RE. Antifreeze Glycoproteins from the Blood of an Antarctic Fish. J Biol Chem 253: 5155-62, 1978.
    [20] Chakrabartty A, Yang DSC, Hew CL. Structure-Function Relationship in a Winter Flounder Antifreeze Polypeptide. J Biol Chem 264: 11313-6, 1989.
    [21] Davies PL, Hew CL. Biochemistry of Fish Antifreeze Proteins. FASEB J 4: 2460-7, 1990.
    [22] Tomimatsu Y, Scherer JR. Raman Spectra of a Solid Antifreeze Glycoprotein and Its Liquid and Frozen Aqueous Solutions. J Biol Chem 251: 2290-8, 1976.
    [23] Bryngelson, J. D., J. N. Onuchic, N. D. Socci, and P. G. Wolynes. 1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 21:167–195.
    [24] Chan, H. S., and K. A. Dill. 1998. Protein folding in the landscape perspective: chevron plots and non-arrhenius kinetics. Proteins. 30: 2–33.
    [25] Plaxco, K. W., K. T. Simons, I. Ruczinski, and D. Baker. 2000. Topology, stability, sequence and length: defining the determinants of two-state protein folding kinetics. Biochemistry. 39:11177–11183.
    [26] Baldwin, R. L. 2002. Making a network of hydrophobic clusters. Science. 295:1657–1658.
    [27] Daggett, V., and A. R. Fersht. 2003. Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28:18–25.
    [28] Zhou, H.-X. 2004. Polymer models of protein stability, folding, and interactions. Biochemistry. 43:2141–2154.
    [29] Schindelin, H., M. A. Marahiel, and U. Helnemann. 1993. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold shock protein. Nature. 364:164–168.
    [30] Schnuchel, A., R. Wiltscheck, M. Czisch, M. Herrler, G. Willimsky, P. Graumann, M. A. Marahiel, and T. A. Holak. 1993. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature. 364:169–171.
    [31] Thieringer HA, Jones PG, Inouye M. 1998. Cold Shock and Adaptation. BioEssays 20: 49-57.
    [32] De Vries AL, Wohlschlag DE. 1969. Freezing Resistance in Some Antarctic Fishes. Science 163: 1073-1075.
    [33] Boyer BB, Barnes BM. 1999. Molecular and Metabolic Aspects of Mammalian Hibernation. Bioscience 49: 713-724.
    [34] Yang DSC, Sax M, Chakrabartty A, Hew CL. 1988. Crystal Structure of an Antifreeze Polypeptide and Its Mechanistic Implications. Nature 333: 232-237.
    [35] De Vries AL. 1971. Glycoproteins as Biological Antifreeze Agents in Antarctic Fishes. Science 172: 1152-1155.
    [36] De Vries AL, Komatsu SK, Feeney RE. 1970. Chemical and Physical Properties of Freezing Point-Depressing Glycoproteins from Antarctic Fishes. J Biol Chem 245: 2901-2908.
    [37] Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede, Feeney RE. 1978. Antifreeze Glycoproteins from the Blood of an Antarctic Fish. J Biol Chem 253: 5155-5162.
    [38] Chakrabartty A, Yang DSC, Hew CL. 1989. Structure-Function Relationship in a Winter Flounder Antifreeze Polypeptide. J Biol Chem 264: 11313-11326.
    [39] Davies PL, Hew CL. 1990.Biochemistry of Fish Antifreeze Proteins. FASEB J 4: 2460-2467.
    [40] Burcham TS, Osuga DT, Yeh Y, Feeney RE. 1986.A Kinetic Description of Antifreeze Glycoprotein Activity. J Biol Chem 261:6390-6397.
    [41] Tomimatsu Y, Scherer JR. 1976. Raman Spectra of a Solid Antifreeze Glycoprotein and Its Liquid and Frozen Aqueous Solutions. J Biol Chem 251: 2290-2298.
    [42] Jones PG, Van Bogelen RA, Neidhardt FC. 1987. Induction of Proteins in Response to Low Temperature in Escheichia coli. J Bacteriol 169: 2092-2095.
    [43] Schindelin H, Marahiel MA, Heinemann U. 1993. Universal Nucleic Acid-Binding Domain Revealed by Crystal Structure of the B. subtilis Major Cold-Shock Protein. Nature 364: 164-168.
    [44] Jiang W, Jones P, Inouye M. 1993. Chloramphenicol Induces the Transcription of the Major Cold Shock Gene of Escherichia coli, cspA. J Bacteriol 175: 5824-5828.
    [45] Wang N, Yamanaka K, Inouye M. 1999. CspI, the Ninth Member of the CspA Family of Escherichia coli, is Induced upon Cold Shock. J Bacteriol 181: 1603-1909.
    [46] Etchegaray JP, Inouye M. 1999. CspA, CspB, CspG, Major Cold Shock Proteins of Escherichia coli, are Induced at Low Temperature under Conditions that Completely Block Protein Synthesis. J Bacteriol 181: 1827-1830.
    [47] Schindler T, Graumann PL, Perl D, MaS, Schmid FX, Marahiel A. 1999. The Family of Cold Shock Proteins of Bacillus subtilis Stability and Dynamics in vitro and in vivo. J Biol Chem 274: 3407-3413.
    [48] Fulco AJ. 1974. Metabolic Alterations of Fatty Acids. Annu Rev Biochem 43: 215-248.
    [49] Fulco AJ. 1972. The Biosynthesis of Unsaturated Fatty Acids by Bacilli. J Biol Chem 247: 3511-3519.
    [50] Wunderlich F, Speth V, Batz W, Kleinig H. 1973. Membranes of Tetrahymena III. The Effect of Temperature on Membrane Core Structures and Fatty Acid Composition of Tetrahymena Cells. Biochim Biophys Acta 298: 39-49.
    [51] Perl, D., and F. X. Schmid. Electrostatic stabilization of a thermophilic cold shock protein. J. Mol. Biol,2001,313:343–357
    [52] Alder, B.J., Wainwright, T. E., Studies in molecular dynamics. I. General method. J. Chem. Phys. 1959, 31:459-466
    [53] Smondyrev, A. M., Berkowitz, M. L., United atom force field for phospholipids membrances: Constant pressure molecular dynamics simulation of dipalmitoylposphati-dylcholine/eater system. J. Comput. Chem. 1999, 20:531-545
    [54] Pearlman, D. A., Case, D. A., Caldwell. J. W., Ross, W. S. AMBER, apackage of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to sumulate the structural and energetic properties of molecules. Comp. Phys. Commun. 1995, 91:1-41
    [55] Brooks, B. R., Bruccoleri, R.E., Olafson, B. D., States. J., CHARMM: A Program for Macromolecular energy, minimization and dynamics Calculations. J. Comp. Chem. 1983, 4:187-217
    [56] MacKerell, A. D., Brooks, J. B., BrooksШ, C. L., Nilsson, L., Roux, B., Won, Y., Karplus, M. 1998. CHARMM: The Energy function and Its parameterization with an Overview of the Program. The Encyclopedia of Computational Chemistry. 1:271-277
    [57] Schlenkrich, M., Brickmann, J., Jr. MacKerell, A. D., Karplus, M.1996.An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In Biological Membranes Perspective from Computation and Experiment, K. M. Merz, Jr. and B. Roux, editors(Birkhauser), 31-81.
    [58] Tieleman, D. P., Marrink, S. J., Berendsen, H. J.1997. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta. 1331:235-270
    [59] vander Spoel, D., van Buuren, A. R., Apol, E., Meulenboff, P.J., Tieleman, D. P., Sijbers, A. L., Hess, B., Feenstra, K. A., Lindahl, E., van Drunen, R., Beredsen, H. J. C. 2001. Gromacs User Manual version 3.0, Nijenborgh 4, 9747 AG Groningen, The Netherlands. Internet:www.gromacs.org.
    [60] Van Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hunenberger, P. H., Kruger, P., Mark, A. E., Scott, W. R. P., Tironi, I. G. 1996. Biomolecular simulation: The GROMOS96 Manual and User Guide. Vdf Hochschulverlag AG an der ETH Zurich, Zurich, Seitzerland. PP: 1-1042.
    [61] Leach AR. 1996. Molecular modelling: principles and applications, edn first edition. Edited by Leach AR. London: Addison Wesley Longman Limited.
    [62] Frenkel & Smit著,王文川等译,北京,分子模拟-从算法到应用,2002
    [63] Verlet L: Computer experiments on classical fluids. 1. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 1967, 159:98-103
    [64] Wilynes PG, Onuchic JN, Thiremalai D. 1995. Navigating the folding routes. Science, 267(5204): 1619-1620
    [65] K. A. Dill, H. S. Chan. 1997. From Levinthal to pathways to funnels, Nature Struct. Biol., 4:9-10
    [66] Reif M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE .1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112
    [67] Kellermayer M, Smith S, Granzier H, Bustamante C .1997. Folding-unfolding transitions in single titin molecules characterized with laser tweezers Science 276:1112–1116
    [68] Schlitter J, Engels M, Kruger P, Jacoby EU, Wollmer A.1993,Targeted molecular dynamics simulation of conformational change: application to the T-R transition in insulin. Mol Sim. 10:291-308
    [69] Craig D, Krammer A, Schulten K, Vogel V.2001. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc Natl Acad Sci USA 98:5590–5595
    [70] Sotomayor M, Schulten K. 2007. Single-Molecule Experiments in Vitro and in Silico .Science. Science 316:1144–1148
    [71] Isralewetz, B., Izrailev, S., Schulten, K. 1997. Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics sinulations. Biophys. J. 73:2972-2979
    [72] Akira R. Kinjo, Shoji Takada. 2002. Effects of macromolecular crowding on protein folding and aggregation studied by density functional theory: Statecs, Phys. Rev. E. 66:031911
    [73]王大成,蛋白质工程,北京,化学工业出版社,2008
    [74]赵南明,周海梦,北京,高等教育出版社,施普林格出版社,2000
    [75]陶慰孙,李惟,姜涌明,北京,蛋白质分子基础,1995
    [1] Reif M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE.Reversible Unfolding of individual titin immunoglobulin Domains by AFM. Science,1997, 276:1109–1112
    [2] Kellermayer M, Smith S, Granzier H, Bustamante C.Folding-Unfolding Transitions in Single Titin Molecules Charactrrized with Laser Tweezers.Science ,1997,276:1112–1116
    [3] Evans,E .,Ritchie,K .,Merkel,R .,Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys.J. 1995,68:2580-2587
    [4] Grubmuller,H.,H eymann,B.,Tavan,P.,Ligand binding: molecular mechanics calculation of thes treptavidin-biotinr upturefo rce.Science.1 996,271:997-999
    [5] Izrailev, S., Stepaniants, S., Isralewitz, B.,Kosztin, D., Lu, H., Molnar, F., Wriggers, W., Schulten, K., Steered molecular dynamics.In P. Deuflhard, J Hermans, B.Leimkuhler, A.Mark, R. D. Skeel, and S. Reich, editors. Computational Molecular Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin. 1998:39-65.
    [6] M Gao, H Lu, K Schulten .Unfolding of titin domains studied by molecular dynamics simulations. Journal of Muscle Research and Cell Motility, 2003,23:513-521
    [7] Daggett, V. Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res,2002,35:422–429
    [8] Simmerling, C., B. Strockbine, and A. E. Roitberg. All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc, 2002,124:11258–11259
    [9] Garcia, A. E., and J. N. Onuchic. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci, USA,2003,100:13898–13903.
    [10] Clementi, C., A. E. Garcia, and J. N. Onuchic. Interplay among tertiary contacts, secondary structure formation and side-chain packing in the protein folding mechanism: all-atom representation study of protein L. J. Mol. Biol, 2003,326:933–954
    [11] Ca′rdenas, A. E., and R. Elber. Kinetics of cytochrome C folding: atomically detailed simulations. Proteins, 2003,51:245–257
    [12] Snow, C. D., E. J. Sorin, Y. M. Rhee, and V. S. Pande. How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct, 2005,34:43–69
    [13] Heymann, B., Grubmuller, H., Molecular dynamics force probe simulations of antibody/antigen unbinding: entropic controland nonadditivity of unbinding forces. Biophys.J.2001,81:1295-1313.
    [14] Isralewitz, B., Izrailev, S., Schulten, K., Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 1997,73 :2972-2979.
    [15] Izrailev, S., Stepaniants, S., Balsera, M., Oono,Y,Schulten, K., Molecular dynamics study of unbinding of the avidin-biotinc omplex. Biophys. J. 1997.72 :1568-1581.
    [16] Shen, L., Shen, J., Luo, X., Cheng, F., Xu, Y., Chen, K., Arnold, E., Ding, J,Jiang, H., Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Biophys. J. 2003, 84:3547-3563.
    [17] Cheng,F. ,Shen,J. ,Lu o,X .,Ji ang,H .,C hen,K ., Steered molecular dynamics simulations on the "tail helix latch" hypothesis in the gelsolin activation process. Biophys. J. 2002,83:753-762.
    [18] Schindelin, H., M. A. Marahiel, and U. Helnemann. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold shock protein. Nature, 1993,364:164–168
    [19] Schnuchel, A., R. Wiltscheck, M. Czisch, M. Herrler, G. Willimsky, P.Graumann, M. A. Marahiel, and T. A. Holak. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature,1993,364:169–171
    [20] Mueller, U., D. Perl, F. X. Schmid, and U. Heinemann. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J. Mol. Biol, 2000,297:975–988
    [21] Perl, D., and F. X. Schmid. Electrostatic stabilization of a thermophilic cold shock protein. J.Mol. Biol,2001,313:343–357
    [22] Sotomayor M, Schulten K. Single-Molecule Experiments in Vitro and in Silico .Science,2007, 316:1144–1148
    [23] MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr,Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D,Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T,Nguyen DT, Prodhom B, Reiher IWE, Roux B,Schlenkrich M,Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J,Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B ,1998,102:3586–3616
    [24] Kale′L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K. Greater Scalability for Parallel Molecular Dynamics. J Comp Phys ,1999,151:283–312
    [25] Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein . Comparison of simple potential functions for simulating liquid water. J. Chem. Phys,1983, 79:926–935
    [26] Neria, E., S. Fisher, and M. Karplus . Simulation of activation energies in molecular systems. J. Chem. Phys, 1996,105:1902–1921.
    [27] Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys, 1984,81:3684–3690.
    [28] Morishita, T. . Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath. J. Chem. Phys, 2000,113:2976–2982.
    [29] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics,1996,14:33–38
    [1] Xiaoqin Huang, Huan-Xiang Zhou. Similarity and Difference in the unfolding of Thermophilic and Mesophilic cold shock proteins studied by molecular dynamics simulations. Biophysical Journal, 2006, 91: 2451-2463
    [2] Zhou YQ, Karplus M. Folding thermodynamics of a model three-helix-bundle protein. Proc Natl Acad Sci USA, 1997,94:1429-1443
    [3] Vijay SP, Daniel SR. molecular dynamics simulations of unfolding and refolding of aβ-hairpin fragment of protein G. Proc Natl Acad Sci USA, 1999,96:9062-9067
    [4] Duan Y, Kollman PA. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 1998,282:740-744
    [5] Carlos S, Bentley S, Andrian ER. All-atom structure prediction and folding sumulations of a stable protein. J Am Chem Soc, 2002,124:11258-11259
    [6] Reif M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible Unfolding of individual titin immunoglobulin Domains by AFM. Science,1997, 276:1109–1112
    [7] Kellermayer M, Smith S, Granzier H, Bustamante C.Folding-Unfolding Transitions in Single Titin Molecules Charactrrized with Laser Tweezers. Science ,1997,276:1112–1116
    [8] M Gao, H Lu, K Schulten .Unfolding of titin domains studied by molecular dynamics simulations. Journal of Muscle Research and Cell Motility, 2003,23:513-521
    [9] Daggett, V. Molecular dynamics simulations of the protein unfolding/folding reaction. Acc. Chem. Res,2002,35:422–429
    [10] Simmerling, C., B. Strockbine, and A. E. Roitberg. All-atom structure prediction and folding simulations of a stable protein. J. Am. Chem. Soc, 2002,124:11258–11259
    [11] Garcia, A. E., and J. N. Onuchic. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci, USA,2003,100:13898–13903.
    [12] Clementi, C., A. E. Garcia, and J. N. Onuchic. Interplay among tertiary contacts, secondary structure formation and side-chain packing in the protein folding mechanism: all-atomrepresentation study of protein L. J. Mol. Biol, 2003,326:933–954
    [13] Ca′rdenas, A. E., and R. Elber. Kinetics of cytochrome C folding: atomically detailed simulations. Proteins, 2003,51:245–257
    [14] Snow, C. D., E. J. Sorin, Y. M. Rhee, and V. S. Pande. How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct, 2005,34:43–69
    [15] Schindelin, H., M. A. Marahiel, and U. Helnemann. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold shock protein. Nature, 1993,364:164–168
    [16] Schnuchel, A., R. Wiltscheck, M. Czisch, M. Herrler, G. Willimsky, P.Graumann, M. A. Marahiel, and T. A. Holak. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature,1993,364:169–171
    [17] Mueller, U., D. Perl, F. X. Schmid, and U. Heinemann. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. J. Mol. Biol, 2000,297:975–988
    [18] Perl, D., and F. X. Schmid. Electrostatic stabilization of a thermophilic cold shock protein. J. Mol. Biol,2001,313:343–357
    [19] Sotomayor M, Schulten K. Single-Molecule Experiments in Vitro and in Silico .Science,2007, 316:1144–1148
    [20] MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr,Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D,Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T,Nguyen DT, Prodhom B, Reiher IWE, Roux B,Schlenkrich M,Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J,Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B ,1998,102:3586–3616
    [21] Kale′L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K. Greater Scalability for Parallel Molecular Dynamics. J CompPhys ,1999,151:283–312
    [22] Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein . Comparison of simple potential functions for simulating liquid water. J. Chem. Phys,1983, 79:926–935
    [23] Neria, E., S. Fisher, and M. Karplus . Simulation of activation energies in molecular systems. J. Chem. Phys, 1996,105:1902–1921.
    [24] Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys, 1984,81:3684–3690.
    [25] Morishita, T. . Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath. J. Chem. Phys, 2000,113:2976–2982.
    [26] Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics,1996,14:33–38
    [27] Craig D, Krammer A, Schulten K. Vogel V. Comparison of the early stages of forced unfolding for fibronectin type III modules. Proc Natl Acad Sci USA,2001,98:5590-5595
    [28] Silva J Weber G. Pressure stability of protein. Annu Rev Phys Chem,1993,44:89-113
    [29] Perl, D., C. Welker, T. Schindler, K. Schroder, M. A. Marahiel, R.Jaenicke, and F. X. Schmid. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shockproteins. Nat. Struct. Biol,1998,5:229–235
    [30] Ng SP, Rounsevell RW, Steward A, Geierhaas CD, Williams PM, Paci E, Clarke J. Mechanical Unfolding of TNfn3: The unfolding pathway of a fnIII Domain probed by protein Engineering, AFM and MD simulation. J Mol Biol, 2005, 350:776–789
    [31] Ying-Wu lin, Zhong-hua Wang, Feng-Yun Ni, Zhong-xian Huang. Forced Unfolding of Apocytochrome b5 by steered molecular dynamics simulation. Protein J, 2008,27:197-203
    [1] Thieringer HA, Jones PG, Inouye M. Cold Shock and Adaptation. BioEssays, 20: 49-57, 1998.
    [2] Bryngelson, J. D., J. N. Onuchic, N. D. Socci, and P. G. Wolynes (1995). Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 21:167–195.
    [3] Chan, H. S., and K. A. Dill (1998). Protein folding in the landscape perspective: chevron plots and non-arrhenius kinetics. Proteins. 30:2–33.
    [4] Plaxco, K. W., K. T. Simons, I. Ruczinski, and D. Baker (2000) Topology, stability, sequence and length: defining the determinants of two-state protein folding kinetics. Biochemistry. 39:11177–11183.
    [5] Baldwin, R. L (2002) Making a network of hydrophobic clusters. Science. 295:1657–1658.
    [6] Daggett, V., and A. R. Fersht (2003) Is there a unifying mechanism for protein folding? Trends Biochem. Sci. 28:18–25.
    [7] Zhou, H.-X (2004) Polymer models of protein stability, folding, and interactions. Biochemistry. 43:2141–2154
    [8] Hui Lu, Barry lsralewitz, AndréKrammer, Viola Vogel, and Klaus Schulten. (1998)Unfolding of Titin lmmunoglobulin Domains by steered molecular dynamics simulation. Biophysical Journal . 75:662-671
    [9] Ying-Wu lin, Zhong-hua Wang, Feng-Yun Ni, Zhong-xian Huang (2008) Forced Unfolding of Apocytochrome b5 by steered molecular dynamics simulation. Protein J. 27:197-203
    [10] Schindelin, H., M. A. Marahiel, and U. Helnemann (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold shock protein. Nature. 364:164–168.
    [11] Schnuchel, A., R. Wiltscheck, M. Czisch, M. Herrler, G. Willimsky, P. Graumann, M. A. Marahiel, and T. A. Holak (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature.364:169–171.
    [12] Schindler, T., and F. X. Schmid (1996) Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry. 35:16833–16842.
    [13] Perl, D., C. Welker, T. Schindler, K. Schroder, M. A. Marahiel, R. Jaenicke, and F. X. Schmid (1998) Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat. Struct. Biol. 5:229–235. 14. N.Nuray ULUSU, E.Ferhan TEZCAN (2000) Cold Shock Proteins. Turk J Med Sci. 31:283-290
    [15] Wang Ji-hua, Zhang Zhi-yong, Liu Hai-yan, Shi Yun-yu, Study on unfolding processes of a small protein by molecular dynamics simulations under the coupling effect between pressure and temperature (2004) ACTA BIOPHYSICA SINICA 4:315-322
    [16] Perl, D., and F. X. Schmid (2001) Electrostatic stabilization of a thermophilic cold shock protein. J. Mol. Biol. 313:343–357.
    [17] Moore CD, Lecomte JTJ (1993) Characterization of an Independent Structural Unit in Apocytochrome b5. Biochemistry 32:199–207
    [18] Manyusa S, Whitford D (1999) Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements.Biochemistry 38:9533–9540
    [19] Pfeil W (1993) Thermodynamics of apocytochrome b5 unfolding. Protein Sci 2:1497–1501
    [20] Cowley AB, Rivera M, Benson DR (2004) Stabilizing Roles of Residual Structure in the Empty Heme Binding Pockets and Unfolded States of Microsomal and Mitochondrial Apocytochrome b5. Protein Sci 13:2316–2329
    [21] Cowley AB, Sun N, Rivera M, Benson DR (2005) Divergence in Non-Specific Hydrophobic Packing Interactions in the Apo State, and its Possible Role in Functional Specialization of Mitochondrial and Microsomal Cytochrome b5. Biochemistry 44:14606–14615
    [22] Wang L, Sun N, Terzyan S, Zhang X, Benson DR (2006) A Histidine/Tryptophanπ-Stacking Interaction Stabilizes the Heme-Independent Folding Core of Microsomal Apocytochrome b5 Relative to that of Mitochondrial Apocytochrome b5.Biochemistry 45:13750–13759
    [23] Oberhauser AF, Marszalek PE, Erickson H, Fernandez J (1998) The molecular elasticity oftenascin, an extracellular matrix protein .Nature 393:181–185
    [24] D. Alastair Smith, David J. Brockwell. Rebecca C. Zinober, Anthony W.Blake, Godfrey S. Beddard, Peter D. Olmsted and Sheena E. Radford (2003) Unfolding dynamics of proteins under applied force. Phil. Trans. R. Soc. 361:713-730
    [25] Kellermayer M, Smith S, Granzier H, Bustamante C (1997) Folding-Unfolding Transitions in Single Titin Molecules Charactrrized with Laser Tweezers.Science 276:1112-1116
    [26] Kale′L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K. Greater Scalability for Parallel Molecular Dynamics. J Comp Phys ,1999,151:283–312
    [27] MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr,Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D,Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T,Nguyen DT, Prodhom B, Reiher IWE, Roux B,Schlenkrich M,Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J,Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B ,1998,102:3586–3616
    [28] Craig D, Krammer A, Schulten K, Vogel V (2001) Comparison of the early stages of forced unfolding for fibronectin type III modules.Proc Natl Acad Sci USA 98:5590–5595
    [29] Gao M, Wilmanns M, Schulten K (2002) Steered Molecular Dynamics Studies of Titin I1 Domains.Biophys J. 83:3435–3445
    [30] Lu H,Schulten K (1999) Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins: Structure, Function, and Bioinfortics. 35:453–463
    [31] Humphrey W, Dalke A, Schulten K.1996. VMD: visual molecular dynamics. J Mol Graphics 14:33–38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700