匹立尼酸(Wy-14643)对大鼠移植肝冷保存再灌注损伤保护作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠肝移植模型改进
     目的:探索建立稳定大鼠原位肝移植模型的方法,为进一步研究大鼠肝脏冷保存再灌注损伤提供模型基础。
     方法:选用清洁级SD大鼠建立同种异体原位肝移植模型,手术采用“Kamada双袖套法”,并在其基础上做适当改进,如:采用静脉注射泵代替手工灌注,留取供体肝上下腔静脉膈环以上2mm静脉进行成形,并于静脉壁左右侧分别预吊缝线等。手术分为第一阶段预实验(50次)和第二阶段正式实验(50次)进行,在第二阶段又按术式分为“Kamada双袖套法”(26次)和“改良Kamada双袖套法”(24次),并比较二种术式建立大鼠肝移植模型的效果。
     结果:预试验期间手术存活率为34.00%(17/50),正式实验手术存活率达90.20%(46/50)。“改良Kamada双袖套法”的供、受体手术时间,袖套准备及供肝修整时间,无肝期都比“Kamada双袖套法”有明显缩短;术后一周的存活率显示“Kamada双袖套法”为65.21%(15/23),“改良Kamada双袖套法”为95.73%(22/23),统计分析具有显著性差异(P<0.05)。
     结论:1.“改良Kamada双袖套法”具有无肝期和手术时间短,手术成功率和术后存活率高的优点,是建立大鼠原位肝移植模型较为理想的术式;
     2.本实验通过对取肝、修肝、受体肝脏切除、肝上下腔静脉吻合、围手术期处理等几方面的改进,提高了模型的稳定性和成功率。
     第二部分匹立尼酸对不同冷保存时间大鼠肝脏内PPARα、NF-κB和iNOS的影响
     目的:探索匹立尼酸对冷保存大鼠肝脏内PPARα、NF-κB和iNOS的影响,研究其对移植肝冷保存损伤的作用和作用机制。
     方法:将60只SD大鼠随机分成二大组:匹立尼酸预处理组(P_2),30只,于术前2d、1d、1h分别经尾静脉一次注入10%DSMO8ml/kg.d+Pirinixic acid 3mg/kg.d;对照组(C_2),30只,则注入相应剂量的10%DSMO溶剂。按“改良Kamada双袖套法”切取大鼠供肝,然后,每组又按在4℃林格氏液中冷保存时间不同分为五个亚组:冷保存Oh组,6只;冷保存2h组,6只;冷保存4h组,6只;冷保存6h组,6只;冷保存8h组,6只。分别于上述不同时间点分批次采取肝中叶标本,应用逆转录聚合酶链反应(RT-PCR)、蛋白质印迹技术(Western-Blot)检测过氧化物酶体增殖物激活剂受体(PPAR)α、诱导型一氧化氮合酶(iNOS)mRNA及表达蛋白量的变化,免疫组织化学法检测肝细胞内核因子(NF)-κB活性变化,并比较二组的病理学特征。
     结果:在对照组(C_2)和匹立尼酸预处理组(P_2)肝组织中,随着冷保存时间的延长PPARαmRNA和表达蛋白的量都逐渐降低,但同一时间点P_2组比C_2组要高,统计学比较具有显著性差异(P<0.05)。在C_2组和P_2组肝组织中iNOS mRNA和表达蛋白的量随着冷保存时间延长都升高,但同一时间点P_2组比C_2组要低,统计学比较也具有显著性差异(P<0.05)。同一冷保存时间点匹立尼酸预处理组肝细胞内NF-κB的激活水平低于对照组,病理损伤也较对照组轻。
     结论:1、PPARα在冷保存的大鼠肝脏中表达下调,并随冷保存时间的延长表达水平逐渐下降(在林格氏液中冷保存,8小时内);
     2、Wy-14643对大鼠肝脏冷保存损伤具有保护作用,其保护作用是通过改善PPARα的表达下调、抑制NF-κB的活化和iNOS的病理性高表达来实现的。
     第三部分匹立尼酸对大鼠移植肝冷保存再灌注损伤的保护作用和作用机制
     目的:进一步挢索匹立尼酸对大鼠移植肝冷保存后再灌注期损伤的作用,并了解其作用机制。
     方法:将90只清洁级SD大鼠随机分成三组:对照组(C_3组),18只,于术前2d、1d、1h分别经尾静脉一次注入10%DSMO 8ml/kg.d,只行开关腹及肝脏游离手术;匹立尼酸处理组(P_3组),36只;模型组(M_3),36只。M_3和P_3组动物再随机分成供体、受体,P_3组供体于术前2d、1d、1h分别经尾静脉一次注入10%DSMO 8ml/kg.d+Pirinixicacid 3mg/kg.d,M_3组供体则注入相应剂量的10%DSMO溶剂,后二组按前述的“改良kamada双袖套法”建立肝移植模型。然后,三组动物又以术后再灌注时间点不同再分为三个亚组:即T_1:再灌注2小时,T_2:再灌注6小时;T_3:再灌注24小时;各6只。分别按上述时间点检测肝组织中PPARα、iNOS mRNA及表达蛋白的量、髓过氧化物酶活力(MPO)、超氧化物酶活力(SOD)、丙二醛含量(MDA)、肝细胞中NF-κB活性和血清中谷丙氨酸转氨酶(ALT)、门冬氨酸转氨酶(AST)、肿瘤坏死因子(TNF)α、巨噬细胞炎性蛋白(MIP)-2的变化,并比较三组肝脏的病理学差异。
     结果:对照组(C_3)术后不同时间点肝组织中PPARα、iNOS mRNA及表达蛋白的量、MPO活力、SOD活力、MDA含量、肝细胞中NF-κB活性和血清中ALT、AST、TNFα、MIP-2的都无明显变化,肝脏的病理学无显著改变。模型组(M_3)和匹立尼酸预处理组(P_3)PPARαmRNA及表达蛋白的量、SOD活力、随着再灌注时间的延长而逐渐下降,6h达到最低点,以后逐渐恢复,同一时间点三组的统计学比较,具有显著性差异(P<0.05),P_3比M_3组下降的幅度低,统计学分析也具有显著性差异(P<0.05)。相反,肝脏中iNOS mRNA及表达蛋白的量、MDA含量和血清中ALT、AST、MIP-2在M_3和P_3组则于再灌注开始时上升,6小时达到高峰,以后下降,同一时间点三组的统计学比较,具有显著性差异(P<0.05),P_3组比M_3组升高的幅度低,统计学分析也具有显著性差异(P<0.05),但MIP-2在P_3组和M_3组却无显著性差异。M_3和P_3组肝细胞中的NF-κB活性、血清中TNFα随着再灌注时间的延长于开始时上升,2小时达到高峰,以后逐渐下降,同一时间点三组的统计学比较,具有显著性差异(P<0.05),P_3组比M_3组低,统计学分析也具有显著性差异(P<0.05),但血清中TNFα在P_3组和M_3组却无显著性差异。肝脏病理学检查,P_3组比M_3组损伤轻。
     结论:1、在冷保存-再灌注损伤早期(再灌注后6h内),大鼠移植内PPARα表达继续下调,于再灌注6h达到最低点,24h时有所回升;
     2、Wy-14643对大鼠移植肝前期(再灌注后24h内)冷保存-再灌注损伤具有保护作用,其作用是通过改善PPARα的下调表达,抑制肝细胞内NF-κB的激活,调控肝脏内一氧化氮合酶(iNOS)的转录来抑制iNOS源性NO的生成,进而抑制iNOS源性超氧化物和过氧亚硝基阴离子的损害,抑制中性粒细胞的聚齐,并且能够提高肝细胞自身的抗氧化能力来实现保护作用。
PartⅠThe improvement in the establishment of orthotopic liver transplantation model in rats
     Objective:To investigate the surgical procedures and establish stable model of liver transplantation in rats in order to study the cold preservation reperfusion injury of graft.
     Methods:The models of orthotopic liver transplantation were made on SD rats."Two-cuff technique described by Kamada[TCTDK]" was used with some modifications.Such as:the vena injection pump was used to perfuse liver through abdominal aorta and portal vein instead of handiwork perfusion,the 2mm suprahepatic inferior vena cava above diaphragm annulation was kept to shape,and two sides of which were sutured with suture line before anastomosis of suprahepatic inferior vena cava,et al.Two phases were included in this experiment:preliminary experiment(50 times)and formal experiment(50 times).The effects on the establishment of liver transplantation model were compared between TCTDK(26 times)and "Two-cuff technique described by Kamada with some modifications[TCTDKM]"(24 times)in the formal experiment.
     Results:The operation survival rate was 34%(17/50)in the preliminary experiment,and 90.20%(46/50)in the formal experiment. The times of donor operation,recipient operation,preparation of cuff, graft trimmed and anhepatic phase were shorten significantly by the TCTDKM than the TCTDK.The survival rate was 65.21%(15/23)for TCTDK,and 95.73%(22/23)for TCTDKM.There was significant difference between two groups(P<0.05).
     Conclusion:1.The TCTDKM is a good technique to liver transplantation in rats,with the advantage of shorter time in operation and anhepatic phase,higher operation survival rate and survival rate at 1 week after operation than others.
     2.The stability and achievement ratio of liver transplantation model in rats were increased by the improvement of the techniques on the graft obtained and trimmed,the anastomosis of suprahepatic vena cava and resection of liver in the recipient,and the treatment in ambi-operation phase in our experiment.
     PartⅡThe influence of pirinixic acid on the peroxisome proliferators-activated receptors-a(PPARa)、iNOS、NF-κB in cold preservation liver of rat.
     Objective:To investigate the influence of pirinixic acid on the peroxisome proliferators-activated receptors-a(PPARa),iNOS in the hepatic tissue,and NF-κB in hepatic cells of rat at different cold preservation time,and to study the effect of pirinixic acid on hepatic cold preservation injury in rats,and its mechanism.
     Methods:60 SD rats were randomly divided into control group(C_2) and pretreated group(P_2);rats in P_2 group were pretreated with 10% DSMO 8ml/kg.d+Pirinixic acid 3mg/kg.d injected intranvenously by vena caudalis on 2d,1d and 1h before operation,30 rats;and rats in C_2 group were did in the same quantity of 10%DSMO at the same time,30 rats.Grafts were obtained by TCTDKM.Then,the two groups were divided into five subgroups respectively with the different cold preservation time in 4℃Ringer's solution,including:Oh cold preservation group,6 rats;2h cold preservation group,6 rats;4h cold preservation group,6 rats;6h cold preservation group,6 rats;8h cold preservation group,6 rats.The sample of median lobe of rat liver was obtained in batch at the above-mentioned time point to detect the level of mRNA of PPARa and iNOS by reverse transcription-polymerase chain reaction (RT-PCR),the quantity of expression protein of PPARαand iNOS by Western-blot,and the activity of nuclear factor-κB(NF-κB)in hepatic cells by immunohitochemical method.Pathological characteristics of the cold preservation liver were compared between two groups.
     Results:With the time of cold preservation prolonged,the levels of mRNA and the quantities of expression protein of PPARa were decreased in C_2 group and P_2 group,and which in P_2 group were higher than in C_2 group at the each same cold preservation time(P<0.05).On the other hand,with the time of cold preservation prolonged,the levels of mRNA and the quantities of expression protein of iNOS were increased in C_2 group and P_2 group,and which in P_2 group were lower than in C_2 group at the each same cold preservation time(P<0.05).The activity of NF-κB in hepatocyes of cold preservation liver was lower in P_2 group than in C_2 group at the each same cold preservation time.There were slighter pathological injuries in P_2 group than in C_2 group.
     Conclusion:1.The downregulation expression of PPARαand expression of PPARαdecreased with the development of the time of cold preservation in cold preservation livers of rats(within 8h,in 4℃Ringer's solution)
     2.There was protective effect of Wy-14643 on the hepatic cold preservation injury in rats,which was implemented to protect liver from injury by improving the downregulation of PPARα,and suppressing the activity of NF-κB and high pathological expression of iNOS.
     PartⅢ:The protective effect and mechanism of pirinixic acid on cold preservation-reperfusion injury of transplanted liver in rats
     Objective:To investigate the effect of pirinixic acid on cold preservation-reperfusion injury of transplanted liver in rats,and its mechanism.
     Methods:90 SD rats were randomly divided into three groups, control group(C_3):18 rats,only treated with abdomen dissection and suture,and liver dissociation;model group(M_3):36 rats;and pretreated group(P_3):36 rats.Rats in M_3 and P_3 group were randomly divided into donors and recipients respectively;donors in P_3 group were pretreated with 10%DSMO 8ml/kg.d+pirinixic acid 3mg/kg.d injected intranvenously by vena caudalis on 2d,1d and 1h before operation.Donors in M_3 and rats in C_3 group were did in the same quantity of 10%DSMO at the same time before operation.The liver tansplantation models were established by TCTDKM.Then,three groups were divided into three subgroups respectively with the different reperfusion time after operation, Including:T_1:2h after reperfusion group;T_2:6h after reperfusion group; T_3:24h after reperfusion group;6 rats in each group.Samples of right and median lobe of liver were obtained in batch to detect the mRNA levels of PPARαand iNOS,the quantities of expression protein of PPARαand iNOS,the activity of MPO,the contents of MDA in the transplanted liver, and the activity of nuclear factor-κB(NF-κB)in hepatic cells at above-mentioned time point,and AST,ALT,TNFαand MIP-2 in serum were also measured.Pathological characterics of the liver were compared in three groups.
     Results:There were no significant change on the levels of mRNA and quantities of expression protein of PPARαand iNOS,activity of MPO and SOD,contents of MDA in livers,activity of NF-κB in hepatic cells,the levels of AST,ALT,TNFαand MIP-2 in serum,and the pathological characteristic observation in C_3 group at each time point. Levels of mRNA and quantifies of expression protein of PPARα,and the activity of SOD were decreased in M3 and P3 group as the time of reperfusion time prolonged,which reached the lowest point at 6h after reperfusion,and then increased after that time.There were significant differences at the each same time after reperfusion among the three groups(P<0.05),there was lower decrease in P_3 group than in M_3 group, and also significant difference between P_3 group and M3 group.On the other hand,levels ofmRNA and quantities of expression protein of iNOS, and the activity of MPO and contents of MDA in livers,and the levels of MIP-2 in serum were increased as the time of reperfusion time prolonged in M_3 and P_3 group,which reached the highest point at 6h after reperfusion,and then decreased after that time.there were significant differences at the each same time point after reperfusion among the three groups(P<0.05),there was lower decrease in P_3 group than in M_3 group, which was the level of mRNA and the quantity of expression protein of iNOS,and the activity of MPO,the content of MDA in liver.Significant difference between P_3 group and M_3 group was also found,but not for levels of MIP-2 in serum between P_3 group and M_3 group.The activity of NF-κB in hepatic cells and levels of TNFαin serum were increased in M_3 group and P_3 group in the first 2 hours after reperfusion,reached the highest point at 2h after reperfusion,and then decreased alter that time. There were significant differences at the each same time point alter reperfusion among the three groups(P<0.05).There were lower increase of the activity of NF-κB in hepatic cells in P_3 group than in M_3 group,and also significant difference was found between P_3 group and M_3 group,but not for levels of TNFαin serum between P_3 group and M_3 group.There were slighter pathological injuries in P_3 group than in M_3 group.
     Conclusion:1.In the first 6 hours after reperfusion,the downregulation expression of PPARa and expression of PPARa decreased with the development of the time of reperfusion in the transplanted liver of rats, which reached the lowest point at 6h after reperfusion,and then recovered after that time;
     2.Wy-14643 protected the transplanted liver from cold preservationreperfusion injury in rats by improving the downregulation of PPARα, suppressing the activity of NF-κB,and controling the transcription of iNOS in hepatic cells,and thus inhibiting the damage generated by superoxide and peroxynitrosonegion that derived from iNOS,suppressing the accumulation of neutrophil,and elevating the ability of antioxygen of hepatic cells within 24 hours after reperfusion.
引文
[1]Shen ZY.Liver transplantation is laboring in the progress in China.Chinese Critical Care Medicine.2005,17(10):577-579.
    [2]Silberhumer GR,Pokomy H,Hetz H,et al.Combination of extended donor criteria and changes in the model for end-stage liver disease score predict patient survival and primary dysfunction in liver transplantation:a retrospective analysis.Transplantation.2007,83(5):588-592.
    [3]Zhu XH,Qiu YD,Shen H,et al.Effect of matrine on Kupffer cell activation in cold ischemia reperfusion injury of rat liver.World J Gastroenteml.2002,8(6):1112-1116.
    [4]Zhou T,Sun G,Zhang M,et al.Role of adhesion molecules and dendritic cells in rat hepatic/renal ischemia-reperfusion injury and anti-adhesive intervention with anti-P-selectin lectin-EGF domain monoclonal antibody.World J Gastroenterol.2005,11(7):1005-1010.
    [5]Anjaneya P,Chimalakonda,Mehvar R.Attenuation of kupffer cell activation in cold-preserved livers after pretreatment of rats with methylprednisolone or its macromolecular prodrug.Pharmaceutical Res.2003,20(7):1001-1008.
    [6]Ohkochi N,Shibuya H,Tsakamoto M,et al.Kupffer's cell modulate neutrophile activity by supemxide anion and tumor necrosis factor-α in reperfusionin jury of liver transplantation-mechnisms of radical generation and reperfusion injury after cold ischemia.Transplant Proc.1999,31(1-2):1055-1058.
    [7]Inoue I,Goto S,Matsunaga T,et al.The ligands/activators for peroxisome prolifemtors-activated Receptor alpha(PPARalpha)and PPAR gamma increase Cu~(2+)Zn~(2+)-superoxide dismutase and decrease p22 Dhox message expressions in primary endothelial cell.Metabolism.2001,50(1):3-11.
    [8]Peters JM,Rusyn I,Rose ML,et al.Peroxisome proliferator-activated receptor α is restricted to hepatic parenchymal cells,not Kupffer cells:implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis.Carcinogenesis.2000,21(4):823-826.
    [9]Issemann I,Green S.Action of a memerber of the steroid homone superfamily by peroxisome proliferators.Nature.1990,347(6294):645-649.
    [10]Braissant O,Foufelle F,Scotto C,et al.Differential expression of peroxisome proliferator-activated receptors(PPARs):tissue distribution of PPAR-α,β,and gamma,in the adult rat.Endocrinology.1996,137(1):354-366.
    [11]Willson TM,Brown PJ,Stembach DD,et al.The PPARs:from orphan receptors to drug discovery.J Med Chem.2000,43(4):527-550.
    [12]Lanne B,Dahllof B,Lindahl C,et al.PPARalpha and PPARgamma regulation of liver and adipose proteins in obese and dyslipidemic rodents.J Proteome Res.2006,5(8):1850-1859.
    [13]Teissier E,Nohara A,Chinetti G,et al.Peroxisome proliferators-activated receptor-α induces NADPH oxidase activity in macrophages,leading to the generation of LDL with PPARα activation properties.Circ Res.2004,95(12):1174-1182.
    [14]Daynes RA,Jones DC.Emerging roles of PPARs in inflammation and immunity.Nat Rev Immunol.2002,2(10):748-759.
    [15]Dewald O,Sharma S,Adrogue J,et al.Downregulation of peroxisome proliferators-activated Receptor-or Gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity.Circulation.2005,112(3):407-415.
    [16]Sivarajah A,Chatterjee PK,Hattod Y,et al.Agonists of peroxisomeproliferator activated receptor-α(Clofibrate and WY14643)reduce renal ischemiareperfusion injury in the rot.Med Sci Monit.2002,8(12):BR532-539.
    [17]Welch CS.A note on tansplantation of the whole livers in dogs.Transplant Bull.1955,2(2):186-202.
    [18]Calne RY,Sells RA,Pena JR,et al.Induction of immunological tolerance by porcine liver allografts.Nature.1969,223(4):472-479.
    [19]Spiegel HU,Palmes D.Surgical techniques of orthotopic rat liver transplantation.J Invest Surg.1998,11(3):83-96.
    [20]Lee S,Chatter AC,Chandler JG,et al.A technique for orthotopic liver transplantation in the rot.Transplantation.1973,16(6):664-667.
    [21]Kamada N,Calne RY.Orthotopic liver transplantation in the rot:techniques using cuff for portal vein anastomosis and biliary drainage.Transplantation.1979,28(1):47-49.
    [22]Miyata M,Fischer M,Fuls W,et al.A simple method for orthotopic liver transplantation in the rot:cuff technique for three vascular anastomosis.Transplantation.1990,30(5):335-338.
    [23]Kamada N,Calne RY,A surgical experience with five hundred thirty liver transplants in the rot.Surgery.1983,93(1Pt1):64-69.
    [24]Fudaba Y,Tashiro H,Ohdan H,et al.Prevention of warm ischemic injury in rat liver transplantation by geranylgeranylacetone.Transplant Proc.2000,32(7):1615-1616.
    [25]Schemmer P,Enomoto N,Bradford BU,et al.Activated kupffer cells cause a hypermetablic state after gentle in sire manipulation of liver in rats.Am J Physiol Gastrointest Liver Physiol.2001,280(6):(31076-1079.
    [26]Tokunaga Y,Ozaki N,Wakashiro S,et al.Effects of perfusion pressure during flushing on the viability of the procured liver using noninvasive fluorometry.Transplantation.1988,45(6):1031-1034.
    [27]胡浩,陈易人,李纲.100例大鼠原位肝移植.肝胆外科杂.1999,7(3):225-226.
    [28]Tisone G,Vennarecci G,Bauicchi L,et al.Randomized study on in situ liver perfuion techniques:gravity perfusion vs high-pressure perfusion.Transplant Proc.1997,29(8):3460-3463.
    [29]杨卫平,邵堂雷,蔡伟耀,等.大鼠两种不同供肝对原位肝移植术中和术后影响的比较.消化外科.2003,2(1):30-33.
    [30]Nowak G,Unqerstedt J,Wemerson A,et al.Hepatic cell membrane damage during cold preservation sensitizes liver grafts to rewarming injury.J Hepatobiliary Panereat Surg.2003,10(3):200-205.
    [31]Duval M,Plin C,Elimadi A,et al.Implication of mitochondrial dysfunction and cell death in cold preservation-warm reperfusion-induced hepatocyte injury.Can J Physiol Pharmacol.2006,84(5):547-554.
    [32]Kukan M,Haddad P.Role of hepatocytes and bile duct cells in preservation-reperfusion injury of liver grafts.Liver Transpl.2001,7(5):381-400.
    [33]Jain S,Xu H,Duncan H,et al.Ex-vivo study of flow dynamics and endothelial cell structure during extended hypothermic machine perfusion preservation of livers.Cryobiology.2004,48(3):322-332.
    [34]Jaesehke H.Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning.Am J Physiol Gastrointest Liver Physiol.2003,284(1):G15-26.
    [35]Clark RB.The role of PPARs in inflammation and immunity.J Leukoc Biol.2002,71(3):388-400.
    [36]Narravula S,Colgan SP.Hypoxia-indueible factorl-mediated inhibition of peroxisome proliferator-aetivated receptor a expression during hypoxia.J Immunol.2001,166(12):7543-7548.
    [37]Yue TL,Bao WK,Jucker BM,et al.Activation ofperoxisome proliferatorsactivated receptor-α protects the heart from ischemia/reperfusion injury.Circulation.2003,108(19):2393-2399.
    [38]Jin S,Dai CL,Han XC.The effect of nuclear factor kappa B activities on the liver of rats after ischemic reperfusion injury.J Clin Hepatol.2006,9(1):19-21.
    [39]Yanagida H,Kaibori M,Yamada M,et al.Induction of inducible nitric oxide synthase in hepatocytes isolated from rats with ischemia-reperfusion injury.Transplant Proc.2004,36(7):1962-1964.
    [40]Idel S,Ellinghaus P,Wolfrum C,Branched chain fatty acids induce nitric oxide-dependent apoptosis in vascular smooth muscle cells.J Biol Chem.2002,277(51):49319-49325.
    [41]Collino M,Aragno M,Mastrocola R,et al.Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion:effects of the PPAR-alpha agonist WY14643.Free Radio Biol Med.2006,41(4):579-589.
    [42]Yu LL,Yu JP,Rang ZX,et al.Relationship between nuclear factor kappaB,apoptosis and proliferation in colorectal neoplasia.World Chin J Digestol.2002,10(3):309-312.
    [43]Suzuki S,Teledo-Pereyra LH,Rodriguez F J,et al.Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury.Transplantation.1993,55(6):1256-1272.
    [44]Clavien PA,Robert P,Harvey C,et al.Preservation and reperfusion injuries in liver allografls.Transplantation.1992,53(5):957-978.
    [45]Clavien PA,Harvey PRC,Strasber SM.Preservation and reperfusion injuries in liver allografts:overview and synthesis of current studies.Transplantation.1992,53(5):957-978.
    [46]Plin C,Tillement JP,Berdeaux A,et al.Resveratrol protects against cold ischemia-warm reoxygenation-induced damages to mitochondria and cells in rat liver.Eur J Pharmacol.2005,528(1-3):162-168.
    [47]Ninomiya M,Shimada M,Harada N,et al.The hydroxyl radical scavenger MCI-186 protects the liver from experimental cold ischaemia-reperfusion injury.Br J Surg.2004,91(2):184-190.
    [48]Sen R,Baltimore D.Mufiple nuclear factors interact with the immunoglobulin enhancer sequences.Cell.1986,46(5):705-716.
    [49]Karin M,Lin A.NF-kappaB at the crossroads of life and death.Nat Immunol.2002,3(3):221-227.
    [50]Pahl HL.Activators and target genes of Rel/NF-kappaB transcription factors.Oncogene.1999,18(49):6853-6866.
    [51]Okaya T,Lentsch AB.Hepatic expression of S32A/S36A IkappaB alpha does not reduce postischemic liver injury.J Surg Res.2005,124(2):244-249.
    [52]Xu MQ,Shuai XR,Yah ML,et al.Nuclear factor-κB decoy oligodeoxynucleotides attenuates ischemia/reperfusion injury in rat liver graft.World J Gastroenterol.2005,11(44):6960-6967.
    [53]Chen J,Wang G.Role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion.J HuaZhong Univ Sci Technolog Med Sci.2004,24(3):284-285.
    [54]Funaki H,Shimizu K,Harada Set al.Essential role for nuclear factor kappa B in ischemia preconditioning for ischemia-reperfusion injury of the mouse liver.Transplantation.2002,74(4):551-556.
    [55]Kato A,Edwards MJ,Lentsch AB.Gene deletion of NF-kappa B p50 does not alter the hepatic inflammatory response to ischemia/reperfusion.J Hepatol.2002,37(1):48-55.
    [56]Teoh NC,Farrell G-C.Hepatic ischemia reperfusion injury:Pathogenic mechanisms and basis for hepatoprotection.J Gastroenterol Hepatol.2003,18(8):891-902.
    [57]Matsni N,Kasajima K,Hada M,et al.Inhibition of NF-κB activation during ischemia reduces.Hepatic ischemia/reperfusion injury in rats.J Toxicolog Sci.2005,30(2):103-110.[58]Tian YH,Jochum W,Georgiev P,et al.Kupffer cell-dependent TNF-αsignaling mediates injury in the arterialized small-for-size liver transplantation in the mouse.PNAS.2006,103(12):4598-4603.
    [59]Serracino-Inglott F,Virlos IT,Habib NA,et al.Differential nitric oxide synthase expression during hepatic ischemia- reperfusion.Am J Stag.2003,185(6):589-595.
    [60]Kim PK,Vallabhaneni R,Zuckerbraun BS,et al.Hypoxia renders hepatocytes susceptible to cell death by nitric oxide.Cell Mol Biol.2005,51(3):329-335.
    [61]Gu XP,Jiang Y,Xu FT,et al.Effect of cold-ischemia time on nuclear factor-kappaB activation and inflammatory response in graft after orthotopic liver transplantation in rats.World J Gastroenterol.2004,10(7):1000-1004.
    [62]Cooper CE,Davies NA,Psychoulis M,et al.Nitric oxide and peroxynitrite cause irreversible increases in the K(m)for oxygen of mitochondrial cytochrome oxidase:in vitro and in vivo studies.Biochim Biophys Acta.2003,1607(1):27-34.
    [63]Lorch S,Lightfoot R,Ohshima H,et al.Detection of peroxynitrite-induced protein and DNA modifications.Methods Mol Biol.2002,196(2):247-275.
    [64]Tsuchihashi S,Kaldas F,Chide N,et al.FK330,a novel inducible nitric oxide synthase inhibitor,prevents ischemia and reperfusion injury in rat liver transplantation.Am J Transplant.2006,6(9):2013-2022.
    [65]Gumpricht E,Dahl R,Yerushalmi B,et al.Nitric oxide ameliorates hydrophobic bile acid-induced apoptosis in isolated rat hepatocytes by nonmitochondrial pathways.J Biol Chem.2002,277(28):25823-25830.
    [66]Takano H,Nagai T,Asakawa M,et al.Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-αexpression in neonatal rat cardiac myocytes.Circ Res.2000,87(7):596-602.
    [67]Xu X,Otsuki M,Saito H,et al.PPARα and GR differentially downregulate the expression of nuclear factor-κB-responsive genes in vascular endothelial cells.Endocrinology.2001,142(8):3332-3339.
    [68]Chinetti G;Fruchart JC,Staels B.Peroxisome proliferator-activated receptors:new targets for the pharmacological modulation of macrophage gene expression and function.Curr Opin Lipidol.2003,14(5):459-468.
    [69]Olthoff KM.Molecular pathways of regeneration and repair after liver transplantation.World J Surg.2002,26(7):831-837.
    [70]E1-Gibaly AM,Scheuer C,Menger MD,et al.Improvement of rat liver graft quality by pifithrin-alpha-mediated inhibition of hepatocyte necrapoptosis.Hepatology.2004,39(6):1553-1562.
    [71]Totsuka E,Fung JJ,Hakamada K,et al.Synergistic effect of cold and warm ischemia time on postoperative graft function and outcome in human liver transplantation.Transplant Proc.2004,36(7):1955-1958.
    [72]Fernandez-Merino J,Nuno-Garza J,Lopez-Hervas P,et al.Influence of ischemia and surgery times on development of primary dysfunction liver transplant in patients.Transplant Proc.2003,35(4):1439-1441.
    [73]Zhou T,Sun G,Zhang M,et al.Role of adhesion molecules and dendritic cells in rat hepatic/renal ischemia-reperfusion injury and anti-adhesive intervention with anti-P-selectin lectin-EGF domain monoclonal antibody.World J Gastroenterol.2005,11(7):1005-1010.
    [74]Von-Frankenberg M,Golling M,Mehrabi A,et al.Donor pretreatment with gadolinium chloride improves early graft function and survival after porcine liver transplantation.Transpl Int.2003,16(11):806-813.
    [75]Tsuchihashi S,Fondevila C,Shaw GD,et al.Molecular characterization of rat leukocyte P-selectin glycoprotein ligand-1 and effect of its blockade:protection from ischemia-reperfusion injury in liver transplantation.J Immunol.2006,176(1):616-624.
    [76]Chimalakonda AP,Mehvar R.Attenuation of kupffer cell activation in coldpreserved livers after pretreatment of rats with methylprednisolone or its macromolecular prodrug.Pharmaceutical Res.2003,20(7):1001-1008.
    [77]Yue TL,Bao WK,Jucker BM,et al.Activation ofperoxisome proliferatorsactivated receptor-α protects the heart from ischemia/reperfusion injury.Circulation.2003,108(19):2393-2399.
    [78]Delerive P,Gervois P,Fruchart JC,et al.Induction of IkappaB alpha expression as a mechanism contributing to the Anti-inflammatory Activities of Peroxisome Proliferator-activated Receptor-alpha Activators.J Biol Chem.2000,275(47):36703-36707.
    [79]Funaki H,Shimizu K,Harada S,et al.Essential role for nuclear factor kappa B in ischemia preconditioning for ischemia-reperfusion injury of the mouse liver.Transplantation.2002,74(4):551-556.
    [80]Takahashi Y,Ganster RW,Gambotto A,et al.Role of NF-kappaB cold ischemia-reperfusion injury.Am J Physiol Gastrointest Liver Physiol.2002,283(5):Gl175-1184.
    [81]Chang K,Lee SJ,Cheong I,et al.Nitric oxide suppresses inducible nitric oxide synthase expression by inhibiting post-translational modification of IkappaB.Exp Mol Med.2004,36(4):311-324.
    [82]Yanagida H,Kaibori M,Yoshida H,et al.Hepatic ischemia/reperfusion upregulates the susceptibility of hepatocytes to confer the induction of inducible nitric oxide synthase gene expression.Shock.2006,26(2):162-168.
    [83]Muriel P.Regulation of nitric oxide synthesis in the liver.J Appl Toxicol.2000,20(3):189-195.
    [84]Wang Y,Lawson J,Jaeschke H.Differential effect of 2-aminoethyl- isothiourea, an inhibitor of the inducible nitric oxide synthase, on microvascular blood flow and organ injury in models of hepatic ischemia-reperfusion and endotoxemia. Shock. 1998,10(1): 20-25.
    [85] Ohkochi N, Shibuya H, Tsakamoto M, et al. Kupffer's cell modulate neutrophile activity by superoxide anion and tumor necrosis factor-α in reperfusionin jury of liver transplantation-mechnisms of radical generation and reperfusion injury after cold ischemia. Transplant Proc. 1999, 31(1-2): 1055-1058.
    [86] Serrano E, Diaz J, Acosta F, et al. Oxidative stress during ischemia-reperfusion in liver transplantation. Transplant Proc. 2000,32(8):2651-2651.
    [87] Quijano C, Romero N, Radi R. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion. Free Radic Biol Med. 2005,39(6):728-741.
    [88] Cooper CE, Davies NA, Psychoulis M, et al. Nitric oxide and peroxynitrite cause irreversible increases in the K(m) for oxygen of mitochondrial cytochrome Oxidase: in vitro and in vivo studies. Biochim Biophys Acta. 2003,1607(1):27-34.
    [89] Jaeschke H, Fisher MA, Lawson JA, et al. Activation of caspase3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol. 1998,160(7):3480-3486.
    [90] Ito K, Ozasa H, Noda Y. Splenic artery ligation ameliorates hepatic ischemia and reperfusion injury in rats. Liver Int. 2006,26(2):254-260.
    [91] Yuzawa H, Fujioka H, Mizoe A, et al. Inhibitory effects of safe and novel SOD derivatives, galactosylated-SOD, on hepatic warm ischemia/reperfusion injury in pigs. Hepatogastroenterology. 2005, 52(63):839-843.
    [92] Poynter ME, Daynes RA. Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappa B signaling and reduces inflammatory cytokine production in aging. J Biol Chem. 1998, 273(49): 32833-32841.
    [93] Yoo HY, Chang MS, Rho HM. Induction of the rat Cu/Zn-superoxide dismutase gene through the peroxisome proliferator-response element by arachidonic acid. Gene. 1999,234(1): 87-91.
    [1]Issemann I,Green S.Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.Nature.1990,347(6294):645-650.
    [2]Moras D,Gronemeyer H.The nuclear receptor ligand-binding domain:structure and function.Curr Opin Cell Biol.1998,10(3):384-391.
    [3]Xu HE,Lambert MH,Montana VG,et al.Structural determinants of ligand binding selectivity between the peroxisome proliferators-activated receptors.Proc Nail Acad Sci USA.2001,98(24):13919-13924.
    [4]Braissant O,Foufelle F,Scotto C,et al.Differential expression of peroxisome proliferator-activated receptors(PPARs):tissue distribution of PPAR-α,-β,and -γ in the adult rat.Endocrinology.1996,137(1):354-366.
    [5]Banner CD,Gottlicher M,Widmark E,et al.A systermatic analytical chemistry Pcell assay approach to isolate activators of orphan nuclear receptors from biological extracts: characterization of peroxisome proliferators activated receptor activators in plasma. J Lipid Res. 1993,34(9): 1583-1591.
    [6] Xu HE, Lambert MH, Montana VQ et al. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA. 2001,98(24):13919-13924.
    [7] Wang G, Cheng JJ, Ni PZ. PPARa receptors subtypes and study on new drugs. Progress Pharmaceutic Sci. 2004,28(1): 15-19.
    [8] Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000,43(4): 527-550.
    [9] Tomaru T, Satoh T, Yoshino S, et al. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. Endocrinology. 2006,147(1):377-388.
    [10] Kereiakes DJ, Willerson JT. Metabolic syndrome epidemic. Circulation. 2003,108 (13): 1552-1553.
    [11] Berger JP, Akiyama TE, Meinke PT. PPARs: Therapeutic targets for metabolic disease. Trends Pharmacol Sci. 2005,26(5): 244-251.
    [12] Lanne B, Dahllof B, Lindahl C, et al. PPARalpha and PPARgamma regulation of liver and adipose proteins in obese and dyslipidemic rodents. J Proteome Res. 2006,5(8): 1850-1859.
    [13] Teissier E, Nohara A, Chinetti G, et al. Peroxisome proliferators-activated receptor-α induces NADPH Oxidase activity in macrophages, leading to the generation of LDL with PPARa activation properties. Circ Res. 2004, 95(12): 1174-1182.
    [14] Clark RB. The role of PPARs in inflammation and immunity. J Leukoc Biol. 2002, 71(3): 388-400.
    [15] Nie W, Sweetser S, Rinella M, et al. Transcriptional regulation of murine Slc22al (Oct1) by peroxisome proliferator agonist receptor-α and -γ. Am J Physiol Gastrointest Liver Physiol. 2005,288(2): G207-G212.
    [16] Guan Y, Breyer MD. Peroxisome proliferators-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int. 2001,60(1): 14-30.
    [17] Jean-Charles F. Peroxisome proliferators-activated receptor-α activetion and high-density lipoprotein metabolism. Am J Cardiol. 2001, 88(suppl1): 24n-29n.
    [18] Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006, 86(2):465-514.
    
    [19] Ficher M, You M, Matsumoto M, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J Biol Chem. 2003, 278(30): 27997-28004.
    
    [20] Campbell FM, Kozak R, Wagner A, et al. A role for peroxisome proliferator- activated receptor alpha (PPARalpha) in control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-Coa decarboxylase. J Biol Chem. 2002,277(6): 4098-4103.
    
    [21] Hashimoto T, Cook WS, Qi C, et al. Defect in peroxisome proliferator- activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem. 2000,275(27):28918-28928.
    
    [22] Galli A, Pinaire J, Fischer M, et al. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolish. A novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem. 2001,276(1):68-75.
    
    [23] Francis GA, Annicotte JS, Auwerx J. PPAR-alpha effect on the heart and other vascular tissues. Am J Physiol Heart Circ Physiol. 2003,285(1):H1-9.
    
    [24] Lee GY, Kim NH, Zhao ZS, et al. Peroxisome proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. Biochem J. 2004,378(Pt3):983-990.
    
    [25] Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000,405(6785): 421-424.
    
    [26] Panadero M, Vidal H, Herrera E, et al. Nutrionally induced changes in the peroxisome proliferator-activated receptor-alpha gene expression in liver of suckling rats are dependent on insulinaemia. Arch Biochem Biophys. 2001,394(2): 182-188.
    
    [27] Agatha C, Marta R, Rosa M, et al. Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes. 2001, 50(8): 1183-1890.
    
    [28] Rusn H, Hacohen N, Golub TR, et al. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: NF-κB activation by TNF-α is obiligatory. Diabetes. 2002, 51(5): 1319-1336.
    [29] Li QM, Zhang SH, Wu J, et al. Effect of peroxisome proliferator-activated receptor-α on improving insulin sensitivity and uncoupling proteins gene mRNA expression. Chin Pharm J. 2005,40(14):1070-1072.
    [30] Koh EH, Kim MS, Park JY, et al. Peroxisome proliferators-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats: comparison with PPAR-gamma activation. Diabetes. 2003,52(9):2331-2337.
    [31] Johnson LW, Weinstock RS. The metabolic syndrome: concepts and controversy. Mayo Clin Proc. 2006, 81(12):1615-1620.
    [32] Shulman GL Cellular mechanisms of insulin resistance. J Clin Invest. 2000, 106(2): 171-176.
    [33] Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 2001,104(4): 517-529.
    [34] Unger RH, Zhou YT. Lipotoxicity of β-cells in obesity and in other causes of fatty acid spillover. Diabetes. 2001,50 (Suppl 1): S118-S121.
    [35] Boden G, Shulman GL Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur J Clin Invest. 2002,32 (Suppl 3): 14-23.
    [36] Roden M, Stingl H, Chandramouli V, et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes. 2000,49(5): 701-707.
    [37] Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol. 2002,13(1): 51-59.
    [38] Haluzik M, Parizkova J, Haluzik MM. Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiol Res. 2004c. 53(1): 123-129.
    [39] Kern PA, Di Gregorio GB, Lu T, et al. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003,52(7): 1779-1785.
    [40] Cetkovic A, Djurovic M, Milic N. Leptin and inhibin B as predictors of reproductive recovery in patients with anorexia nervosa during weight gain. Srp Arh Celok Lek. 2006 Nov-Dec;134(11-12):492-497.
    [41]Lee HJ,Choi SS,Park MK,et al.Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats.Biochem Biophys Res Commun.2002,296(2):293-299.
    [42]Ross R.Atheroslerosis an inflammatory disease.N Engl J Med.1999,340(2):115-126.
    [43]Duriez P.Mechanisms of actions of statins and fibrates.Therapie.2003,58(1):5-14.
    [44]Tordjman K,Bamal-Mizrachi C,Zemany L,et al.PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice.J Clin Invest.2001,107(8):1025-1034.
    [45]Nyman JA,Martinson MS,Nelson D,et al.VA-HIT Study Group.Costeffectiveness of gemfibrozil for coronary heart disease patients with low levels of high-density lipoprotein cholesterol:the department of veterans affairs high-density lipoprotein cholesterol intervention trial.Arch Intern Meal.2002,162(2):177-182.
    [46]Xu X,Otsuki M,Sumitani S,et al.RU486 antagonizes the inhibitory effect of peroxisome proliferator-activated receptor alpha on interleukin-6 production in vascular endothelial cells.J Steroid Biochem Mol Biol.2002,81(2):141-146.
    [47]Jackson SM,Parhami F,Xi XP,et al.peroxisome proliferators-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction.Arterioscler Thromb Vase Biol.1999,19(9):2094-2104.
    [48]Delerive P,De Bosscher K,Besnard S,et al.Peroxisome prolifemtoractivated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1.J Biol Chem.1999,274(45):32048-32054.
    [49]Dragomir E,Tircol M,Manduteanu I,et al.Aspirin and PPAR-alpha activators inhibit monocyte chemoattractant protein-1 expression induced by high glucose concentration in human endothelial cells.Vascul Pharmacol.2006,44(6):440-449.
    [50]Li AC,Binder C J,Gutierrez A,et al.Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα,β/δ,and γ.J Clin Invest.2004,114(11):1564-1576.
    [51]Chinetti G,Griglio S,Antonucci M,et al.Activation of peroxisome proliferators-activated receptors a and 7 induces apoptosis of human monocytederived macraophage.J Biol Chem.1998,273(40):25573-25580.
    [52] Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature. 1998, 393(6687): 790-793.
    [53] Williams JM, Zhao XY, Wang MH, et al. Peroxisome proliferator-activated Receptor-α activation reduces salt-dependent hypertension during chronic endothelin B receptor blockade. Hypertension. 2005,46(2): 366-371.
    [54] Marx N, Mackman N, Schonbeck U, et al. PPARa activators inhibit tissue factor expression and activity in human monocytes. Circulation. 2001, 103(2): 213-219.
    [55] Peters JM, Cattley RC, Cronzalez FJ. Role of PPAR-alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14643. Carcinogenesis. 1997,18 (11):2029-2033.
    [56] Suga T. Hepatocarcinogenesis by peroxisome proliferators. J Toxicological sciences. 2004,29(1):1-12.
    [57] Morimura K, Cheung C, Ward JM, et al. Differential susceptibility of mice humanized for peroxisome proliferator-activated receptora to Wy-14,643-induced liver tumorigenesis. Carcinogenesis. 2006,27(5): 1074-1080.
    [58] Liu DC, Zang CB, Liu HY, et al. A novel PPAR alpha/gamma dual agonist inhibits cell growth and induces apoptosis in human glioblastoma T98G cells. Acta Pharmacol Sin. 2004,25 (10): 1312-1319.
    [59] Saidi SA, Holland CM, Charnock-Jones DS, et al. In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Molecular Cancer. 2006, 5(1):1-14.
    [60] Zhou YC, Davey HW, McLachlan MJ, et al. Elevated basal expression of liver peroxisomal beta-oxidation enzymes and CYP4A microsomal fatty acid omega-hydroxylase in STAT5b(-/-) mice: cross-talk in vivo between peroxisome proliferator-activated receptor and signal transducer and activator of transcription signaling pathways. Toxicol Appl Pharmacol. 2002,182(1):1-10.
    [61] Crowe DL, Chandraratna RA. A retinoid X receptor (RXR)-selective retinoid reveals that RXR-α is potentially a therapeutic target in breast cancer cell lines, and that it potentiates antiproliferative and apoptotic responses to peroxisome proliferator- activated receptor ligands. Breast Cancer Res. 2004, 6(5):R546-555.
    [62] Niho N, Takahashi M, Kitamura T, et al. Concomitant Suppression of hyperlipid- emia and Intestinal Polyp Formation in Apc-deficient Mice by Peroxisome Proliferator-activated Receptor Ligands.Cancer Res.2003,63(18):6090-6095.
    [63]Wayman NS,Hattori Y,Mcdonald MC,et al Ligands of the peroxisome proliferator-activated receptors(PPAR-γ and PPAR-α)reduce myocardial infarct size.FASEB.2002,16(9):1027-1040.
    [64]Yue TL,Bao WK,Jucker BM,et al.Activation of peroxisome proliferatorsactivated receptor-or protects the heart from ischemia/reperfusion injury.Circulation.2003,108(19):2393-2399.
    [65]Sivarajah A,Chatterjee PK,Hatori Y,et al.Agonists of peroxisomeproliferator activated receptor-α(Clofibrate and WY14643)reduce renal ischemiareperfusion injury in the rat.Med Sci Monit.2002,8(12):BR532-539.
    [66]Lopaschuk GD.Targets for modulation of fatty acid oxidation in the heart.Curr Opin Investig Drugs.2004,5(3):290-294.
    [67]Panagia M,Gibbons GF,Radda GK,et al.PPAR-α activation required for decreased glucose uptake and increased susceptibility to injury during ischemia.Am J Physiol Heart Circ Physiol.2005,288(6):H2677-H2683.
    [68]Naito Y,Yoshikawa T.Thiazolidinediones:A new class of drugs for the therapy of ischemia-reperfusion injury.Drugs Today(Barc).2004,40(5):423-430.
    [69]Okada M,Yan SF,Pinsky DJ.Peroxisome proliferators-activated receptorgamma (PPAR-gamma)activation suppresses ischemic induction of Egr-1 and its inflammatory gene targets.FASEB.2002,16(14):1861-1868.
    [70]Khandoudi N,Delerive P,Berrebi-Bertrand I,et al.Rosiglitazone,a peroxisome proliferators-activated receptor-gamma,inhibits the Jun NH_2-terminal kinase/activating proteinl pathway and protects the heart from ischemia/reperfusion injury.Diabetes.2002,51(5):1507-1514.
    [71]Hill MR,Clarke S,Rodgers K,et al.Effect of peroxisome proliferatoractivated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia.Infect Immun.1999,67(7):3488-3493.
    [72]Diep QN,Amiri F,Touyz RM,et al.PPARα activator effects on Ang Ⅱ-induced vascular oxidative stress and inflammation.Hypertension.2002,40(6):866-871.
    [73]Ziouzenkova O,Perrey S,Asatryan L,et al.Lipolysis of triglycedde rich lipproteins generates PPAR ligands:Evidence for an antiinflammatory role for lipoprotein lipase.Proc Natl Acad Sci USA.2003,100(10):2730-2735.
    [74]Delerive P,Gervois P,Fruchart JC,et al.Induction of IkappaB alpha expression as a mechanism contributing to the Anti-inflammatory Activities of Peroxisome Proliferator-activated Receptor-alpha Activators.J Biol Chem.2000,275(47):36703-36707.
    [75]Xu X,Otsuki M,Saito H,et al.PPARα and GR differentially down-regulate the expression of nuclear factor-κB-responsive genes in vascular endothelial cells.Endocrinology.2001,142(8):3332-3339.
    [76]Gervois P,Kleemann R,Pilon A,et al.Global suppression of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator-activated receptor-α activator fenofibrate.J Biol Chem.2004,279(16):16154-16160.
    [77]Mouthiers A,Baillet A,Delomenie C,Peroxisome proliferator-activated receptor α physically interacts with CCAAT/enhancer binding protein(C/EBPβ)to inhibit C/EBPβ-responsiveα1-acid glycoprotein gene expression.Mol Endocrinol.2005,19(5):1135-1146.
    [1]McCord JM.Oxygen-derived free radicals in post ischemic tissue injury.N Engl J Med.1985,312(2):159-163.
    [2]Teoh N,Field J,Sutton J,et al.Dual role of tumor necrosis factor-a in hepatic ischemia-reperfusion injury:studies in tumor necrosis factor-a gene knockout mice.Hepatology.2004,39(2):412-421.
    [3]Pascher A,Klupp J.Biologics in the treatment of transplant rejection and ischemia/reperfusion injury:new applications for TNFalpha inhibitors? Bio Drugs.2005,19(4):211-231.
    [4]Conzelmann LO,Lehnert M,Kremer M,et al.Graft tumor necrosis factor receptor-1 protects after mouse liver transplantation whereas host tumor necrosis factor receptor-1 promotes injury. Transplantation. 2006, 82(9): 1214-1220.
    [5] Tanaka Y, Chen C, Maher JM, et al. Kupffer cell-mediated downregulation of hepatic transporter expression in rat hepatic ischemia-reperfusion. Transplantation. 2006, 82(2): 258-266.
    [6] Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: Pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol. 2003, 18(8): 891-902.
    [7] Teoh N, Leclercq I, Pena AD, et al. Low-dose TNF-alpha protects against hepatic ischemia reperfusion injury in mice: implications for preconditioning. Hepatology. 2003, 37 (1): 118-128.
    [8] Colletti LM, Green M. Lung and liver injury following hepatic ischemia/ reperfusion in the rat is increased by exogenous lipopolysaccharide which also increases hepatic TNF production in vivo and in vitro. Shock. 2001,16 (4): 312-319.
    [9] Ben-Ari Z, Hochhauser E, Burstein I, et al. Role of anti-tumor necrosis factor-α in ischemia/reperfusion injury in isolated rat liver in a blood free environment. Transplantation. 2002,73(12): 1875-1880.
    [10] Chen CF, Leu FJ, Chen HI, et al.Oxygen radicals and matrix metalloproteinases mediate reperfusion liver injury. Transplant Proc. 2005, 37(10): 4547.4549.
    [11] Watanabe T, Kubota S, Nagaya M, et al. The role of HMGB-1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in mice. J Surg Res. 2005,124(1):59-66.
    [12] Ogata K, Jin MB, Taniguchi M, et al. Attenuation of ischemia and reperfusion injury of canine livers by inhibition of type II phospholipase A_2 with LY329722. Transplantation. 2001, 71(8): 1040-1046.
    [13] Kobayashi A, Imamura H, Isobe M, et al. Mac-1 (CD11b/CD18) and intercellular adhesion molecule-1 in ischemia-reperfusion injury of rat liver. Am J Physiol Gastrointest Liver Physiol. 2001,281(2):G577-585.
    [14] Cutrn JC, Perrelli MG, Cavalieri B, et al. Microvascular dysfunction induced by reperfusion injury and protective effect of ishemic preconditioning. Free Radic Biol Med. 2002, 33(9):1200-1208.
    [15] Ding WX, Yin XM. Dissection of the multiple mechanisms of TNF-α-induced apoptosis in liver injury. J Cell Mol Med. 2004,8(2):445-454.
    [16]Yin XM,Ding WX.Death receptor activation-induced hepatocyte apoptosis and liver injury.Curr Mol Meal.2003,3(2):491-508.
    [17]Chert X,Ding WX,Ni HM,et al.Bid-independent mitochondrial activation in tumor necrosis factor alpha-induced apoptosis and liver injury.Mol Cell Biol.2007,27(2):541-553.
    [18]Lentsch AB,Yoshidome H,Kato A,et al.Requirement for interleukin-12 in the pathogenesis of warm hepatic ischemia/reperfusion injury in mice.Hepatology.1999,30(6):1448-1453.
    [19]Sen R,Baltimore D.Multiple nuclear factors interact with the immunoglobulin enhancer sequences.Cell.1986,46(5):705-716.
    [20]Karin M,Lin A.NF-kappaB at the crossroads of life and death.Nat Immunol.2002,3(3):221-227.
    [21]Perkins ND.The Rel/NF-kappaB family:friend and foe.Trends Biochem Sci.2000,25(9):434-440.
    [22]Ouchida R,Kusuhara M,Shimizu N,et al.Suppression of NF-kappaB-dependent gene expression by a hexamethylene bisacetamide-inducible protein HEXIM1 in human vascular smooth muscle cells.Genes to Cells.2003,8(2):95-107.
    [23]Chen FE,Huang DB,Chen YQ,et al.Cryotal structure of p50/p65heterodimer of transcription factor NF-r,.B bound to DNA.Nature.1998,391(22):410-413.
    [24]Funaki H,Shimizu K,Harada S,et al.Essential role for nuclear factor kappa B in ischemia preconditioning for ischemia-reperfusion injury of the mouse liver.Transplantation.2002,74(4):551-556.
    [25]Takahashi Y,Ganster RW,Gambotto A,et al.Role of NF-kappaB cold ischemia-reperfusion injury.Am J Physiol Gastrointest Liver Physiol.2002,283(5):Gl175-1184.
    [26]Bottex-Gauthier C,Pollet S,Favier A,et al.The Rel/NF-kappa-B transcription factors:complex role in cell regulation.Pathol Biol(Paris).2002,50(3):204-211.
    [27]Kucharczak J,Simmons MJ,Fan Y,et al.To be,or not to be:NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis.Oncogene.2003,22(56):8961-8982.
    [28]Toledo-Pereyra LH,Lopez-Neblina F,Lentsch AB,et al.Selectin inhibition modulates NF-kappa B and AP-1 signaling after liver ischemia/reperfusion.J Invest Surg.2006,19(5):313-322.
    [29]Yang J,Hu XH,Liu CW,et al.Inhibition of nuclear factor kappa B attenuates multiple organ injury following ruptured abdominal aortic aneurysm:an experiment with rats.Zhonghua Yi Xue Za Zhi.2006,86(4):237-241.
    [30]Xu MQ,Shuai XR,Yan ML,et al.Nuclear factor-κB decoy oligodeoxynucleotides attenuates ischemia/reperfusion injury in rat liver graft.World J Gastroenterol.2005,11(44):6960-6967.
    [31]Matsui N,Kasajma K,Hada M,et al.Inhibiton of NF-kappaB activation during ischemia reduces hepatic ischemia/reperfusion injury in rats.J Toxicol Sci.2005,30(2):103-110.
    [32]Chen J,Wang G.Role of nuclear factor kappaB in intestine injury induced by hepatic ischemia reperfusion.J HuaZhong Univ Sci Technolog Med Sci.2004,24(3):284-285.
    [33]Okaya T,Lentsch AB.Hepatic expression of S32A/S36A IkappaB alpha does not reduce postischemic liver injury.J Surg Res.2005,124(2):244-249.
    [34]Jin S,Dai CL,Han XC.The effect of nuclear factor kappa B activities on the liver of rats after ischemic reperfusion injury.J Clin Hepatol.2006,9(1):19-21
    [35]Yoshidom H,Kato A,Edwards MJ,et al.Interleukin-10 suppresses hepatic ischemia/reperfusion injury in mice:implications of acenteml role for nuclear factor-kB.Hepatology.1999,30(1):203-208.
    [36]Funaki H,Shimizu K,Harada Set al.Essential role for nuclear factor kappa B in ischemia preconditioning for ischemia-reperfusion injury of the mouse liver.Transplantation.2002,74(4):551-556.
    [37]Kato A,Edwards MJ,Lentsch AB.Gene deletion of NF-kappa B p50 does not alter the hepatic inflammatory response to ischemia/ reperfusion.J Hepatol.2002,37(1):48-55.
    [38]Hiasa G,Hamada M,Ikeda S,et al.Ischemic preconditioning an lipopolysaccharide attenuate nuclear factor-kappaB activation and gene expression of inflammatory cytokines in the ischemia-reperfused rat heart.Jpn Circ J.2001,65(11):984-990.
    [39]Rollins BJ.Chemokines.Blood.1997,90(3):909-928.
    [40]Fernandez EJ,Lolis E.Structure,function,and inhibition of chemokines.Annu Rev Pharmacol Toxicol.2002,42(2):469-499.
    [41]Casarosa P,Waldhoer M,LiWang PJ,et al.CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor.J Biol Chem.2005,280(5):3275-3285.
    [42]Bazan JF,Bacon KB,Hardiman G,et al.A new class of membrane-bound chemokine with a C-X3-C motif.Nature.1997,385:640-644.
    [43]Colletti LM,Green ME,Burdick MD,et al.The ratio of ELR+ to ELR~-CXC chemokines affects the lung and liver injury following hepatic ischemia/reperfusion in the rat.Hepatology.2000,31(2):435-445.
    [44]Li X,Klintman D,Liu Q,et al.Critical role of CXC chemokines in endotoxemic liver injury in mice.J Leukoc Biol.2004,76(6):1089-1090.
    [45]Yamaquchi Y,Ohshiro H,Naqao Y,et al.Urinary trypsin inhibitor reduces C-X-C chemokine production in rat liver ischemia/reperfusion.J Surg Res.2000,94(2):107-115.
    [46]Kataoka M,Shimizu H,Mitsuhashi N,et al.Effect of cold-ischemia time on C-X-C chemokine expression and neutrophil accumulation in the graft liver after orthotopic liver transplantation in rats.Transplantation.2002,73(11):1730-1735.
    [47]Caldwell CC,Okaya T,Martiqnoni.Divergent functions of CD4~+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion.Am J Physiol Gastrointest Liver Physiol.2005,289(5):G969-976.
    [48]Mosher B,Dean R,Harkema,et al.Inhibition of Kupffer cells reduced CXC chemokine production and liver injury.J Surg Res.2001,99(2):201-210.
    [49]Toledo-Pereyra LH,Lopez-Neblina F,Reuben JS,et al.Selectin inhibition modulates Akt/MAPK signaling and chemokine expression after liver ischemiareperfusion.J Invest Surg.2004,17(6):303-313.
    [50]Schramm R,Thorlacius H.Staphylococcal enterotoxin B-induced acute inflammation is inhibited by dexamethasone:important role of CXC chemokines KC and macrophage inflammatory protein 2.Infect Immun.2003,71(5):2542-2547.
    [51]Zhang XW,Liu Q,Wang Y,et al.CXC chemokines,MIP-2 and KC,induce P-selectin-dependent neutrophil rolling and extravascular migration in vivo.Br Pharmacol.2001,133(3):413-421.
    [52]Jiang Y,Gu XP,Qiu YD,et al.Ischemic preconditioning decreases C-X-C chemokine expression and neutrophil accumulation early after liver transplantation in rats.World J Gastroenterol.2003,9(9):2025-2029.
    [53]Shimizu H,Kataoka M,Ohtsuka M,et al.Extended cold preservation of the graft liver enhances neutrophil-mediated pulmonary injury after liver transplantation. Hepatogastroenterology.2005,52(64):1172-1175.
    [54]Ma W,Wang ZR,Shi L,et al.Expression of macrophage inflammatory protein-lalpha in Kupffer cells following liver ischemia or reperfusion injury in rots.World J Gastroenterol.2006,12(24):3854-3858.
    [55]Martinez-Mier G,Toledo-Perevra LH,McDuffie JE,et al.Neutrophil depletion and chemokine response after liver ischemia and reperfusion.J Invest Surg.2001,14(2):99-107.
    [56]Tessier PA,Naccache PH,Clark-Lewis I,et al.Chemokine networks in vivo:involvement of C-X-C and C-C chemokines in neutrophil extmvassation in vivo in response to TNF-alpha.J Immunol.1997,159(7):3595-3602.
    [57]Martinez MG,Toledo-Pereyra LH,McDuffie JE,et al.Neutrophil depletion and chemokine response after liver ischmia and reperfusion.J Invest Surg.2001,14(2):99-107.
    [58]Yamaguchi Y,Okabe K,Liang J,et al.A synthetic selectic inhibitor of factor Xa,DX9065a,reduces monocyte chemoattractant protein-1 expression after ischemia reperfusion injury in rat liver.Dig-Dis-Sci.1999,44(12):2568-2576.
    [59]Yamaguchi Y,Matsumura J,Takeya M,et al.Monocytechemoattratant protein-1 enhances expression of intercellular adhesion molecule-1 following ischemia reperfusion of the liver in rats.Hepatology.1998,27(3):724-734.
    [60]Hogaboam CM,Bone-Larson CL,Steinhauser ML,et al.Exaggerated hepatic injury due to acetaminophen challenge in mice lacking C-C chemokine receptor 2.Am J Pathol.2000,156(4):1245-1252.
    [61]Palmen RM,Fen'ige AG,Moncada S.Nitric oxide release acounts for the biological activity of endothelium derived relaxing factor.Nature.1987,327(6122):524-526.
    [62]Muriel P.Regulation of nitric oxide synthesis in the liver.J Appl Toxicol.2000,20(3):189-195.
    [63]Serracino-Inglott F,V'trlos IT,Habib NA,et al.Differential nitric oxide synthase expression during hepatic ischemia-reperfusion.Am J Surg.2003,185(6):589-595.
    [64]Tsuchihashi S,Kaldas F,Chide N,et al.FK330,a novel inducible nitric oxide synthase inhibitor,prevents ischemia and reperfusion injury in rat liver transplantation.Am J Transplant.2006,6(9):2013-2022
    [65]Wang Y,Lawson J,Jaeschke H.Differential effect of 2-aminoethyl- isothioureaan inhibitor of the inducible nitric oxide synthase,on microvascular blood flow and organ injury in models of hepatic ischemia-reperfusion and endotoxemia.Shock.1998,10(1):20-25.
    [66]Koti RS,Tsui J,Lobos E,et al.Nitric oxide synthase distribution and expression with ischemic preconditioning of the rat liver.FASEB J.2005,19(9):1155-1157.
    [67]Wang Y,Mathews WR,Guido DM,et al.Inhibition of nitric oxide synthesis aggravates reperfusion injury after hepatic ischemia and endotoxemia.Shock.1995,4(4):282-288.
    [68]Duranski MR,Elrod JM,Calvert JW,et al.Genetic overexpression of eNOS attenuates hepatic ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol.2006,291(6):H2980-2986.
    [69]Cottart CH,Do L,Blanc MC,et al.Hepatoprotective effect of endogenous nitric oxide during ischemia-reperfusion in the rat.Hepatology.1999,29(3):809-813.
    [70]Elrod JW,Duranski MR,Langston W,et al.eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes:a role for eNOS uncoupling.Circ Res.2006,99(1):78-85.
    [71]陈规划,谢学羿,黄洁夫.一氧化氮供体药减轻大鼠移植肝保存再灌注损伤.中华肝胆外科杂志.2000,6(5):368-370.
    [72]Chen T,Zamora R,Zuckerbraun B,et al.Role of nitric oxide in liver injury.Curr Mol Med.2003,3(6):519-526.
    [73]Uchiyama H,Yanaga K,Kishihara K,et al.Increased urinary nitrate excretion associated with hepatic allograft rejection in experimental rat models and clinical eases.Transpl Int.2000,13(4):260-265.
    [74]Wang LM,Tian XF,Song QY,et al.Expression and role of inducible nitric oxide synthase in ischemia-reperfusion liver in rats.Hepatobiliary Pancreat Dis Int.2003,2(2):252-258.
    [75]Lin HI,Wang D,Leu FJ,et al.Isehemia and reperfusion of liver induces eNOS and iNOS expression:effects of a NO donor and NOS inhibitor.Chin J Physiol.2004,47(3):121-127.
    [76]Yanagida H,Kaibori M,Yamada M,et al.Induction of inducible nitric oxide synthase in hepatoeytes isolated from rats with ischemia-reperfusion injury.Transplant Proc.2004,36(7):1962-1964.
    [77]Isobe M,Katsuramaki T,Hirata K,et al.Beneficial effects of inducible nitric oxide synthase inhibitor on reperfusion injury in the pig liver. Transplantation. 1999,68(6): 803-813.
    [78] Quijano C, Romero N, Radi R. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion. Free Radic Biol Med. 2005,39(6):728-741.
    [79] Clemens MG Nitric oxide in liver injury. Hepatology. 1999, 30(1):1-5.
    [80] Osna NA, Haorah J, Krutik VM, et al. Peroxynitrite alters the catalytic activity of rodent liver proteasome in vitro and in vivo. Hepatology. 2004, 40(3): 574-582.
    [81] Cooper CE, Davies NA, Psychoulis M, et al. Nitric oxide and peroxynitrite cause irreversible increases in the K(m) for oxygen of mitochondrial cytochrome Oxidase: in vitro and in vivo studies. Biochim Biophys Acta. 2003,1607(1):27-34.
    [82] Feldmann G, Haouzi D, Moreau A, et al. Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatic apoptosis in mice. Hepatology. 2000, 31(3):674-683.
    [83] Takemura S, Minamiyama Y, Inoue M, et al. Nitric oxide synthase inhibitor increases hepatic injury with formation of oxidative DNA damage and microcirculatory disturbance in endotoxemic rats. Hepatogastroenterology. 2000, 47(35):1364-1370.
    [84] Jaeschke H, Fisher MA, Lawson JA, et al. Activation of caspase3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol. 1998,160(7): 3480-3486.
    [85] Vondovotz Y, Kim PK, Bagci EZ, et al. Inflammatory modulation of hepatocyte apoptosis by nitric oxide: in vivo, in vitro, and in silico studies. Curr Mol Med. 2004,4(7): 753-762.
    [86] Kim PK, Vallabhaneni R, Zuckerbraun BS, et al. Hypoxia renders hepatocytes susceptible to cell death by nitric oxide. Cell Mol Biol(Noisy-le-grand). 2005, 51(3): 329-335.
    [87] Geller DA, Chia SH, Takahashi Y, et al. Protective role of the L-arginine-nitric oxide synthase pathway on preservation injury after rat liver transplantation. JPEN J Parenter Enteral Nutr. 2001,25 (3): 142-147.
    [88] Vondovotz Y, Kim PK, Bagci EZ, et al. Inflammatory modulation of hepatocyte apoptosis by nitric oxide: in vivo, in vitro, and in silico studies. Curr Mol Med.2004,4(7):753-762.
    [89]Valero R,Arcia-Valdecasas JC,Net M,et al.L-arginine reduces liver and biliary tract damage alter liver transplantation fi'om non-hem-beating donor pigs.Transplantation.2000,70(5):730-737.
    [90]Billiar TR.The delicate balance of nitric oxide and superoxide in liver pathology.Gastroenterology.1995,108(2):603-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700