内体成熟障碍对LPS在RAW264.7细胞的内化以及对细胞活化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脓毒症是由感染因素介导的全身炎症反应综合征(systemic inflammatory response syndrome,SIRS)。构成革兰阴性菌外膜的主要成分内毒素(lipopolysaccharide,LPS)是介导脓毒症的主要病原分子,在脓毒症的病理生理过程中发挥着重要的作用。LPS进入机体后,与单核-吞噬细胞系统细胞膜上的模式识别受体TLR4结合,将信号转入胞内,介导炎症细胞活化,释放炎症介质(如TNF-α、IL-1和IL-6等)而引发机体的炎症反应,此过程LPS不进入胞内即可启动信号转导。除此之外,LPS还可通过TLR4介导的网格蛋白依赖方式进行内化(Internalization)而进入胞内,以往一直认为这种方式与LPS的降解与代谢相关,但最近有研究表明,LPS内化与细胞活化有着密切关联,本课题组前期研究也表明,内体酸化抑制剂氯喹(Chloroquine,CQ)对LPS攻击小鼠具有明显的保护作用,其作用机制不明确。因此,探讨LPS内化过程与炎性细胞活化的关系,对进一步深入了解LPS介导脓毒症发生的病理生理机制具有重要意义。
     目的
     用内体成熟抑制剂CQ抑制RAW264.7细胞内体成熟,观察内体成熟障碍对LPS在内体的分布情况以及对LPS刺激的RAW264.7细胞活化的影响。
     方法
     (1)使用异硫氰酸荧光素(Fluorescein isothiocynate, FITC)标记LPS,激光共聚焦显微镜下观测其示踪效果。(2)以FITC-Dextran为内体pH荧光探针,在激光共聚焦显微镜下通过荧光强度变化测定内体pH,并进一步使用不同浓度的内体成熟抑制剂CQ处理细胞,换算出CQ浓度与内体pH值的对应关系。设置系列CQ浓度和尼日利亚菌素-pH梯度溶液处理LPS刺激的RAW264.7细胞,以观察内体pH变化对RAW264.7细胞中LPS的分布和细胞活化的影响。(3)使用激光共聚焦显微镜观察FITC-LPS在胞膜及胞内的分布情况。(4)用CQ预处理RAW264.7细胞后加入刺激因素LPS,分别在4h和16h收集细胞上清液,采用ELISA方法检测细胞因子TNF-a和IL-6,观察LPS刺激的RAW264.7细胞在内体成熟障碍下细胞的活化情况。
     结果
     (1)使用FITC标记LPS,经超滤方法纯化后,标记效率为33.13 mol FITC / mol LPS,激光扫描共聚焦显微镜下观察示踪效果好于商业化试剂,可以用于本课题LPS示踪。
     (2)使用激光共聚焦显微镜检测FITC-Dxtran荧光值,根据CQ浓度与pH的对应关系,观察到随着CQ浓度增加内体pH升高,并呈现明显的线性关系,其中,CQ在浓度为20ug/ml时将内体pH作用到pH5.07。(3) CQ的细胞毒性浓度为30ug/ml,此范围内,梯度浓度的CQ预处理RAW264.7细胞细胞之后,LPS在胞内的聚集随着CQ的浓度增加而增加,该结果与利用尼日利亚菌素-梯度pH缓冲液调节内体pH后,LPS在胞内的聚集情况结果一致。(4)经CQ预处理的RAW264.7细胞,在LPS刺激作用下, TNF-α和IL-6的释放与CQ浓度成负相关,表明内体成熟障碍对LPS刺激的细胞活化具有抑制作用。
     结论
     (1)用FITC成功标记LPS,解决了LPS示踪无商品试剂供给的问题。
     (2) RAW264.7细胞内体酸化成熟障碍,可导致LPS在细胞内的聚集。
     (3) RAW264.7细胞内体成熟障碍对LPS刺激的细胞活化具有抑制作用。
Introduction
     Sepsis, which is systemic inflammatory response syndrome (SIRS) induced by infection, acts as a common complication in patients with extensive deep infection, severe traumas and major operations. LPS, one major component of the outer membrane of gram negative bacteria, is the most important pathogen associated molecule pattern (PAMPs) for sepsis. LPS binds to Toll like receptor 4(TLR4) on the membrane of monocytes and macrophages to induce pro inflammatory signal transduction and the release of cytokines such as TNF- a and IL-6, which ultimately results in the occurrence of sepsis. It is generally considered that LPS does not enter the cell to initiate the signaling cascade. Internalization of LPS functions as a process of degradation. However, the effects of LPS internalization on LPS inducing cell-activation has been re-realised recently, the investigation of which may enrich our understandings on the relationship between LPS and host responses and provide a new therapeutic target for the treatment of sepsis.
     Object
     To observe the distribution of LPS and to analyze effects of endosome maturation arrest on LPS inducing activation of RAW264.7 cells after the block of endosomes maturation in RAW264.7 cells with an inhibitors called chloroquine (CQ).
     Methods
     (1) Fluorescein isothiocynate was chose to label LPS. The labeling efficiency was measured and the tracy effectiveness of labeled LPS was observed under a confocal laser scaning microscopy;(2) A standard curve of pH-fluorescence intensity was made by using FITC-Dextran as the probe and Nigericin to fix the pH value in endosomes. Different concentration of CQ was added to preterit cells and its effects on the maturation of endorse was detected by measuring the fluorescence intensity of FITC-Dextrin;(3) The same concentration of CQ was used to treat the RAW264.7 cell, the distribution of LPS in cell membrane and the inner of the cell. was observed.(4) The same concentration of CQ was used to treat the RAW264.7 cell cell activation status was analyzed by checking the IL-6 and TNF-a levels with ELISA methods.
     Results
     (1) The labling and purification method is efficient with a labeling rate at 33.13 mol FITC / mol LPS. The labled LPS was well traced under the confocal laser scaning microscopy; (2) The standard curve of pH-fluorescence intensity is stable and reliable, CQ could inhibited endosome maturation/acidification in a dose dependent manner; (3) CQ increased the accumulation of LPS inside RAW 264.7 cells in a dose dependent manner; (4) CQ inhibited the releasing of cytokines such as TNF-a and IL-6 in RAW264.7 cells in a dose dependent manner.
     Conclusions
     (1) LPS was successfully labeled with FITC, the efficiency of which is better than purchased ones.
     (2) With the block of endosome acidification/maturation in the RAW264.7 cell by CQ, more LPS could accumulated in cells.
     (3) The block of endosome acidification in RAW264.7 cell can lead to the inhibition of cell activation.
引文
[1] R, Niels C, Ren-Feng G, Peter A,et al. Novel strategies for the treatment of sepsis. Nature medicine, 2003. 9(5):517-524.
    [2] Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR.. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome,and associated costs of care. Crit Care Med, 2001, 29(7):1303-1310.
    [3] Vincent JL, Sun Q, Dubois MJ. Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clini Infec Disea. 2002, 34(8):1084-93.
    [4] Vianna RC, Gomes RN, Bozza FA, et al. Antibiotic treatment in a murine model of sepsis: impact on cytokines and endotoxin release.Shock. 2004;21(2):115-120.
    [5] C, Alexander, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res, 2001. 7(3):167-202.
    [6] Di Fiore, P.P. and De Camilli, P. 2001. Endocytosis and signaling:An inseparable partnership. Cell 106: 1–4.
    [7] Brodsky, F.M., Chen, C.Y., Kneuhl, C., Towler, M.C., and Wakeham, D.E. 2001. Biological basket weaving: Formationand function of clathrin-coated vesicles. Annu. Rev. Cell.Dev. Biol. 17: 517–568.
    [8] Wong, W.T., Schumacher, C., Salcini, A.E., Romano, A., Castagnino,P., Pelicci, P.G., and Di Fiore, P. 1995. A proteinbindingdomain, EH, identified in the receptor tyrosine kinasesubstrate Eps15 and conserved in evolution. Proc. Natl.Acad. Sci. 92: 9530.
    [9] Iannolo, G., Salcini, A.E., Gaidarov, I., Goodman, Jr., O.B., Baulida,J., Carpenter, G., Pelicci, P.G., Di Fiore, P.P., and Keen,.H. 1997. Mapping of the molecular determinants involvedin the interaction between Eps15 and AP-2. Cancer Res.57: 240–245.
    [10] WJ, Lin,Yeh WC. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock., 2005. 24(3):206-209.
    [11] SM, Dauphinee,Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab-Invest, 2006. 86(1):9-22.
    [12] Husebye H.Halaas O.Stenmark H Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity .2006;25(4):683-92.
    [13]郑江;周红;鲁永玲;肖光夏;氯喹对内毒素血症小鼠的保护作用以及对细胞因子的影响第三军医大学学报,2003年05期.
    [14] Park J,Kwon D,Choi C,et al. Chloroquine induces activation of nuclear factor-κB and ubsequent expression of pro-inflammatory cytokines by human astroglial cells, Journal of Neurochemistry,Vol84:1266 2003.
    [15]王忠主编,《植物生理学》,中国农业出版社,2000年5月版.
    [16] Munford R,S and C,L Hall1986.Detoxification of bacterial lipopolysaccharides by human neutrophil enzyme.Science,234:203.
    [17] ahorec R, Firment J, Strakova J, Mikula J, Malik P, Novak I, Zeman J, Chlebo P. Epidemiology of severe sepsis in intensive care units in the Slovak Republic. Infection, 2005, 33(3): 122-128.
    [18] Xiqiang Yang,Role of Mononuclear Macrophage Activation in the Pathogenesis of Inflammatory Diseases, International Journal of Pediatrics,1673-4408. 2006,06.
    [19]赵祥文.细胞因子与SIRS/MODS的概念及儿科临床的意义[J].实用儿科临床杂志,1999,14(4):231.
    [20]祝益民,肖政辉,胥志跃,等.全身性炎性介质监测在急性危重患儿临床研究中的作用[J].小儿急救医学,2000.7(4):196.
    [21] Wagman, A.S. et al. (2004) Discovery and development inhibitors for the treatment of type 2 diabetes. Curr. Pharm. 10, 1105–1137.
    [22] Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol, 2002, 20:709-760.
    [23] Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N-Engl-J-Med, 2003, 348(16): 1546-1554.
    [24] Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol. 2004;5: 121-132.
    [25] Hoshino K,Takeuchi O,Kawai T,Sanjo H,Ogawa T,Takeda Y,et al.Cutting edge,Toll-like receptor 4(TLR4)-deficient mice are hyporesponsive to lipopolysa- ccharide, evidence for TLR4 as the Lps gene product. J Immunol .1999,162(7):3749-52.
    [26] Tadros T,Traber DL,Heggers JP,et al .Effects of interleukin-1alpha administration on intestinal ischemia and reperfusion injury, mucosal permeability, and bacterial translocation in burn and sepsis. Ann-Surg. 2003;237(1):101-109.
    [27] Bennett, I.L. et al. The effectiveness of hydrocortisone in the manager of severe infection. JAMA 183, 462-465(1963).
    [28] Meduri, G. U. et al. Efect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 280, 159-165(1983).
    [29] Frecer V, Ho B, Ding JL. Molecμlar dynamics study on Lipid A from Escherichia coli: insights into its mechanism of biological action. Biochim Biophys Acta. 2000; 1466(1-2):87-93.
    [30] Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 7: 702–707.
    [31] Girardin SE, Travassos LH, Herve M et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 2003; 278: 41702–41708.
    [32] Inohara N, Ogura Y, Fontalba A et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn’s disease. J Biol Chem 2003; 278:5509–5512.
    [33]周红,罗平,郑江,鲁永玲,氯喹抑制EC DNA、内毒素协同诱导的IL-6释放,解放军医学杂志,2003,03.
    [34] Girardin SE, Boneca IG , Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278: 8869–8872.
    [35] Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. Human Nod1 confers responsiveness to bacterial lipopolysaccharide. J Biol Chem 2001; 276: 2551–2554.
    [36]王良喜,周红,丁国富,鲁永玲,罗平,李军,氯喹对内毒素、细菌DNA诱导的TLR4、TLR9表达的作用研究四川生理科学杂志,2003,03.
    [37] Russell JA. Management of sepsis. N Engl J Med. 2006;355:1699-1713.
    [38]蒋建新,姚咏明,郑江.细菌内毒素基础与临床[M].北京:人民军医出版社,2004.395.
    [39] eong JY, Choi JW, Jeon KI, et al. 2002. Chloroquine decreases cell-surface expression of tumour necrosis factor receptors in human histiocytic U-937 cells. Immunology, 105:83-91.
    [40] hu X, Ertel W, Ayala A, et al. 1993. Chloroquine inhibits macrophage tumour necrosis factor-a mRNA transcription. Immunology, 80:122-126.
    [41] Weber SM, Levitz SM. 2001. Chloroquine antagonizes the proinflammatory cytokine response to opportunistic fungi by alkalizing the fungal phagolysosome. The journal of infectious diseases. 183:935-42.
    [42] Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635-700.
    [43] Amitabha Majumdar, Dana Cruz, Nikiya Asamoah , Adina Buxbaum, Istvan Sohar, PeterLobel, Frederick R. Maxfield, Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils Department of Biochemistry, Weill Medical College of Cornell University, New York, NY10021.
    [44] Cathrine Nilsson, Katarina Kagedal, Uno Johansson & Karin Ollinger, Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry,Division of Pathology II, Department of Neuroscience and Locomotion, Faculty of Health Sciences, Linko¨ping University, S-581,85.
    [45] Jae Hong Kim,Clifford A. Lingwood, David B. Williams, Wendy Furuya, Morris F. Manolson, Sergio Grinstein, Dynamic Measurement of the pH of the Golgi Complex in Living Cells Using Retrograde Transport of the Verotoxin ReceptorDivisions of Gastroenterology and Nutrition, Hospital for Sick Children;IrInstitute of Medical Science.
    [46] Gideon Bacha, Chii-Shiarng Chenb, Richard E. Paganob, Elevated lysosomal pH in Mucolipidosis type IV cells,Department of Biochemistry and Molecular Biology, Thoracic Diseases Research Unit, Mayo Clinic and Foundation, 200 First Street, S.W., Rochester, MN 55905-0001, USA.
    [47] Yuri Stroikin & Hanna Mild & Uno Johansson & Karin Roberg & Karin llinger. Lysosome-targeted stress reveals increased stability of lipofuscin-containing lysosomes, AGE (2008) 30:31–42 DOI 10.1007/s11357-007-9045-9.
    [48] Abigail A. Soyombo Sandra Tjon-Kon-Sang, Youssef Rbaibi, Enkelejda Bashllari§, Jill Bisceglia,Shmuel Muallem1, and Kirill Kiselyov, TRP-ML1 egulates Lysosomal pH and Acidic Lysosomal Lipid Hydrolytic Activity, epartment of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
    [49] Gallagher J, Fisher C, Sherman B, et al. A multicenter, open-label, prospective,randomized, dose-ranging pharmacokinetic study of the anti-TNF-alpha antibody afelimomab in patients with sepsis syndrome. Intensive Care Med. 2001, 27(7): 1169-1178.
    [50] M, Fujihara, Muroi M, Tanamoto K,et al. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther, 2003. 100(2):171-194.
    [51] MO, Manley, O'Riordan MA, Levine AD,et al. Interleukin 10 extends the effectiveness of standard therapy during late sepsis with serum interleukin 6 levels predicting outcome. Shock, 2005. 23(6):521-526.
    [52] Raza A. Anti-TNF therapies in rheumatoid arthritis, Crohn's disease, sepsis, and myelodysplastic syndromes. Microsc Res Tech. 2000, 50(3): 229-235.
    [53] Gawad KA, Schneider C, Brinken B, et al. Anti-TNF antibody treatment has no positive effect on survival in a model of pneumococcal sepsis in pigs. J Invest Surg. 2001, 14(5): 291-297.
    1. Di Fiore, P.P. and De Camilli, P. 2001. Endocytosis and signaling:An inseparable partnership. Cell 106: 1–4.
    2. Caron, E. and Hall, A. 2001. Phagocytosis. In Frontiers in molecular biology (ed. M.Marsh), pp. 58–77. Oxford UniversityPress, New York, NY.
    3. Dautry-Varsat, A. 2001. Clathrin-independent endocytosis. OxfordUniversity Press, New York, NY.
    4. Brodsky, F.M., Chen, C.Y., Kneuhl, C., Towler, M.C., andWakeham, D.E. 2001. Biological basket weaving: Formationand function of clathrin-coated vesicles. Annu. Rev. Cell.Dev. Biol. 17: 517–568.
    5. Kirchhausen, T., Bonifacino, J.S., and Riezman, H. 1997. Linkingcargo to vesicle formation: Receptor tail interactionswith coat proteins. Curr. Opin. Cell. Biol. 9: 488–495.
    6. Horiuchi, H., Lippe, K., McBride, H.M., Rubino, M., Woodman,P., Stenmark, H., Rybin, V., Wilm, M., Ashman, K., Mann,M., et al. 1997. A novel Rab5 GDP/GTP exchange factorcomplexed to Rabaptin-5 links nucleotide exchange to effectorrecruitment and function. Cell 90: 1149–1159.
    7. Wong, W.T., Schumacher, C., Salcini, A.E., Romano, A., Castagnino,P., Pelicci, P.G., and Di Fiore, P. 1995. A proteinbindingdomain, EH, identified in the receptor tyrosine kinasesubstrate Eps15 and conserved in evolution. Proc. Natl.Acad. Sci. 92: 9530.
    8. Iannolo, G., Salcini, A.E., Gaidarov, I., Goodman, Jr., O.B., Baulida,J., Carpenter, G., Pelicci, P.G., Di Fiore, P.P., and Keen,.H. 1997. Mapping of the molecular determinants involvedin the interaction between Eps15 and AP-2. Cancer Res.57: 240–245.
    9. Lloyd, V., Ramaswami, M., and Kramer, H. 1998. Not just prettyeyes: Drosophila eye-colour mutations and lysosomal delivery.Trends Cell Biol. 8: 257–259.
    10. Odorizzi, G., Cowles, C.R., and Emr, S.D. 1998b. The AP-3 complex:A coat of many colours. Trends Cell Biol. 8: 282–288.
    11. Babst, M., Odorizzi, G., Estepa, E.J., and Emr, S.D. 2000. Mammaliantumor susceptibility gene 101 (TSG101) and theyeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1: 248–258.
    12. Rotin, D., Staub, O., and Haguenauer-Tsapis, R. 2000. Ubiquitinationand endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J. Membr.Biol. 176: 1–17.
    13. Brodsky, F.M., Chen, C.Y., Kneuhl, C., Towler, M.C., and Wakeham, D.E. 2001. Biological basket weaving: Formation and function of clathrin-coated vesicles. Annu.Rev. Cell.Dev. Biol. 17: 517–568.
    14. Kirchhausen, T., Bonifacino, J.S., and Riezman, H. 1997. Linking cargo to vesicle formation: Receptor tail interactions with coat proteins. Curr. Opin. Cell. Biol. 9: 488–495.
    15. Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H.,Podtelejnikov, A.V., Witke, W., Huttner, W.B., and Soling,H.D. 1999. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133–141.
    16. Guichet, A., Wucherpfennig, T., Dudu, V., Etter, S., Wilsch-Brauniger, M., Hellwig, A., Gonzalez-Gaitan, M., Huttner,W.B., and Schmidt, A.A. 2002. Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. EMBO J. 21: 1661–1672.
    17. Verstreken, P., Kj鎟 ulff, O., Lloyd, T., Atkinson, R., and Bellen,H.J. 2002. Drosophila Endophilin mutations block clathrinmediated endocytosis but not neurotransmitter release. Cell109: 101–112.
    18. Wang, L.H., Sudhof, T.C., and Anderson, R.G. 1995. The appendage domain of alpha-adaptin is a high affinity binding site for Dynamin. J. Biol. Chem. 270: 10079–10083.
    19. Ringstad, N., Nemoto, Y., and De Camilli, P. 1997. The SH3p4/Sh3p8/SH3p13 protein family: Binding partners for Synaptojanin and Dynamin via a Grb2-like Src homology 3 domain.Proc. Natl. Acad. Sci. 94: 8569–8574.
    20. McNiven, M.A. 1998. Dynamin: A molecular motor with pinchaseaction. Cell 94: 151–154.
    21. Sever, S., Muhlberg, A.B., and Schmid, S.L. 1999. Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis.Nature 398: 481–486.
    22. van der Bliek, A.M. 1999. Is Dynamin a regular motor or amaster regulator? Trends Cell Biol. 9: 253–254.
    23. Marks, B., Stowell, M.H., Vallis, Y., Mills, I.G., Gibson, A., Hopkins,C.R., and McMahon, H.T. 2001. GTPase activity of Dynamin and resulting conformation change are essential for endocytosis. Nature 410: 231–235.
    24. Cupers, P., ter Haar, E., Boll, W., and Kirchhausen, T. 1997.Parallel dimers and anti-parallel tetramers formed by epidermal growth factor receptor pathway substrateclone 15. J. Biol. Chem. 272: 33430–33434.
    25. Chen, Y. and Struhl, G. 1996. Dual roles for Patched in sequesteringand transducing Hedgehog. Cell 87: 553–563.
    26. Santolini, E., Puri, C., Salcini, A.E., Gagliani, M.C., Pelicci,P.G., Tacchetti, C., and Di Fiore, P.P. 2000. Numb is anendocytic protein. J. Cell Biol. 151: 1345–1352.
    27. Raths, S., Rohrer, J., Crausaz, F., and Riezman, H. 1993. end3and end4: Two mutants defective in receptor-mediated andfluid-phase endocytosis in Saccharomyces cerevisiae. J. CellBiol. 120: 55–65.
    28. Benmerah, A., Lamaze, C., Begue, B., Schmid, S.L., Dautry-Varsat,A., and Cerf-Bensussan, N. 1998. AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J. Cell Biol.140: 1055–1062.
    29. Wendland, B. and Emr, S.D. 1998. Pan1p, yeast Eps15, functionsas a multivalent adaptor that coordinates protein-protein interactionsessential for endocytosis. J. Cell Biol. 141: 71–84.
    30. Christoforidis, S., Miaczynska, M., Ashman, K., Wilm, M.,Zhao, L., Yip, S.C., Waterfield, M.D., Backer, J.M., and Zerial,M. 1999b. Phosphatidylinositol-3-OH kinases are Rab5effectors. Nat. Cell Biol. 1: 249–252.
    31. Stenmark, H. and Zerial, M. 2001. Molecular mechanisms ofmembrane fusion in the endocytic pathway. In Frontiers inmolecular biology (ed. M. Marsh), pp. 94–110. Oxford UniversityPress, New York, NY.
    32. Gillooly, D.J., Morrow, I.C., Lindsay, M., Gould, R., Bryant,N.J., Gaullier, J.M., Parton, R.G., and Stenmark, H. 2000.Localization of phosphatidylinositol 3-phosphate in yeastand mammalian cells. EMBO J. 19: 4577–4588.
    33. Li, G., D’Souza-Schorey, C., Barbieri, M.A., Roberts, R.L., Klippel,A., Williams, L.T., and Stahl, P.D. 1995. Evidence forphosphatidylinositol 3-kinase as a regulator of endocytosis viaactivation of Rab5. Proc. Natl. Acad. Sci. 92: 10207–10211.
    34. Simonsen, A., Lippe, R., Christoforidis, S., Gaullier, J.M., Brech,A., Callaghan, J., Toh, B.H., Murphy, C., Zerial, M., andStenmark, H. 1998. EEA1 links PI(3)K function to Rab5 regulationof endosome fusion. Nature 394: 494–498.
    35. McBride, H.M., Rybin, V., Murphy, C., Giner, A., Teasdale, R.,and Zerial, M. 1999. Oligomeric complexes link Rab5 effectorswith NSF and drive membrane fusion viainteractionsbetween EEA1 and Syntaxin 13. Cell 98: 377–386.
    36. Hazuka, C.D., Foletti, D.L., and Scheller, R.H. 1999. Nerve terminalmembrane trafficking proteins: From discovery tofunction. In Neurotransmitter release (ed. H.J. Bellen), pp.81–125. Oxford University Press, New York, NY.
    37. Katzmann, D.J., Babst, M., and Emr, S.D. 2001. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal proteins sorting complex, ESCRT-I. Cell 106: 145–155.
    38. Cowles, C.R., Odorizzi, G., Payne, G.S., and Emr, S.D. 1997.The AP-3 adaptor complex is essential for cargo-selectivetransport to the yeast vacuole. Cell 91: 109–118.
    39. Lloyd, V., Ramaswami, M., and Kramer, H. 1998. Not just prettyeyes: Drosophila eye-colour mutations and lysosomal delivery.Trends Cell Biol. 8: 257–259.
    40. Odorizzi, G., Cowles, C.R., and Emr, S.D. 1998b. The AP-3 complex:A coat of many colours. Trends Cell Biol. 8: 282–288.
    41. Kooh, P.J., Fehon, R.G., and Muskavitch, M.A. 1993. Implicationsof dynamic patterns of Delta and Notch expression forcellular interactions during Drosophila development. Development117: 493–507.
    42. Poodry, C.A. 1990. shibire, a neurogenic mutant of Drosophila.Dev. Biol. 138: 464–472.
    43. Beatus, P. and Lendahl, U. 1998. Notch and neurogenesis. J.Neurosci. Res. 54: 125–136.
    44. Lieber, T., Kidd, S., and Young, M.W. 2002. Kuzbanian-mediated cleavage of Drosophila Notch. Genes&Dev. 16: 209–221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700