水热法制备LiFePO_4粉体及碳包覆改性与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型LiFeP0_4是一种新型的锂离子电池正极材料,具有价格低廉、循环性能好、充放电平台高、绿色环保、使用安全等优点,在未来的电池行业中具有充分的竞争优势。由于LiFeP0_4低的本征电子电导率和锂离子迁移率,导致其在高倍率大电流放电时性能较差,制约了其在动力电池方面的应用。本文采用水热法合成LiFeP0_4前驱粉体,研究了水热反应的机理并确定水热合成的工艺,制备具有短锂离子扩散通道的细微粉体。为解决电子电导率低的问题,通过水热前和水热后两种碳包覆工艺进行包覆碳操作,同时在后续的热处理工作中对不同的热处理工艺和不同的碳源选择进行了研究,以探索包覆碳时期、热处理工艺、碳源类型对与LiFeP0_4材料的影响。
     结果表明,水热反应中采用Fes04:H3P04:Li0H=1:1:3为原料,柠檬酸做络台剂,抗坏血酸作为还原剂组成反应体系。前期配液中溶液中形成LiFeP0_4晶核和大量的无定形态Fe 3(P04)2和Li3P04沉淀。水热反应体系中,1.4h内溶液中的Fe~(2+)、Li~+、P0_4~(3-)逐渐进入LiFeP0_4晶格中形成形貌规整、物相纯净的菱形颗粒粉体,继续反应颗粒晶体出现异常生长,颗粒均一性遭到一定影响。并最终确定以Fe~(2+)计前驱液浓度为O.3mol/I,水热条件为180℃、8h的条件下制备的LiFeP0_4样品性能较好,粉体晶相纯净、形貌均一、粒径细小、晶界清晰,振实密度达到1.05g/ml。
     进行了水热前和水热后碳包覆工艺对比。将葡萄糖分别在水热反应前和水热反应后加入反应体系,水热前渗包覆工艺制备的样品颗粒细小均一,平均粒径为O.3gm,振实密度较高,进行热处理后电化学性能测试显示水热前碳包覆制备的样品O 1c倍率下首次充放电比容量分别为127.1mAh/g、102.6 mAh/g,10次循环后放电容量为93.14%,显示了较高的工艺优势。
     比较了微波热处理和氮气热处理两种热处理工艺以及不同碳源类型在热处理工艺中的影响。微波热处理工艺效率高,在较短的时间内即能碳解有机物形成包覆,微波处理后晶粒没有出现增长现象,一定程度上控制了晶粒的大小,但不足之处为有机物的碳解程度稍低,且循环性能稍微下降。氮气热处理的有机物碳解完全,但热处理后晶粒有增长现象,且工艺周期长、效率低。在两种不同的热处理工艺中,葡萄糖作为碳源所制备的LiFeP0_4/c性能比以尿素为碳源所制备的样品高,用葡萄糖作为碳源经过氮气热处理所制备样品在O.1c倍率下的首次充放电比容量分别为122.7 mAh/g、104.5 mAh/g,充放电效率为85.2%,10次循环后容量基本无衰减。
Olivine-structured LiFePO_4, as a promising cathode material for lithium-ion battery, is considered as the most competitive material for rechargeable lithium-ion battery in the future due to its merits such as low cost, good electrochemical performance and security, etc. However, the low conductivity of LiFePO_4 and poor lithium diffusion limit the high rate capacity in lithium cells. Hydrothermal methods were used to prepare LiFePO_4 and the mechanism of the reaction were explored. The research on when the carbon precursor should be added was carried out. The effects of heat treatment, selection of different carbon resources were disscussed in the heating process.
     LiFePO_4 was synthesized by hydrothermal method using FeSO_4, H_3PO_4, LiOH as raw materials. Citric acid, as the complexing agent, and ascorbic acid as the reducing agent supply a stable environment to Fe in the process of reaction. Little LiFePO_4 crystal nucleus and lots of amorphous Fe_3(PO_4)_2 and Li_3PO_4 were produced when prepared the mixed fluid. Fe~(2+) Li~+ PO_4~(3-) enter in the crystal lattice to synthesized regular LiFePO_4 crystal in the earlier 4 hours. Some lattice variance were bring in in the next synthetic time. The optimal systhesis process was using water as solvent, FeSO_4 : H_3PO_4 : LiOH=1: 1:3(mol) as raw materials, to hydrothermal react at 180°C for 6h. The concentration of the liquid compound was 0.3mol/l. The sample was prism-like particles, and average size was 0.6μm, tap density was 0.97g/ml.
     Glucose as carbon sources was added into the compound before hydrothermal. The particle size was smaller to be 0.3μm, and the crystal structure was more regular. The sample displayed better electrochemical performance after heat treatment. The specific charge-discharge capacity respectively were 127. 1mAh/g, 102.6 mAh/g at the first cycle at 0.1C. After 10 cycles, the sample keep 93.14% of the capacity.
     Microwave method and atmosphere method were designed in the heat treatment process. The efficiency of microwave heat treatment is high which can decompose organic carbon such as glucose in few minutes so as not to increase the particle size. The shortage of microwave method was it can't decompose the carbon completely. The atmosphere heat treatment method which was capable of decomposing the organic carbon completely, however, will increase the particle size, and this method has a low efficiency. Samples with glucose as carbon source, heated by these two methods, have a better performance than that with urea as carbon source. LiFePO_4-C samples synthesized through hydrothermal method with glucose as carbon sources were tested followed by microwave heat treatment, and the samples displayed charge-discharge specific capacity of 122.7mAh/g and 104.5mAh/g and had no reduction basiclly.
引文
[1]李景虹,先进电池材料,北京:化学工业出版社,2004,1-28
    [2]吴宇平,戴晓兵,马军旗等,锂离子电池-应用与实践,北京:化学工业出版社,2004,4-5
    [3]苏金然,秦兴才,贾宏涛等,锂离子电池的发展动态,中国电子商情,2006,10:40-43
    [4] Owens B B, Osaka T. Panel discussion future prospects of lithium bateries. Journal of Power Sources, 1997, 68(1): 173-186
    [5]杭州盈开投资管理有限公司,锂电资讯,2009,17:5-8
    [6] 2008-2009年锂离子电池及其原材料市场研究报告,中国报告大厅市场研究报告网,http://www.chinabgao.com/reports/57418.html,2009.4,No:yb09-57418
    [7] M.Wakihara.Recent developments in lithium ion batteries. Mater Sci Eng, 2001, 33:109-134
    [8] B Ellis, Wang Hay Kan, W R M Makahnouk, et al. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J. Mater. Chem., 2007, 17, 3248-3254
    [9]程新群,化学电源,北京:化学工业出版社,2008,157-161
    [10] J.Akimoto,Y. Gotoh,Y. Oosawa.Synthesis and structure refinement of LiCoO2 single crystals,J.Solid State Chemistry, 1998,141(1):298-302.
    [11]吴宇平,方世壁,刘昌炎等,锂离子电池正极材料氧化钴锂的进展,电源技术,1997,2l(5):208-209
    [12] J.K.Hong, J.H.Lee, M.seung . Effect of carboll additive on electrochemical performance of LiCoO2 composite cathodes. J.power Sources,2002,111(1):90-96
    [13]解晶莹,尹鸽平,史鹏飞,锂镍氧化物的合成和电化学行为研究,电源技术,1997,21(5):185-189
    [14] T.Ohzuku, A.Vede, M.Nagayama. Electrochemistry and structural chemistry of LiNiO2(R-3m) for 4 Volt secondary lithium cells,J.Electrochem.Soc.,1996,140(7):1862-1869
    [15] A.R.Armstrong, A.D.Robertson, G.Robert,et al.The layered intercalation compounds Li(Mn1-yCoy)O2:postive electrode materials for lithium-ion batterys. J.solid state chemistry, 1999,145(2):549-556
    [16] SAADOUNEI DELMASC.On the LixNi0.8Co0.2O2 system. J Solid State Chemistry, 1998,136(1):8-15
    [17] Nanjundaswamy K S, Padhi A K, Goodenough J B, et al. Synthesis, redox potential evaluation and electrochemical characteristics of Nasicon-related-3D framework compounds. Solid State Ion, 1996,929(1-2):1-10
    [18] G T K Fey, R F Shiu. LiNi0.8Co0.2O2 cathode materials systhesized by the maleic acid assisted sol-gel methode for lithium batteries. Journal of Power Sources, 2002, 103:265-72
    [19] Kim J M, Chung H T, Role of transition metals in layered Li[Ni,Co,Mn]O2 under electrochemical operation, Electrochimca Acta, 2004, 49:3573
    [20] Oh S W, Park H S, Park C W, Sun Y K, Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1-xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionies, 2004, 171:167
    [21] Lu Z, Macnell D D, Dahn J R, layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries, Electrochem. Solid-State Lett. , 2001, 4(12): A200
    [22] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phosph-olivnes as Positive-Electrode Materials for Rechargeable Lithium batteries. J Electrochem Soc, 1997, 144(4): 1188-1194
    [23] M.Nishijima.Anode performance of new layered nitrades. J.Electrochem Soc, 1996, 83: 107-117
    [24]王先友,锂离子电池碳负极研究新动向,电源技术,1999,23(4):233-237
    [25] A. Mabuchi. Charge-discharge characteristics of the mesocarbon microbeads heat treated at different temperatures. J. Electrochem Soc. , 1995, 142(4): 1041-1046
    [26]吴宇平,锂离子蓄电池锡基负极材料的研究,电源技术,1999,23(3):191-193
    [27]陈召勇,胡国荣,肖劲等,第12届国际锂电池会议评述,电池,2004,34(4):255-258
    [28]李祥元,LiFePO4动力电池的工程化制造技术研究:[硕士学位论文],中南大学,2008
    [29] H.Shi, J Barker, M. Y Saidi, R. Kosbang. Structure and lithium intercalation properties of synthetic and nature graphite. J. Electrochem. Soc. , 1996, 143(11): 3466-3472
    [30] K.Tatsumi, A. Mabuchi. The influence of the graphite structure on the electrochemical characteristics for the anode of secondary lithium batteries. J. Electrochem. Soc. , 1995, 142(3): 716-720
    [31] J. L.Tirado. Inorgnic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater. Sci. Eng. R, 2003, 40: 103-136
    [32] H. Mukaibo, A. Yoshizawa, T. Momma, T. Osaka. Particle size and performance of SnS2 anodes for rechargeable lithium batteries. J. Power Sources, 2003, 119-121: 60-63
    [33] Liwei Zhao, Izumi Watanabe, Takayuki Doi, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries. Journal of Power Sources, 2006, 161(2):1275-1280
    [34]伊廷锋,胡信国,高昆,锂离子电池隔膜的研究和发展现状,电池,2005,35(6):468-469
    [35] Arora P, Zhang Z. Battery separators. Chem Rev, 2004, 104(10): 4419-4462
    [36] Zhang S S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006, 162 (2): 1379-1394
    [37] H. Okamoto, S. Hikazudani, C. Inazumi. Upper voltage and temperature dependencies for an all-solid-state In/LiCoO2 cell using sulfide glass electrolyte. Electrochem. Solid-State Lett. , 2008, 11(6): A97-A100
    [38] T. Ohzuku, A. Veda, M. Nagayama. Electrochemistry and structural chemistry of LiNiO2(R3m) for 4V secondary lithium cells. J Electrochem Soc, 1996, 140(7): 1862-1869
    [39] H. Huang, C. Wang, L. Zhang. Influences of sintering process of sprayed precursors on the structure and electrochemical properties of LiMn2O4 cathode material. J Material Science & Technology, 2008, 21(2): 211-214
    [40] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4. J Power Sources, 2001, 97-98: 498-502
    [41] Prosini P P, LisiM, Zane D. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics, 2002, 148 (1-2): 45-51
    [42] Ravet N. Improved iron based cathode material. Abstract, Electrochemical Society Fall Meeting. Honolulu, Hawaii: l999, 127
    [43] Padhi A K, Najundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of Electrochemical Soc, 1997, 144( 4): 1188-1194
    [44] Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4. J Power Sources, 2001, 97-98: 498-502
    [45] Shim J O, Striebel K A. Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. Journal of Power Sources, 2003, 119-121: 955-958
    [46]魏琦峰,李宁,任秀莲等,正极材料LiFePO4的研究现状,电池,2006,36 (3):240-242
    [47]杭州盈开投资管理有限公司,锂电资讯,2009,17:9-10
    [48]周鑫,赵新兵,余红明等,F掺杂LiFePO4/C的固相合成及电化学性能,无机材料学报,2008,23(3):587-591
    [49] Y. Z. Dong, Y. M. Zhao, H. Duan, et al. Electrochemical properties of single-phase LiFePO4 synthesized using LiF as Li precursor and hydrogen and carbon gel as reducing agents. J Solid State Electrochem, 2010, 14: 131-137
    [50] Linghui Yu, Qiaosheng Liu, Haihui Wang. Synthesis of LiFePO4/C cathode materials using a green and low-cost method. Ionics, 2009, 15: 689-692
    [51] Jae-Kwang Kim, Gouri Cheruvally, Jou-Hyeon Ahn, et al. Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process. Journal of Physics and Chemistry of Solids, 2008, 69, 2371-2377
    [52] Xiang-Feng Guo, Hui Zhan,Yun-Hong Zhou. Rapid synthesis of LiFePO4/C composite by microwave method. Solid State Ionics, 2009, 180(4-5): 386-391
    [53] Min-Sang Song, Dong-Yung Kim, Yong-Mook Kang, et al. Amphoteric effects of Fe2P on electrochemical performance of lithium iron phosphate–carbon composite synthesized by ball-milling and microwave heating. Journal of Power Sources, 2008, 180: 546–552
    [54] Hiroyuki Nakano, Kaoru Dokko, Shohei Koizumi, et al. Hydrothermal Synthesis of Carbon-Coated LiFePO4 and Its Application to Lithium Polymer Battery. Journal of The Electrochemical Society, 2008, 155(12): A909-A914
    [55] Akira Kuwahara, Shinya Suzukil, Masaru Miyayama. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceramics International, 2008, 34(4): 863-866
    [56] Dinesh Rangappaa, Masaki Ichiharab, Tetsuichi Kudoa, Itaru Honmaa. Surface modi?ed LiFePO4/C nanocrystals synthesis by organic molecules assisted supercritical water process. Journal of Power Sources, 2009, 194: 1036-1042
    [57] Yonggang Wang, Yarong Wang, Eiji Hosono, et al. The Design of a LiFePO4/Carbon Nanocomposite With a Core-Shell Structure and Its Synthesis by an In Situ Polymerization Restriction. Angew. Chem. Int. Ed. 2008, 47, 1-6
    [58] Guangchuan Liang, LiWang, Xiuqin Ou, Xia Zhao, Shengzhao Xu. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. Journal of Power Sources, 2008, 184(2):
    [59] Cara M. Doherty, Rachel A. Caruso, Bernd M. Smarsly, et al. Hierarchically Porous 538-542Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries. Chemistry of Materials, 2009, 21: 5300-5306
    [60] Hao-Hsun Chang, Chun-Chih Chang, Ching-Yi Su et al. Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. Journal of Power Sources, 2008, 185(1): 466-472
    [61] SUNG-YOON CHUNG, JASON T. BLOKING, YET-MING CHIANG. Electronically conductive phospho-olivines as lithium storage electrodes. Nature materials, 2002, 1: 123-128
    [62]马娇媚,LiFePO4-C复合粉体的水热法合成及其性能研究:[硕士学位论文],天津;天津大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700