锂硫电池放电过程及性能改善研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂硫电池具有能量密度高、硫资源丰富等优点,在未来化学电源发展中具有应用优势,但放电性能和循环性能差制约着其进一步发展和应用。本文通过研究正极形貌和锂硫电池阻抗在充放电过程的变化以及飞梭效应对锂硫电池充电过程的影响,探索制约锂硫电池放电性能和循环性能的原因。论文进一步研究了温度、电解液粘度和电导率等液相传质因素对锂硫电池放电过程的影响,并采用正极包覆改性和电解液添加剂的途径来抑制飞梭效应,提高锂硫电池的放电性能和循环性能。
     研究表明,在锂硫电池的充放电过程中,高价态聚硫离子的溶解和低价态的Li_2S_2和Li_2S形成的钝化层会造成离子在电解液中的扩散和迁移阻力增加。高价态聚硫离子的溶解扩散形成锂硫电池的飞梭效应,造成锂硫电池充放电效率低,温度和锂盐浓度是影响飞梭效应的重要因素,温度越高、锂盐浓度越低,飞梭电流越大。
     实验表明,当电解液中锂盐浓度大于1 mol·L~(-1)时,电解液粘度会急剧上升,电解液的扩散系数变小。电解液粘度的上升导致离子在电解液中的离子淌度变小,造成电解液电导率降低。锂硫电池放电过程中单质硫全部转化为S_4~(2-)溶解在电解液中时,电解液的粘度增大为原来的6倍,电解液电导率不足原来的50%。实验表明,液相传质过程限制锂硫电池的放电过程。温度降低引起离子在电解液中的扩散系数降低,扩散流量变小。当温度低于10℃时,锂硫电池的放电性能明显恶化。加入高介电常数溶剂PC可以降低电解液粘度,提高电解液电导率,加入量以vol6%为宜。
     采用PEO包覆改性碳硫活性材料可以有效抑制聚硫离子的溶解和扩散,同时由于PEO的低离子电导率使得离子在硫正极中的迁移阻抗增加,PEO包覆量为4% wt的锂硫电池首次放电比容量达1136 mAh·g~(-1),循环20次后比容量保持为1023mAh·g~(-1)。采用聚苯胺包覆的硫正极,聚苯胺分子连接碳黑粒子和碳黑接触节点形成导电网络,提高了硫正极结构稳定性和导电性,聚苯胺包覆量为5.8%wt的锂硫电池首次放电比容量达1273 mAh·g~(-1),循环20次后比容量保持为1029 mAh·g~(-1)。采用硝酸锂作为锂硫电池电解液的添加剂,通过化学反应的方式在锂负极表面形成具有钝化负极活性表面、保护锂负极的界面膜,抑制飞梭效应,避免在锂负极表面形成不可逆的硫化锂,提高锂硫电池的放电性能和循环性能。采用硝酸锂作添加剂的锂硫电池首次放电比容量为1172 mAh·g~(-1),20次循环后比容量保持为1017 mAh·g~(-1)。采用LiBOB作为锂硫电池电解液的添加剂,在一定电位下诱发形成具有保护性的表面膜,阻止电解液和锂负极的接触,采用摩尔分数为4%LiBOB作添加剂,所形成的表面膜完整致密且离子迁移阻抗较低。采用摩尔分数为4%LiBOB作添加剂的锂硫电池首次放电比容量为1191mAh·g~(-1),20次循环后比容量保持为892mAh·g~(-1)。
The lithium-sulfur battery has many attractive properties, it has a high theoretical energy density and it is made with relatively cheap materials, it has special advantages in terms of batteries building for future. But the application and development of lithium sulfur battery is limited by discharge capability and cycle life. The morphology of cathode, the impedance change of battery during discharge and the effect of shuttle phenomenon on charge process of lithium sulfur were investigated to explore the causes which were responsible for poor discharge capability and cycle life of lithium sulfur battery. The effect of liquid transport factors such as temperature, viscosity and ionic conductivity of electrolyte on the discharge process of lithium sulfur were investigated in this dissertation. Cathode coating and electrolyte additive were adopted to restrain shuttle phenomenon and improve the electrochemical properties of lithium sulfur battery.
     The investigation of charge-discharge process showed that the dissolution of higher-order polysulfides and solid film formed by lower-order lithium sulfide caused the increase of diffusion and convection resistance of ion in electrolyte. Shuttle phenomenon formed by the dissolution of polysulfides caused poor charge-discharge efficiency of lithium sulfur battery. Temperature and concentration of lithium salt were factors which had vital effect on shuttle phenomenon. Shuttle phenomenon increased with higher temperature and concentration of lithium salt.
     The viscosity of electrolyte increased when the concentration of lithium salt in electrolyte was higher than 1M, then the diffusion coefficient of electrolyte was moved down. The increase of viscosity of electrolyte caused reduction of ionic mobilities and ionic conductivity. The viscosity was more than six times noumenon and the ionic conductivity was less than half of noumenon after elemental sulfur transforming into S_4~(2-)during the discharge process of lithium sulfur battery. It was showed that the discharge process of lithium sulfur battery was restrained by liquid transport process. The viscosity of electrolyte depressed after adding PC(propylene carbonate) who had high dielectric constant, then the ionic conductivity of electrolyte increased. The content of PC in the best cell was vol 6%.
     The dissolution and diffusion of polysulfides were prevented after the carbon-sulfur composite was coated by PEO, but low ionic conductivity of PEO resulted in high transfer resistances of cathode. The initial discharge capacity of lithium sulfur coated at 4%wt(PEO) is 1136 mAh·g~(-1), a reversible capacity of 1023 mAh·g~(-1) after 20 cycles. Carbon particle and conductive node were connected by PANI molecule and formed electronic conduction network, electronic conductivity and structural stabilization of cathode were improved. The initial discharge capacity of lithium sulfur coated at 5.8%wt(PANI) is 1273 mAh·g~(-1), a reversible capacity of 1029 mAh·g~(-1) after 20 cycles. LiNO3 adopted as additive of electrolyte reacted with Li electrode to form protective surface film. The film resulted in passivation at the surface of the electrode and prevented the shuttle phenomenon. Cycle life and capacity of lithium sulfur battery were improved because The film prevented form of irreversible Li_2S on Li electrode. The initial discharge capacity of lithium sulfur with LiNO3 is 1172 mAh·g~(-1), a reversible capacity of 1017 mAh·g~(-1) after 20 cycles. LiBOB(lithium bis(oxalato) borate) adopted as additive of electrolyte reacted with Li electrode to form protective surface film at a certain voltage to prevented the parasitic reaction between polysulfide and Li electrode. The film formed at 4 mol% LiBOB showed low transfer resistances and integrity. The initial discharge capacity of lithium sulfur with 4 mol% LiBOB is 1191 mAh·g~(-1), a reversible capacity of 892mAh·g~(-1) after 20 cycles.
引文
[1] Armand, M. and J.-M. Tarascon. Building Better Batteries[J]. Nature. 2008, 451(7): 652 -658.
    [2] Wolfgang Dreyer, Janko Jamnik, Clemens Guhlke, et al. The Thermodynamic Origin of Hysteresis in Insertion Batteries[J]. Nature materials. 2010, 2730(12): 1 -6.
    [3] Timothy J. Boyle, David Ingersoll, Todd M. Alam, et al. Rechargeable Lithium Battery Cathodes. Nonaqueous Synthesis, Characterization, and Electrochemical Properties of Licoo2[J]. Chem. Mater. 1998, 10(8): 2270 -2276.
    [4] Quan-Chao Zhuang, Tao Wei, Li-Li Du, et al. An Electrochemical Impedance Spectroscopic Study of Theelectronic and Ionic Transport Properties of Spinel Limn2o4[J]. J. Phys. Chem. C. 2010, 114(18): 8614 -8621.
    [5] N. Recham, L. Dupont, M. Courty, et al. Ionothermal Synthesis of Tailor-Made Lifepo4 Powders for Li-Ion Battery Applications[J]. Chem. Mater. 2009, 21(6): 1096 -1107.
    [6] Xiulei Ji, Kyu Tae Lee, and Linda F. Nazar. A Highly Ordered Nanostructured Carbon–Sulphur Cathode for Lithium–Sulphur Batteries[J]. Nature Materials. 2009, 2460(17): 500 -506.
    [7]郑伟,胡信国,张翠芬.二次锂电池用硫系正极材料的研究进展[J].电源技术. 2005, 29(9): 619 -622.
    [8]车云霞,申泮文.化学元素周期系[J].天津:南开大学出版社. 1999: 174 -182.
    [9] E. Peled, Y. Sternberg, A. Gorenshtein, and Y. Lavi. Lithium-Sulfur Battery: Evaluation of Dioxolane-Based Electrolytes[J]. Journal of The Electrochemical Society. 1989, 136(6): 1621 -1625.
    [10] Yun Seok Choi, Seok Kim, Soo Seok Choi, et al. Effect of Cathode Component on the Energy Density of Lithium–Sulfur Battery[J]. Electrochimica Acta. 2004, 50(8): 833 -835.
    [11] Nam-in Kim, Chae-Bong Lee, Jae-Man Seo, et al. Correlation between Positive-Electrode Morphology and Sulfur Utilization in Lithium–Sulfur Battery[J]. Journal of Power Sources. 2004, 132: 209 -212.
    [12] B. Zhang, C. Lai, Z. Zhou, et al. Preparation and Electrochemical Properties of Sulfur–Acetylene Black Composites as Cathode Materials[J]. Electrochimica Acta. 2009, 54: 3708 -3713.
    [13] Sang-Eun Cheon, Ji-Hoon Cho, Ki-Seok Ko, et al. Structural Factors of Sulfur Cathodes with Poly(Ethylene Oxide)Binder for Performance of Rechargeable Lithium Sulfur Batteries[J]. Journal of The Electrochemical Society. 2002, 149(11): 1437 -1441.
    [14] Katsuhiko Naoi, Ken-Ichi Kawase, and Yoshinori Inoue. A New Energy Storage Material: Organosultur Compounds Based on Multiple Sulfur-Sulfur Bonds[J]. Journal of The Electrochemical Society. 1997, 144(6): L170 -L172.
    [15] Meilin Liu, Steven J. Visco, and Lutgard C. De Jonghe. Electrode Kinetics of Organodisulfide Cathodes for Storage Batteries[J]. Journal of The Electrochemical Society. 1990, 137(3): 750 -759.
    [16]王维坤,王安邦,曹高萍等.锂电池正极材料多硫化碳炔的制备及电化学性能[J].应用化学. 2005, 22(4): 367 -371.
    [17]苑克国,王安邦,曹高萍等.新型锂电池正极材料多硫代聚苯胺的制备和电化学性能[J].高等学校化学学报. 2005, 26(11): 2117 -2121.
    [18] H. Yamin and E. Peled. Electrochemistry of a Nonaqueous Lithium/Sulfur Cell[J]. Journal of Power Sources. 1983, 9(3): 281 -287.
    [19] Duck-Rye Chang, Suck-Hyun Lee, Sun-Wook Kim, et al. Binary Electrolyte Based on Tetra(Ethylene Glycol) Dimethyl Ether and 1,3-Dioxolane for Lithium–Sulfur Battery[J]. Journal of Power Sources 2002, 112: 452 -460.
    [20] Joongpyo Shim, Kathryn A. Striebel, and Elton J. Cairns. The Lithium/Sulfur Rechargeable Cell Effects of Electrode Composition and Solvent on Cell Performance[J]. Journal of The Electrochemical Society. 2002, 149(10): A1321 -A1325.
    [21] Jae-Won Choi, Gouri Cheruvally, Dul-Sun Kim, et al. Rechargeable Lithium/Sulfur Battery with Liquid Electrolytes Containing Toluene as Additive[J]. Journal of Power Sources. 2008, 183: 441 -445.
    [22]苑克国,王安邦,余仲宝等. 1,3-二氧戊环基liCF3SO3电解液对锂硫电池正极材料单质硫的电化学性能影响[J].高等学校化学学报. 2006, 27(9): 1738 -1741.
    [23]王莉,何向明,蒲薇华等.金属锂二次电池研究进展[J].化学进展. 200, 18(5): 641 -647.
    [24] Yoshiharu Matsuda, Takatorno Takemitsu, Takashi Tanigawa, et al. Effect of Organic Additives in Electrolyte Solutions on Behavior of Lithium Metal Anode[J]. Journal of Power Sources. 2001, 97-98: 589 -591.
    [25] Morigaki, Ken-I Chi. Analysis of the Interface between Lithium and Organic Electrolyte Solution[J]. Journal of Power Sources. 2002, 104: 13 -23.
    [26] Yong Min Lee, Nam-Soon Choi, Jung Hwa Park, et al. Electrochemical Performance of Lithium/Sulfur Batteries with Protected Li Anodes[J]. Journal of Power Sources. 2003, 119-121: 964 -972.
    [27] Nam-Soon Choi, Yong Min Lee, Wanho Seol, et al. Protective Coating of Lithium Metal Electrode for Interfacial Enhancement with Gel Polymer Electrolyte[J]. Solid State Ionics. 2004, 172: 19 -24.
    [28] George H. Lanea, Adam S. Best, Douglas R. Macfarlane, et al. On the Role of Cyclic Unsaturated Additives on the Behaviour of Lithium Metal Electrodes in Ionic Liquid Electrolytes[J]. Electrochimica Acta. 2010, 55: 2210 -2215.
    [29] D. Aurbach, E. Zinigrad, H. Teller, et al. Attempts to Improve the Behavior of Li Electrodes in Rechargeable Lithium Batteries[J]. Journal of The Electrochemical Society. 2002, 149(10): A1267 -A1277.
    [30] Ken Tasaki, Katsuya Kanda, Takao Kobayashi, et al. Theoretical Studies on the Reductive Decompositions of Solvents and Additives for Lithium-Ion Batteries near Lithium Anodes[J]. Journal of The Electrochemical Society. 2006, 153(12): A2192 -A2197.
    [31] Hitoshi Ota, Yuuichi Sakata, Yumiko Otake, et al. Structural and Functional Analysis of Surface Film on Li Anode in Vinylene Carbonate-Containing Electrolyte[J]. Journal of The Electrochemical Society. 2004, 151(11): A1778 -A1788.
    [32] H. Yamin, A. Gorenshtein, J. Penciner, et al. Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in Thf Solutions[J]. Journal of The Electrochemical Society. 1988, 135(5): 1045 -1048.
    [33] V. S. Kolosnitsyn and E. V. Karaseva. Lithium–Sulfur Batteries: Problems and Solutions[J]. Russian Journal of Electrochemistry. 2006, 44(5): 548 -552.
    [34] Gearges Le Guillanton, Driss Elothmani, Quang Tho Do. Anodic Activation of Sulfur in Organic Solvents[J]. Journal of The Electrochemical Society. 1994, 141(2): 316 -323.
    [35] Jeffrey B. Richard, Mario Aparicio-Razo, David K. Roe. The Electrochemistry and Spectroscopy of the Sulfur Rings,S6, S7, and S8[J]. Journal of The Electrochemical Society. 1990, 137(7): 2143 -2147.
    [36] Bum-Soo Kim, Su-Moon Park. In Situ Spectroelectrochemical Studies on the Reduction of Sulfur in Dimethyl Sulfoxide Solutions[J]. Journal of The Electrochemical Society. 1993, 140(1): 115 -122.
    [37] Sang-Eun Cheon, Ki-Seok Ko, Ji-Hoon Cho, et al. Rechargeable Lithium Sulfur Battery I.Structural Change of Sulfur Cathode During Discharge and Charge[J]. Journal of The Electrochemical Society. 2003, 150(6): A796 -A799.
    [38] Mikhaylik, Yuriy V. and James R. Akridge. Low Temperature Performance of Li-S Batteries[J]. Journal of The Electrochemical Society. 2003, 150(3): A306 -A311.
    [39] Mikhaylik, Yuriy V. and James R. Akridge. Polysulfide Shuttle Study in the Li/S Battery System[J]. Journal of The Electrochemical Society. 2004, 151(11): A1969 -A1976.
    [40] Karthikeyan Kumaresan, Yuriy Mikhaylik, and Ralph E. White. A Mathematical Model for a Lithium–Sulfur Cell[J]. Journal of The Electrochemical Society. 2008, 155(8): A576 -A582.
    [41] Ho Suk Ryua, Zaiping Guoa, Hyo Jun Ahn, et al. Investigation of Discharge Reaction Mechanism of Lithium/Liquid Electrolyte/Sulfur Battery[J]. Journal of Power Sources. 2009, 189: 1179 -1183.
    [42] Xiangming He, Weihua Pu, Jianguo Ren, et al. Charge/Discharge Characteristics of Sulfur Composite Cathode Materials in Rechargeable Lithium Batteries[J]. Electrochimica Acta. 2007, 52: 7372 -7376.
    [43] Ryu, H. S., H. J. Ahn, K. W. Kim, et al. Discharge Process of Li/Pvdf/S Cells at Room Temperature[J]. Journal of Power Sources. 2006, 153(2)360-364.
    [44] Lixia Yuan, Xinping Qiu, Liquan Chen, et al. New Insight into the Discharge Process of Sulfur Cathode by Electrochemical Impedance Spectroscopy[J]. Journal of Power Sources. 2009, 189: 127 -132.
    [45] Choi, Y. J., S. S. Jeong, K. W. Kim, et al. Effects on the Carbon Matrix as Conductor in Sulfur Electrode for Lithium/Sulfur Battery[J]. Eco-Materials Processing & Design Vii. 2006, 510-5111082-1085.
    [46] Sang-Eun Cheon, Soo-Seok Choi, Ji-Seong Han, et al. Capacity Fading Mechanisms on Cycling a High-Capacity Secondary Sulfur Cathode[J]. Journal of The Electrochemical Society. 2004, 151(12): A2067 -A2073.
    [47] Xiangming He, Jianguo Ren, Liwang, et al. Expansion and Shrinkage of the Sulfur Composite Electrode in Rechargeable Lithium Batteries[J]. Journal of Power Sources. 2009, 190: 154 -156.
    [48] Ran Elazari, Gregory Salitra, Yossi Talyosef, et al. Morphological and Structural Studies of Composite Sulfur Electrodes Upon Cycling by Hrtem, Afm and Raman Spectroscopy[J]. Journal of The Electrochemical Society. 2010, 157(10): A1131 -A1138.
    [49] Sang-Eun Cheon, Ki-Seok Ko, Ji-Hoon Cho, et al. Rechargeable Lithium Sulfur Battery Ii. Rate Capability and Cycle Characteristics[J]. Journal of The Electrochemical Society. 2003, 150(6): A800 -A805.
    [50] Carmen M. López, John T. Vaughey, and Dennis W. Dees. Morphological Transitions on Lithium Metal Anodes[J]. Journal of The Electrochemical Society. 2009, 156(9): A726 -A729.
    [51] J. C. Dobson, F. R. Mclarnon, and E. J. Cairns. Voltammetry of LithiumPolysulfides at Metal Electrodes[J]. Journal of The Electrochemical Society. 1986, 133(8): 1549 -1554.
    [52] John Christensen and John Newman. Cyclable Lithium and Capacity Loss in Li-Ion Cells[J]. Journal of The Electrochemical Society. 2005, 152(4): A818 -A829.
    [53] Chengdu Liang, Nancy J. Dudney, and Jane Y. Howe. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery[J]. Chemistry of Materials. 2009, 21(19): 4724 -4730.
    [54] Young-Jin Choi, Young-Dong Chung, Chang-Yong Baek, et al. Effects of Carbon Coating on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Cell[J]. Journal of Power Sources. 2008, 184: 548 -552.
    [55] Lixia Yuan, Huiping Yuan, Xinping Qiu, et al. Improvement of Cycle Property of Sulfur-Coated Multi-Walled Carbon Nanotubes Composite Cathode for Lithium/Sulfur Batteries[J]. Journal of Power Sources. 2009, 189: 1141 -1146.
    [56] Yaqin Huang, Jing Sun, Weikun Wang, et al. Discharge Process of the Sulfur Cathode with a Gelatin Binder[J]. Journal of The Electrochemical Society. 2008, 155(10): A764 -A767.
    [57] Mingming Sun, Shichao Zhang, Tao Jiang, et al. Nano-Wire Networks of Sulfur-Polypyrrole Composite Cathode Materials for Rechargeable Lithium Batteries[J]. Electrochemistry Communications. 2008, 10: 1819 -1822.
    [58] Sang-Cheol Han, Min-Sang Song, Ho Lee, et al. Effect of Multiwalled Carbon Nanotubes on Electrochemical Properties of Lithium/Sulfur Rechargeable Batteries[J]. Journal of The Electrochemical Society. 2003, 150(7): A889 -A893.
    [59] Min-Sang Song, Sang-Cheol Han, Hyun-Seok Kim, et al. Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries[J]. Journal of The Electrochemical Society. 2004, 151(6): A791 -A795.
    [60] Jae-Won Choi, Jin-Kyu Kim, Gouri Cheruvally, et al. Rechargeable Lithium/Sulfur Battery with Suitable Mixed Liquid Electrolytes[J]. Electrochimica Acta. 2007, 52: 2075 -2082.
    [61] Doron Aurbach, Elad Pollak, Ran Elazari, et al. On the Surface Chemical Aspects of Very High Energy Density,Rechargeable Li-Sulfur Batteries[J]. Journal of The Electrochemical Society. 2009, 156(8): A694 -A702.
    [62] Yongju Jung and Seok Kim. New Approaches to Improve Cycle Life Characteristics of Lithium–Sulfur Cells[J]. Electrochemistry Communications. 2007, 9: 249 -254.
    [63] L.X. Yuan, J.K. Feng, X.P. Ai, et al. Improved Dischargeability and Reversibility of Sulfur Cathode in a Novel Ionic Liquid Electrolyte[J]. Electrochemistry Communications. 2006, 8: 610 -614.
    [64] Akitoshi Hayashi, Takamasa Ohtomo, Fuminori Mizuno, et al. All-Solid-State Li/S Batteries with Highly Conductive Glass–Ceramic Electrolytes[J]. Electrochemistry Communications. 2003, 5: 701 -705.
    [65] Akitoshi Hayashi, Takamasa Ohtomo, Fuminori Mizuno, et al. Rechargeable Lithium Batteries, Using Sulfur-Based Cathode Materials and Li2s–P2s5 Glass-Ceramic Electrolytes[J]. Electrochimica Acta. 2004, 50: 893 -897.
    [66] Dean., John A. Handbook of Chemistry[J]. New York: The Kingsport Press. 1979: 10(2) -10(112).
    [67]王连亮,张琨,张丽娟等. LiFePO4的电化学性能和锂离子扩散研究[J].盐湖研究. 2009, 17(1): 52 -57.
    [68] Bard a J and Faulknor R.电化学方法:原理和应用[M].北京:化学工业出版社. 2005, 256-289.
    [69] Xu, Kang. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J]. Chemical Reviews. 2004, 104: 4303 -4417.
    [70] Seok Kim, Yongju Jung , and Soo-Jin Park. Effects of Imidazolium Salts on Discharge Performance of Rechargeable Lithium–Sulfur Cells Containing Organic Solvent Electrolytes[J]. Journal of Power Sources. 2005, 152: 272 -277.
    [71] Mikhaylik. Electrolytes for Lithium Sulfur Cells[P]. US. 7354680. 2008
    [72] Gering, Kevin L. Prediction of Electrolyte Viscosity for Aqueous and Non-Aqueous Systems: Results from a Molecular Model Based on Ion Solvation and a Chemical Physics Framework[J]. Electrochimica Acta. 2006, 51: 3125 -3138.
    [73] A. Chagnes, B. Carre′, P. Willmann, et al. Ion Transport Theory of Nonaqueous Electrolytes: Liclo4 inΓ-Butyrolactonethe: Quasi Lattice Approach[J]. Electrochimica Acta. 2001, 46: 1783 -1791.
    [74] A. Chagnes, B. Carre, and P. Willmann. Modeling Viscosity and Conductivity of Lithium Salts inΓ-Butyrolactone[J]. Journal of the Power Sources. 2002, 109: 203 -213.
    [75] J.F. Kincaid, H. Ering, and A. E. Steam. The Theory of Absolute Reaction Rates and Its Application to Viscosity and Diffusion in the Liquid State[J]. Chemical Reviews. 1941, 28: 301 -305.
    [76] Michael S. Ding and T. Richard Jow. How Conductivities and Viscosities of Pc-Dec and Pc-Ec Solutions of LiBF4 , LiPF6 , LiBOB, Et4NBF4 , and Et4NPF6 Differ and Why[J]. Journal of The Electrochemical Society. 2004, 151(12): A2007 -A2015.
    [77] Ding, Michael S. Conductivity and Viscosity of Pc-Dec and Pc-Ec Solutions of Libf4[J]. Journal of the Electrochemical Society. 2004, 150(1): A40 -A47.
    [78] Dany Brouillette, Gerald Perron, and Jacques E. Desnoyers. Apparent Molar Volume, Heat Capacity, and Conductance of Lithium Bis(Trifluoromethylsulfone)Imide in Glymes and Other Aprotic Solvents[J]. Journal of Solution Chem. 1998, 27(2): 151 -154.
    [79]郑红河.锂离子电池电解质[M].北京:化学工业出版社. 2007, 23-25.
    [80] Chunsheng Wang, Xiang-Wu Zhang, and A. John Appleby. Solvent-Free Composite Peo-Ceramic Fiber/Mat Electrolytes for Lithium Secondary Cells[J]. Journal of The Electrochemical Society. 2004, 152(1): A205 -A209.
    [81] P.V. Wright. Polymer Electrolytes the Early Days[J]. Electrochimica Acta. 1998, 43 (10-11): 1137 -1143.
    [82]唐致远,王占良. PEO基聚合物电解质[J].高分子材料科学与工程. 2003, 19(2): 48 -56.
    [83] Berthier C, Gorecki W, and Minier M. Microscopic Investigation O Fionic Conductivity in Alkalimetal Salts-Poly(Ethleneoxide) Adducts[J]. Solid State Ionics. 1983, 11(1): 91 -95.
    [84] Ratner M A and Shriver D F. Ion Transport in Solvent-Free Polymers[J]. Chemical Reviews. 1988, 88(1): 109 -124.
    [85] Papke B L, Ratner M A, and Shriver D F. Conformation and Iontransport Models for the Structure and Ionic Conductivity in Complexesofpolyethers with Alkali Metalsalts[J]. Journal of The Electrochemical Society. 1982, 129(8): 1694 -1701.
    [86] Je′Ro?Me Fraysse, Je′Ro?Me Plane` S, Alain Dufresne, et al. Thermomechanical Studies of Poly(Aniline)/Poly(Methyl Methacrylate) Blends: Relationship with Conducting Properties[J]. Macromolecules. 2001, 34: 8143 -8148.
    [87] Chien-Chung Han, Chia-Hui Lu, Shih-Ping Hong, et al. Highly Conductive andThermally Stable Self-Doping Propylthiosulfonated Polyanilines[J]. Macromolecules. 2003, 36: 7908 -7915.
    [88] Mohammad Reza Nabid, Zahra Zamiraei, Roya Sedghi, et al. Cationic Metalloporphyrins for Synthesis of Conducting, Water-Soluble Polyaniline[J]. Reactive & Functional Polymers. 2009, 69: 319 -324.
    [89]陈卉,马会茹,官建国.水溶性导电聚苯胺的制备[J].化学进展. 2007, 19(11): 1770 -1775.
    [90] Ota, H., T. Akai, H. Namita, et al. Xafs and Tof-Sims Analysis of Sei Layers on Electrodes[J]. Journal of Power Sources. 2003, 119: 567 -571.
    [91] Akai, T., H. Ota, H. Namita, et al. Xanes Study on Solid Electrolyte Interface of Li Ion Battery[J]. Physica Scripta. 2005, T115408-411.
    [92] M. Lu, H. Cheng, Y. Yang. A Comparison of Solid Electrolyte Interphase (Sei) on the Artificial Graphite Anode of the Aged and Cycled Commercial Lithium Ion Cells[J]. Electrochimica Acta. 2008, 53: 3539 -3546.
    [93] Morigaki, Ken-Ichi. Analysis of the Interface between Lithium and Organic Electrolyte Solution[J]. Journal of Power Sources. 2002, 104: 13 -23.
    [94] Eishi Endo, Masafumi Ata, Koichi Tanaka, et al. Electron Spin Resonance Study of the Electrochemical Reduction of Electrolyte Solutions for Lithium Secondary Batteries[J]. Journal of the Electrochemical Society. 1998, 145(11): 3757 -3764.
    [95] Aurbach D, Gamolsky K, and Markovsky B. On the Use of Vinylence Carbonate(Vc) as an Additive to Electrolyte[J]. Electrochimica Acta. 2002, 47: 1423 -1427.
    [96] Kang Xu, Unchul Lee, Sheng S. Zhang, et al. Graphite/Electrolyte Interface Formed in Libob-Based Electrolytes Ii. Potential Dependence of Surface Chemistry on Graphitic Anodes[J]. Journal of The Electrochemical Society. 2004, 151(12): A2106 -A2112.
    [97] Corina T?ubert, Meike Fleischhammer, Margret Wohlfahrt-Mehrens, et al. Libob as Electrolyte Salt or Additive for Lithium-Ion Batteries Based on LiNi0.8CO0.15Al0.05o2/ Graphite[J]. Journal of The Electrochemical Society. 2010, 157(6): A721 -A728.
    [98] Kang Xu, Sheng S., Zhang, et al. LiBOB: Is It an Alternative Salt for Lithium Ion Chemistry[J]. Journal of Power Sources. 2005, 146: 79 -85.
    [99] Fadhel Azeez and Peter S. Fedkiw. Conductivity of LiBOB-Based Electrolyte for Lithium-Ion Batteries[J]. Journal of Power Sources. 2010, 195: 7627 -7633.
    [100] Kang Xu, Shengshui Zhang, and Richard Jow. Electrochemical Impedance Study of Graphite/Electrolyte Interface Formed in Libob/Pc Electrolyte[J]. Journal of Power Sources. 2005, 143: 197 -202.
    [101] Zonghai Chen, W.Q. Lu, J. Liu, K. Amine. LiPF6/LiBOB Blend Salt Electrolyte for High-Power Lithium-Ion Batteries[J]. Electrochimica Acta. 2006, 51: 3322 -3326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700