霉酚酸酯对糖尿病大鼠肾小管—间质损伤的保护作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的糖尿病肾病(diabetic nephropathy,DN)在我国已成为终末期肾病(end-stage renal disease,ESRD)的重要病因,既往的研究大多都集中于DN肾小球尤其系膜细胞的研究,然而正如其他一些肾小球疾病一样,相对于糖尿病肾小球病变而言其肾小管—间质病变对DN的远期预后具有更重要的意义。肾小管间质损伤早期表现为肾小管上皮细胞肥大,基底膜增厚和细胞外基质(extracellularmatrixc,ECM)增多,如未得到有效控制既将逐渐进展至肾小管萎缩和间质纤维化,最终呈现不可逆性进展进入慢性肾衰竭。晚近研究表明炎症在糖尿病肾小管—间质损伤的发生发展中发挥了重要的作用,多种细胞因子、炎症细胞参与了DN肾小管—间质损伤的进展。这些关于炎症机制的研究为一些抗炎免疫药物用于阻断糖尿病肾小管—间质损伤的进展提供了理论依据。霉酚酸酯(mycophenolatemofetil,MMF)作为免疫抑制剂以往多被用于移植术后的抗排斥反应,现临床已被用于多种肾小球肾炎。而在一些非免疫因素致病的肾病中的应用也有新的发现。本文探讨MMF对DN肾小管—间质损伤的保护作用及其可能机制。方法应用链脲佐菌素(streptozotocin,STZ)诱导大鼠糖尿病模型,糖尿病模型的成立由大鼠尾动脉抽血检测血糖(blood glucose,BG)由全自动生化分析仪检测,随机分三组:对照组、模型组与MMF给药组。MMF采取10 mg.kg~(-1).d~(-1)灌胃给药,8wk后观察尿白蛋白排泄率(albumin excrete rate,AER),肾小管-间质病理形态学变化,过碘酸希夫染色(periodic acid-schiff,PAS)染色对肾组织作病理形态学观察所测肾小管-间质面积按以下标准评分:0:正常;1:间质炎症与纤维化、肾小管萎缩与扩张伴管型形成<25%所测区域;2:损伤面积在25~50%所测区域;3:损伤面积>50%所测区域。肾小管-间质损伤指数(Indices for tubulointerstitial injury,TⅡ)为以上各积分中位数。应用免疫组化方法检测肾小管—间质骨桥蛋白(osteopontin,OPN)与α-平滑肌肌动蛋白(alpha-smooth muscle actin,α-SMA)蛋白表达,Western印迹检测肾组织转化生长因子β1(transforming growth factor-β,TGFβ1)蛋白表达。结果1、各组大鼠一般指标变化模型组大鼠表现为血糖升高、体重下降、相对肾重(肾重/体重)增加,MMF给药8 wk没有防止模型组大鼠血糖升高与体重下降。模型组大鼠相对肾重与AER明显高于对照组(p<0.01),MMF给药大鼠相对肾重与AER明显低于模型组(p<0.05)2、各组大鼠肾小管-间质病理形态学变化模型组大鼠表现为肾小管萎缩、间质纤维化、炎症细胞浸润,统计学分析显示TⅡ明显高于对照组(0.84±0.25比0.38±0.14,p<0.01),提示本模型大鼠已出现肾小管-间质损害;MMF给药组肾小管-间质损伤明显减轻,TⅡ明显低于模型组(0.64±0.22比0.84±0.25,p<0.05)。3、各组大鼠肾小管-间质OPN与α-SMA免疫组化指标变化对照组肾小管-间质OPN几乎无表达,α-SMA仅表达于小管-间质血管平滑肌细胞以及极少量的表达于对照组肾小管上皮细胞和间质中。模型组肾小管-间质OPN与α-SMA与对照组相比表达明显增多(p<0.01),OPN主要表达于肾小管上皮细胞,α-SMA主要表达于肾小管上皮细胞以及小管间质中,肾小球周亦有α-SMA表达增多。MMF给药组与模型组相比,OPN与α-SMA表达明显减少(p<0.01)。4、各组大鼠肾组织TGFβ1表达变化Western印迹条带光密度分析显示模型组肾组织TGFβ1蛋白表达较对照组增加1.92倍p<0.01),MMF给药8wk可使肾组织TGFβ1蛋白表达下降约45%(p<0.05)。结论MMF对糖尿病肾小管-间质损伤有明显保护作用,其机制可能部分与抑制肾小管-间质OPN与α-SMA表达有关。
Background and objective:Diabetic nephropathy(DN) is one of the most leading cause of end-stage renal disease in developing countries.Current researches in DN have focused on the pathological changes within glomerulus,and in particular the mesangium.Indeed,as with other primary glomerular diseases,the extent of tubulointerstitial injury in the diabetic kidney correlates closely with long-term renal function and is an important predictor of renal impairment.In DN,the early injury of renal tubulointerstitium is characterized by the hypertrophy of renal tubular epithelial cell,the thickening of basement membrane and the proliferation of extracellular matrix (ECM).If without effective control,it will gradually progress to renal tubule atrophy and interstitium fibrosis.Diabetic nephropathy is generally considered a nonimmune disease,But recent studies have indicated that inflammation,and more specifically pro-inflammatory cytokines,play a determinant role in the progress of DN and also in the tubulointerstitium injury.Various inflammatory cells and cytokines participated in the progression of tubulointerstitium injury.These studies in the relationship between inflammation and the tubulointerdtitial injury shows that immunodepressive drug could attenuate the progression of tubulointerstitial injury in diabetic rats.Mycophenolate mofetil a immunodepressive drug used to prevent allograft rejection,now was used in many glomerulonephritis.And there were some new detection about the drug used in some kidney disease which was not coused by immunologic etiological factors.This research will investigate protective effect of mycophenolate mofetil(MMF) on renal tubulointerstitium and its mechanism in diabetic rats.Method:Diabetes was induced by injection of streptozotocin.The diabetic state was confirmed by measurement of tail blood glucose(BG) levels using automatic biochemical analyzer.Rats were randomly separated into three groups:control(C group),diabetes(DM group) and diabetes treated with MMF(10 mg/kg/d by gastric gavage,DM+MMF group).Albumin excretion rate (AER) was determined at 8W.Tubulointerstitial morphological analysis were performed in PAS stained section.Tubulointerstitial area in the cortex was evaluated and graded as: 0,normal;1,the area of interstitial inflammation and fibosis,tubular atrophy and dilation with cast formation involving<25%of the field;2,lesion area between 25% and 50%of the field;and 3,lesions involving>50%of the field.The indices for tubulointerstital injury(TII) were calculated by averaging the grades assigned to all tubule fields.Expression of osteopontin(OPN) andα-smooth muscle actin(α-SMA) in renal tubulointerstitium were determined by immunohistochemistry method,and expression of TGFβ1 was measured by Western blot analysis.Results:1.General parameters:Rats in DM group had reduced body weight gain and increased blood glucose level.No effects on body weight and blood glucose were observed with group which treated by MMF.Kidney enlargement was observed in DM group,which was significantly reduced by treatment with MMF.In DM group,AER was significantly increased when compared to C group,treatment with MMF attenuated the increase in AER in the diabetic rats,but this level was still higher than that observed in control rats. 2.Renal histology.Comparing with control group,the DM group was characted with tubular atrophy,interstitial fibrosis,and inflammatory cell infiltration,the TII of DM group was obviously hither than the control group(0.84±0.25 vs 0.38±0.14,p<0.01),it was lessened in group treated with MMF,contrasted with DM group the TII was more lower in group which treated with MMF(0.64±0.22 vs 0.84±0.25,p<0.05)。3.Renal OPN andα-SMA expression:OPN protein immunostaining was almost not observed in tubulointerstitium in C group,andα-SMA was found only expressed in vascular smooth muscle cells.Immunostaining for OPN andα-SMA was increased significantly in DM group in tubulointerstitium.OPN mainly expressed in renal tubular epithelial cells.α-SMA immunostaining was mostly observed not only in renal tubular epithelial cells but also in tubulointersitium.The increasing expression ofα-SMA in DN was also seldomly found in the glomeruli and periphgromeruli.To compare with group DM,the overexpression was reduced by treatment with MMF.The expression of OPN andα-SMA protein in renal tubulointerstitium were significantly increased in diabetic rats (p<0.01),which were significantly inhibited by MMF treatment(p<0.01).4.Renal TGFβ1 expression:Western blot analysis noted that an increase in the amount of immunoreactive peptide was seen in kidney for DM group rats compared to that from C group rats.Densitometric analysis of the Western blot showed a 1.92 fold increase in the amount of TGFβ1 from DM group rats with respect to C group rats(p<0.01),treatment with MMF could reduced TGFβ1 protein expression by approximately 45%(p<0.05), respectively.Conclusion Our study showed that MMF can prevent renal tubulointerstitium injury in diabetic rats,which mechanism may be at least partly correlated with suppression on increased expression of OPN andα-SMA.
引文
[1]Gilbert RE,Cooper ME.The tubulointerstitium in progressive diabetic kidney disease:More than an aftermath of glomerular injury? Kidney Int,1999,56(5):1627-37.
    [2]Rodriguez-Iturbe B,Pons H,Herrera-Acosta J.Role of immunocompetent cells in nonimmune renal diseases.Kidney Int,2001,59(5):1626-40.
    [3]Chow FY,Nikolic-Paterson D J,Atkins RC,et al.Macrophages in streptozotocin-induced diabetic nephropathy:potential role in renal fibrosis.Nephroi Dial Transplant,2004,19(12):2987-96.
    [4]Navarro-Gonzàlez JF,Mora-Fernández C.The Role of Inflammatory Cytokines in Diabetic Nephropathy.J Am Soc Nephrol,2008,19(3):433-42.
    [5]Navarro JF,Mora C.Role of inflammation in diabetic complications.Nephrol Dial Transplant,2005,20(12):2601-4.
    [6]张桦、邹和群。肾间质纤维化的发生及防治。见:孙世澜、周朝阳主编,肾脏病理论与实践,北京:人民军医出版社,2005:446-55。
    [7]Scan Eardley K,Cockwell P,Macrophages and progressive tubulointerstitial disease.Kidney Int,2005,68(2):437-455.
    [8]Chow F,Ozols E,David J,et al.Macrophage in mouse type 2 diabetic nephropathy:Correlation with diabetic state and progressive renal injury.Kidney Int,2004,65(1):116-28.
    [9]Wu YG,Lin H,Qian H,et al.Renoprotective effects of combination of angiotensin converting enzyme inhibitor with mycophenolate mofetil in diabetic rats.Inflammation Research,2006,55(5):192-9.
    [10]Utimura R,Fujihara CK,Mattar AL,et al.Mycophenolate mofetil prevents the development of glomerular injury in experiment diabetes.Kidney Int,2003,63(1):209-16.
    [11]Wu YG,Lin H,Qi XM,et al.Prevention of early renal injury by mycophenolate mofetil and its mechanism in experimental diabetes.Int Immunopharmaco,2006,6(3):445-53.
    [12]Yozai K,Shikata K,Sasaki M,et al.Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions.J Am Soc Nephrol,2005,16(11):3326-38.
    [13]Kikuchi Y,Imakiire T,Yamada M,et al.Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats.Nephrol Dial Transplant,2005,20(8):1573-81.
    [14]United States Renal Data System:incident of reported ESRD,2007.
    [15]Burrows NR,Li Y,Williams DE.Racial and Ethnic Differences in Trends of End-Stage Renal Disease:United States,1995 to 2005.Adv Chronic Kidney Dis,2008,15(2):147-52.
    [16]Wu AY,Kong NC,de Leon FA,et al.An alarmingly high prevalence of diabetic nephropathy in Asian type 2 diabetic patients:the MicroAlbuminuria Prevalence (MAP) Study,Diabetologia,2005,48(1):17-26.
    [17]周洁,丁向红。北京市2型糖尿病患者DN流行病学分析。医学研究通讯,2004,33(6):10-12。
    [18]刘英哲,陈泽奇,张清梅等。1433例2型糖尿病及并发症临床流行病学调查。中国医师杂志,2005,7(5):607-609。
    [19]Satriano J.Kidney growth,hypertrophy and the unifying mechanism of diabetic complications.Amino Acids,2007,33(2):331-9.
    [20]Kanwar YS,Wada J,Sun L,et al.Diabetic nephropathy:mechanisms of renal disease progression.Exp Biol Med(Maywood),2008,233(1):4-11.
    [21]Nangaku M.Mechanisms of tubulointerstitial injury in the kidney:final common pathways to end-stage renal failure.Intern Med,2004,43(1):9-17.
    [22]Ninichuk V,Khandoga AG,Segerer S,et al.The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice.Am J Pathol,2007,170(4):1267-76
    [23]Sassy-Prigent C,Heudes D,Mandet C,et al.Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats.Diabetes,2000,49(3):466-75.
    [24]Versey DA,Cheung CW,Cuttle L,et al.Intedeukin-lbeta stimulates human renal fibroblast proliferation and matrix production by means of a transforming growth factor-beta-dependent mechanism.J Lab Clin Med,2002,140(5):342-50.
    [25]Kipari T,Cailhier JF,Ferenbach D,et al.Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis.Am J Pathol,2006,169(2):388-99.
    [26]Galkina E,Ley K.Leukocyte Recruitment and Vascular Injury in Diabetic Nephropathy.J Am Soc Nephrol,2006,17(2):368-77.
    [27]Kuroiwa T,Schlimgen R,Illei GG,et al.Distinct T cell/renal tubular epithelial cell interactions define differential chemokine production:Implications for tubulointerstitial injury in chronic glomerulonephritides.J Immunol,2000,164(6): 3323-9.
    [28] Strutz F, Zeisberg M, Renziehausen A, et al.TGFβ induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor(FGF-2). Kidney Int,2001,59(2):579-92.
    [29] Isaka Y, Tsujie M, Ando Y, es al. Transforming growth factor-β1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction.Kidney Int, 2000, 58(5): 1885-92.
    [30] Peinado H, Quintanillla M, Cano A. Transforming growth factor-β1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem, 2003,278(23):21113-23.
    [31] Ina K, Kitamura H, Tatsukawa S, et al. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc, 2002,35(2):87-95.
    [32] Kothapalli D, Frazier KS, Welply A, Segarini PR, et al. Transforming growth factor-P induces anchorage-independent growth of NRK fibroblasts via a connective tissue growth factordependent signaling pathway. Cell Growth Differ,1997,8(1):61-8.
    [33] Wang SN, LaPage J, Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int, 2000,57(3):1002-14.
    [34] Wang S, Denichilo M, Brubaker C, et al. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy, Kidney Int, 2001, 60(l):96-105.
    [35] Panzer U, Thaiss F, Iahner G, et al. Monocyte chemoattractant protein - 1 and osteopontin differentially regulate monocytes recruitment in experimental glomerulonephritis. Kidney Int, 2001, 59(5): 1762-9.
    [36] Giachelli CM, Lombardi D, Johnson RJ, et al. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol, 1998,152(2):353-8.
    [37]Persy VP,Verhulst A,Ysebaert DK,et al.Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice.Kidney Int,2003,63(2):543-53.
    [38]Kelly D J,Wilkinson-Berka JL,Ricardo SD,et al.Progression of tubulointerstitial injury by osteopontin-induced macrophage recruitment in advanced diabetic nephropathy of transgenic(mRen-2)27 rats.Nephrol Dial Transplant,2002,17(6):985-91.
    [39]Sodhi CP,Phadke SA,Batlle D,et al.Hypoxia and high glucose cause exaggerated mesangial cell growth and collagen synthesis:role of osteopontin.Am J Physiol Renal Physiol,2001,280(4):F667-74.
    [40]Suzuki Y,Ruiz-Ortega M,Lorenzo O,et al.Inflammation and angiotensin Ⅱ.Int J Biochem Cell Biol,2003,35(6):881-900.
    [41]Ruiz-Ortega M,Rupérez M,Esteban V,et al.Angiotensin Ⅱ:a key factor in the inflammatory and fibrotic response in kidney diseases.Nephrol Dial Transplant,2006,21(1):16-20.
    [42]Wolf G.Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-b pathway.Kidney Int,2006,70(11):1914-9.
    [43]Mezzano S,Droguett A,Burgos ME,et al.Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy.Kidney Int Suppl,2003,(86):S64-70.
    [44]Frances Balkwill,细胞因子和细胞因子受体,Siamon Gordon,免疫防御中的单核吞噬细胞。见:Ivan Roitt,Jonathan Brostoff,David Male原著,周光炎主译,免疫学(第六版),北京,人民卫生出版社,2002;119-121,147-159,441
    [45]Yu XQ,Fan JM,Nikolic-Paterson DJ,et al.IL-1 up-regulates osteopontin expression in experimental crescentic glomerulonephritis in the rat.Am J Pathol,1999,154(3):833-41.
    [46] Nagasaki T, Ishimura E, Shioi A, et al. Osteopontin gene expression and protein synthesis in cultured rat mesangial cells. Biochem Biophys Res Commun, 1997,233(1): 81-5.
    [47] Nee LE, McMorrow T, Campbell E, et al. TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in renal proximal tubular cells. Kidney Int, 2004,66(4):1376-86.
    [48] Xiang G, Schinzel R, Simm A, et al. Advanced glycation end products (AGEs)-induced expression of TGFbeta 1 is suppressed by a protease in the tubule cell line LLC-PK1. Nephrol Dial Transplant, 2001,16(8):1562-9.
    [49] Yamagishi S, Inagaki Y, Okamoto T, et al. Advanced glycation end products inhibit de novo protein synthesis and induce TGF beta1 overexpression in proximal tubular cells. Kidney Int, 2003, 63(2):464-73.
    [50] Keane WF, Brenner BM, de Zeeuw D, et al. RENAAL Study Investigators. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int, 2003, 63(4): 1499-507.
    [51] Eddy AA. Proteinuria and interstitial injury. Nephrol Dial Transplant, 2004,19(2):277-81.
    [52] Nangaku M, Pippin J, Couser WG. Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. J Am Soc Nephrol, 1999,10(11):2323-31.
    [53] Strippoli GF, Bonifati C, Craig M, et al. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev, 2006,18,(4):CD006257
    [54] Fernandez-Juarez G, Barrio V, de Vinuesa SG, et al. Dual Blockade of the Renin-Angiotensin System in the Progression of Renal Disease: The Need for More Clinical Trials. J Am Soc Nephrol, 2006,17(12 Suppl 3):S250-4.
    [55] Sato A, Hayashi K, Naruse M, et al. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension, 2003,41(1):64-8.
    [56] Badid C, Vincent M, McGregor B, et al. Mycophenolate mofetil reduces myofibroblast infiltration and collagen III deposition in rat remnant kidney.Kidney Int, 2000, 58(1):51-61.
    [57] Liu Y. Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int, 2006,69(2):213-7.
    [58] Morath C, Schwenger V, Beimler J, et al. Antifibrotic actions of mycophenolic acid. Clin Transplantation, 2006,20(suppl 17): 25-9.
    [59] Chan TM, Tse KC, Tang CS, et al. Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J Am Soc Nephrol, 2005,16(4): 1076-84.
    [60] Roos N, Poulalhon N, Farge D, et al. In vitro evidence for a direct anti-fibrotic role of the immunosupressive drug mycophenolate mofetil. J Pharmacol Exp Ther,2007, 321(2): 583-9.
    [61] Goncalves RG, Biato MA, Yi H, et al. Effects of mycophenolate mofetil and lisinopril on collagen deposition in unilateral ureteral obstruction in rats. Am J nephrol, 2004, 24(5):527-36.
    [62] Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol,1996,7(12):2495-508.
    [63] Essawy M, Soylemezoglu O, Muchaneta-Kubara E C, et al. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transplant, 1997, 12(1):43-50.
    [64] Mezzano SA, Barria M, Droguett MA, et al. Tubular NF-KB and AP-1 activation in human proteinuric renal disease. Kidney Int, 2001, 60(4): 1366-77.
    [1].Navarro JF,Mora C.Role of inflammation in diabetic complications.Nephrol Dial Transplant,2005,20(12):2601-4.
    [2].Chow F,Ozols E,Nikolic-Paterson D J,et al.Macrophages in mouse type 2diabetic nephropathy:Correlation with diabetic state and progressive renal injury.Kidney Int,2004,65(1):116-28.
    [3].Yamagishi S,Imaizumi T.Diabetic Vascular Complications:Pathophysiology,Biochemical Basis and Potential Therapeutic Strategy.Current Pharmaceutical Design.Curr Pharm Des,2005,11(18):2279-99.
    [4].Noh H and King GL.The role of protein kinase C activation in diabetic nephropathy.Kidney Int Suppl,2007,72(106):S49-S53.
    [5].张桦、邹和群,肾间质纤维化的发生及防治。见:孙世澜、周朝阳主编,肾脏病理论与实践,北京:人民军医出版社,2005:446-55。
    [6].Taneda S,Pippin JW,Sage EH,et al.Amelioration of Diabetic Nephropathy in SPARC-Null Mice.J Am Soc Nephrol,2003,14(4):968-80.
    [7].Eardley KS,Cockwell P.Macrophages and progressive tubulo-interstitial disease.Kidney Int,2005,68(2):437-55.
    [8].Rodriguez-Iturbe B,Pons H,Herrera-Acosta J.Role of immunocompetent cells in nonimmune renal diseases.Kidney Int,2001,59(5):1626-40.
    [9].Versey DA,Cheung CW,Cuttle L,et al.Interleukin-lbeta stimulates human renal fibroblast proliferation and matrix production by means of a transforming growth factor-beta-dependent mechanism.J Lab Clin Med,2002,140(5):342-50.
    [10].Kipari T,Cailhier JF,Ferenbach D,et al.Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis.Am J Pathol,2006,169(2):388-99.
    [11].Ninichuk V,Khandoga AG,Segerer S,et al.The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice.Am J Pathol,2007,170(4):1267-76
    [12].Sassy-Prigent C,Heudes D,Mandet C,et al.Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats,2000,49(3):466-75.
    [13].Chow F,Ozols E,Nikolic-Paterson DJ,et al.Macrophages in mouse type 2diabetic nephropathy:correlation with diabetic state and progressive renal injury.Kidney Int,2004,65(1):116-28.
    [14].Chow FY,Nikolic-Paterson DJ,Atkins RC,et al.Macrophages in streptozotocin-induced diabetic nephropathy:potential role in renal fibrosis.Nephrol Dial Transplant,2004,19(12):2987-96.
    [15].Galkina E, Ley K. Leukocyte Recruitment and Vascular Injury in Diabetic Nephropathy. J Am Soc Nephrol, 2006,17(2):368-77.
    [16].Kuroiwa T, Schlimgen R, Illei GG, et al. Distinct T cell/renal tubular epithelial cell interactions define differential chemokine production: Implications for tubulointerstitial injury in chronic glomerulonephritides. J Immunol, 2000,164(6): 3323-9.
    [17]. Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol,1996, 7(12):2495-508.
    [18].Strutz F, Zeisberg M, Renziehausen A, et al.TGFp induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor(FGF-2).Kidney Int, 2001,59(2):579-92.
    [19]. O' Donnell MP. Renal tubulointerstitial fibrosis: new thoughs on its development and progression. Postgrad Med, 2000,108:159-172.
    [20].Isaka Y, Tsujie M, Ando Y, es al, Transforming growth factor-pi antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction.Kidney Int, 2000, 58(5): 1885-92.
    [21].Peinado H, Quintanillla M, Cano A. Transforming growth factor-β1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem, 2003,278(23):21113-23.
    [22]. Li Y, Yang J,Dai C, et al. Role for integrin-linked kinase in mediating tubular epithelial to mesenchemal transition and renal interstitial fibrogenesis. J Clin Invest, 2003,112(4):503-516.
    [23], Yang J, Zhang X, Li Y, et al. Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGFbetal signaling. J Am Soc Nephrol, 2003, 14(12): 3167-77.
    [24].Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGFβ superfamily signaling. FASEB J, 1999,13(15): 2105-24.
    [25]. Eickelberg O, Centrella M, Reiss M, et al. Betaglycan inhibits TGFβ signaling by preventing type I-type II receptor complex formation. J Biol Chem, 2002; 277(1):823-9.
    [26]. Ina K, Kitamura H, Tatsukawa S, et al. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc,2002,35(2):87-95.
    [27]. Gupta S, Clarkson MR, Duggan J, et al. Connective tissue growth factor:Potential role in glomerulosclerosis and tubulointerstitial fibrosis. Kidney Int,2000,58(4):1389-99.
    [28].Ruperez M, Lorenzo O, Blanco-Colio LM, et al. Connective Tissue Growth Factor Is a Mediator of Angiotensin II-Induced Fibrosis. Circulation, 2003;108(12):1499-505.
    [29].Kothapalli D, Frazier KS, Welply A, Segarini PR, et al. Transforming growth factor-P induces anchorage-independent growth of NRK fibroblasts via a connective tissue growth factordependent signaling pathway. Cell Growth Differ,1997,8:61-68.
    [30]. Ito Y, Bende RJ, Oemar BS, et al. Gold schmeding R. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int, 1998, 53(4):853—861.
    [31]. Riser BL, Denichilo M, Cortes P, et al. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol, 2000,11(1):25-38.
    [32]. Wang SN, LaPage J, Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int,2000,57(3): 1002-14.
    [33]. Wang S, Denichilo M, Brubaker C, et al. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy, Kidney Int, 2001, 60(1):96-105.
    [34]. Duncan MR, Frazier KS, Abramson S, et al. Connective tissue grouth factor mediates transforming growth factor beta induced collagen synthesis: Down regulation by cAMP. FASEB J, 1999, 13(13): 1774-86.
    [35]. Panzer U, Thaiss F, Iahner G, et al. Monocyte chemoattractant protein - 1 and osteopontin differentially regulate monocytes recruitment in experimental glomerulonephritis.Kidney Int,2001,59(5):1762-9.
    [36].Ophascharoensuk V,Giachelli CM,Gordon K,et al.Obstructive uropathy in the mouse:Role of osteopontin in interstitial fibrosis and apoptosis.Kidney Int,1999,56(2):571-80.
    [37].Persy VP,Verhulst A,Ysebaert DK,et al.Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice.Kidney Int,2003,63(2):543-53.
    [38].Li C,Yang CW,Kim WY,et al.Reversibility of chronic cyclosporine nephropathy in rats after withdrawal of cyclosporine.Am J Physiol Renal Physiol,2003,284(2):F389-98.
    [39].Eddy AA,Grachelli CM.Renal expression of genes that promote interstitial inflammation and fibrosis in rats with proteinoverload proteinuria,Kidney Int,1995,47(6):1546-57
    [40].Kelly DJ,Wilkinson-Berka JL,Ricardo SD,et al.Progression of tubulointerstitial injury by osteopontin-induced macrophage recruitment in advanced diabetic nephropathy of transgenic(mRen-2)27 rats.Nephrol Dial Transplant,2002,17(6):985-91.
    [41].Sodhi CP,Phadke SA,Batlle D,et al.Hypoxia and high glucose cause exaggerated mesangial cell growth and collagen synthesis:role of osteopontin.Am J Physiol Renal Physiol,2001,280(4):F667-74.
    [42].Frances Balkwill,细胞因子和细胞因子受体,Siamon Gordon,免疫防御中的单核吞噬细胞。见:Ivan Roitt,Jonathan Brostoff,David Male原著,周光炎主译,免疫学(第六版),北京,人民卫生出版社,2002;119-121,147-159,441
    [43].Yu XQ,Fan JM,Nikolic-Paterson DJ et al.IL-1 Up-Regulates Osteopontin Expression in Experimental Crescentic Glomerulonephritis in the Rat.Am J Pathol,1999,154(3):833-41.
    [44].Nagasaki T,Ishimura E,Shioi A,et al.Osteopontin gene expression and protein synthesis in cultured rat mesangial cells.Biochem Biophys Res Commun, 1997,233(1):81-5.
    [45].Nee LE, McMorrow T, Campbell E, et al. TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in renal proximal tubular cells. Kidney Int,2004,66(4): 1376-86.
    [46].Navarro-Gonzalez JF, Mora-Fernandez C. The Role of Inflammatory Cytokines in Diabetic Nephropathy. J Am Soc Nephrol, 2008,19(3):433-42.
    [47]. Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy.Kidney Int, 2007,71(9):846-54.
    [48]. Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 2001,159(4):1465-75.
    [49]. Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med, 2004, 82(3): 175-81.
    [50]. Strutz F, Zeisberg M, Ziyadeh FN, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int, 2002,61(5): 1714-28.
    [51]. Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-b pathway. Kidney Int, 2006, 70(11):1914-9.
    [52]. Buyon JP, Clancy RM. Clancy、 Autoantibody-associated congenital heart block:TGFp and the road to scar. Autoimmun Rev, 2005,4(1):1-7.
    [53].Lange-Sperandio B, Trautmann A, Eickelberg O, et al. Leukocytes Induce Epithelial to Mesenchymal Transition after Unilateral Ureteral Obstruction in Neonatal Mice. Am J Pathol, 2007 ,171(3):861-71.
    [54]. Bohlender JM, Franke S, Stein G, et al. Advanced glycation end products and the kidney. Am J Physiol Renal Physiol, 2005, 289(4):F645-59.
    [55].Xiang G, Schinzel R, Simm A, et al. Advanced glycation end products (AGEs)-induced expression of TGFbeta 1 is suppressed by a protease in the tubule cell line LLC-PK1. Nephrol Dial Transplant, 2001,16(8): 1562-9.
    [56]. Yamagishi S, Inagaki Y, Okamoto T, et al. Advanced glycation end products inhibit de novo protein synthesis and induce TGF beta 1 overexpression in proximal tubular cells. Kidney Int, 2003, 63(2):464-73.
    [57]. Li JH, Wang W, Huang XR, et al. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol, 2004, 164(4):1389-97.
    [58]. Burns KD: Angiotensin II and its receptors in the diabetic kidney. Am J Kidney Dis, 2000,36(3):449-67.
    [59]. Suzuki Y, Ruiz-Ortega M, Lorenzo 0, et al. Inflammation and angiotensin II。 Int J Biochem Cell Biol, 2003, 35(6):881-900.
    [60]. Ruiz-Ortega M, Ruperez M, Lorenzo O, et al: Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int Suppl,2002, (82): 12-22.
    [61]. Ruiz-Ortega M, Ruperez M, Esteban V, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol Dial Transplant,2006,21(1): 16-20.
    [62]. Ruiz-Ortega M, Lorenzo O, Suzuki Y, et al. Proinflammatory actions of angiotensin II. Curr Opin Nephrol Hypertens, 2001,10(3):321-9.
    [63]. Yu XQ, Wu LL, Huang XR, Yang N, et al. Osteopontin expression in progressive renal injury in remnant kidney: role of angiotensin II. Kidney Int,2000,58(4): 1469-80.
    [64].Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and Renal Fibrosis. Hypertension, 2001,38(3 Pt 2):635-8.
    [65].Mezzano S, Droguett A, Burgos ME,et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int Suppl,2003,(86):S64-70.
    [66].Leehey DJ, Singh AK, Alavi N, et al. Role of angiotensin II in diabetic nephropathy. Kidney Int Suppl, 2000, (77):S93-8.
    [67]. Keane WF, Brenner BM, de Zeeuw D, et al, RENAAL Study Investigators. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int, 2003,63(4): 1499-507.
    [68].Eddy AA.Proteinuria and interstitial injury.Nephrol Dial Transplant.2004,19(2):277-81.
    [69].Nangaku M.Mechanisms of Tubulointerstitial Injury in the Kidney:Final Common Pathways to End-stage Renal Failure.Intern Med,2004,43(1):9-17.
    [70].Nangaku M,Pippin J,Couser WG.Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome.J Am Soc Nephrol,1999,10(11):2323-31.
    [71].Strippoli GF,Bonifati C,Craig M,et al.Angiotensin converting enzyme inhibitors and angiotensin Ⅱ receptor antagonists for preventing the progression of diabetic kidney disease.Cochrane Database Syst Rev,2006,18(4):CD006257.
    [72].Femandez-Juárez G,Barrio V,de Vinuesa SG,et al.Dual Blockade of the Renin-Angiotensin System in the Progression of Renal Disease:The Need for More Clinical Trials.J Am Soc Nephrol,2006,17(12 Suppl 3):S250-4.
    [73].Sato A,Hayashi K,Naruse M,et al.Effectiveness of aldosterone blockade in patients with diabetic nephropathy.Hypertension,2003,41(1):64-8.
    [74].Fujisawa G,Okada K,Muto S et al.Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats.Kidney Int,2004,66(4):1493-502.
    [75].Rachmani R,Slavachevsky I,Amit M,et al.The effect of spironolactone cilazapril and their combination on albuminuria in patients with hypertension and diabetic nephropathy is independent of blood pressure reduction:a randomized controlled study.Diabet Med,2004,21(5):471-5.
    [76].Nagai Y,Miyata K,Sun GP,et al.Aldosterone stimulates collagen gene expression and synthesis via activation of extracellular signal-regulated kinasesin renal fibroblasts.Hypertension,2005,46(4):1039-45.
    [77].Kikuchi Y,Imakiire T,Yamada M,et al.Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats.Nephrol Dial Transplant,2005,20(8):1573-81.
    [78].张炜,吴永贵,方芳,等.霉酚酸酯对糖尿病大鼠肾小管-间质损伤的保护作用及机制.现代免疫学,2007,27(6):465-9.
    [79]. Liu Y. Renal rlbrosis: New insights into the pathogenesis and therapeutics.Kidney Int, 2006,69(2):213-7.
    [80].Badid C, Vincent M, McGregor B, et al. Mycophenolate mofetil reduces myofibroblast infiltration and collagen III deposition in rat remnant kidney.Kidney Int,2000,58(1):51-61.
    [81]. Roos N, Poulalhon N, Farge D, et al. In vitro evidence for a direct anti-fibrotic role of the immunosupressive drug mycophenolate mofetil. J Pharmacol Exp Ther, 2007, 321(2): 583-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700