姜黄素抑制宫颈癌Hela细胞增殖机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究姜黄素对宫颈癌Hela细胞P53基因以及乙酰化组蛋H3表达的影响,探讨其抑制Hela细胞增殖的机制。
     方法:用不同浓度(0, 50,25,12.5,6.25,3.125μmol/L)的姜黄素作用于Hela细胞,在作用的不同时间(0,24,48,72h),用MTT法测定姜黄素对Hela细胞抑制增殖的效应;Rt-PCR法检测P53 mRNA的表达;Western blot法检测乙酰化组蛋白H3、乙酰化P53以及P53蛋白的表达。
     结果:姜黄素以时间和剂量依赖方式抑制Hela细胞增殖;能明显上调组蛋白H3的乙酰化水平,促进P53的乙酰化和P53基因mRNA和相应蛋白的表达。
     结论:姜黄素抑制宫颈癌Hela细胞增殖是通过上调组蛋白H3乙酰化水平,促进肿瘤抑制因子P53的活化与表达进行的。姜黄素具有去乙酰化酶抑制剂作用,有望开发用于治疗宫颈癌。
Objective To investigate the effects of curcumin on the acetylation of histone H3, P53 gene and the proliferation of cervical cancer cell line Hela.
     Methods Hela cells were treated with different concentrations of curcumin(0, 50, 25, 12.5, 6.25, 3.125μmol/L) for different time(0,24,48,72h), MTT assay was performed to examin the growth inhibition effects of curcumin on Hela cells. The expression of P53 was assayed by reverse transcriptase polymerase chain reaction(Rt-PCR). The expressions of acetylated histone H3, P53 and acetylated P53 protein were determined by western blot.
     Results Curcumin could inhibit the proliferation of Hela cells in a time-and- dose- dependent manner. The expression of P53 mRNA was different with the concentration and time of curcumin, which was the strongest in 25μmol/L at 48h. The levels of histone H3 acetylation, P53 expression and P53 acetylation were increased significantly when treated with different concentrations of curcumin for different time.
     Conclusion Curcumin functions as a deacetylase inhibitor, which could increase the level of acetylated histone H3, enhance the expression and activity of tumor suppressor P53 and inhibit the proliferation of cervical cancer cell line Hela.
引文
1. Grigsby PW, Herzog TJ. Current management of patients with invasive cervical carcinoma. Clin Obstet Gynecol. 2001;44(3):531-7
    2. Lin JK,Jin-shian SY. Mechanisms of cancer chemoprevention by curcumin. Proc Natl Sci Counc ROC(B),2001; 25:59-66.
    3. Inaro H ,Onada M , Inafuku N ,Kubota M , Kamada Y, Osawa T , Kobayashi H , Wakabayashi K . Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis , 2000 , 21 : 1835-1841.
    4. Park MJ, Kim EH,Park IC, Lee HC, Woo SH, Lee JY, Hong YJ, Rhee CH, Choi SH, Shim BS, Hong SI. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304)cells by up-regulating cyclin-dependent kinase inhibitors,P21WAF/CIP1,P27KIP1 and P53. Int J Oncol, 2002,21: 379-383.
    5. Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin in induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett , 2002 , 512: 334-340.
    6. Han SS, Chung ST, Robertson DA, Ranjan D, Bondada S. Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kappaB and P53. Clin Immunol, 1999, 93: 152-161.
    7. Jaiswal AS, Marlow BP, Gupta Narayan S.β-Catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin(diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene, 2002 , 21: 8414-8427.
    8.吴孝杰,庞江琳,孙显斌,姜黄素及其联合化疗对子宫颈癌Hela细胞体外增殖的影响.华夏医学,2005,18(4):534-536.
    9.王菁鹏,林青,姜黄素对子宫颈癌HeLa细胞的抑制作用.现代医药卫生,2006,22(16):2435-2437.
    10. Prusty BK,Das BC. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activityin HeLa cells by curcumin. Int J Cancer,2005,113(6):951-960
    11. Banuelos A ,Reyes E ,Ocadiz R ,Alvarez E, Moreno M, Monroy A, Gariqlio P. Neocarzinostatin induces an effective p53-dependent response in human papillomavirus positive cervical cancer cells . J Pharmacol Exp Ther , 2003 ,306 (2) :671-680.
    12. Herington CS. Human papillomaviruses and cervical neoplasia : interacion of HPV with other factors. J Clin Pathol , 1995 ,48 :1-6.
    13. Divya CS,Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog,2006,45(5):320-332.
    14. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI . Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science , 2001, 292: 64-65.
    15. Jagetia GC, Rajanikant GK. Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody gammairradiation. Plastic and Reconstructive Surger, 2005, 115 (2) : 515–528.
    16. Khar A,Ali AM,Pardhasaradhi BV, Varalakshmi CH, Anjum R, Kumari AL. Induction of stress response renders human tumor cell lines resistant to curcumin-mediated apoptosis: role of reactive oxygen intermediates . Cell Stress Chaperones, 2001, 6(4): 368-376.
    17.许刚,黄文.姜黄素防治肿瘤的机制研究进展.国外医学生理病理科学与临床分册,2003, 23(2): 152-154.
    18. Walboomrs JM , Jacobs MV , Manos MM , Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N. Human papillomavirus is a necessary cause of invasive cervical cancer wordwide . Pathol ,1999 ,189 :12-19.
    19. Adersson S , Rylander E ,Larsson B , Strand A, Silfversvard C, Wilander E. The role of Human papillomavirus in cervical carcinoma carcinogenesis . European Cancer , 2001 , 37 : 246-250.
    20. Gu W,Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997,90: 595-606.
    21. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Hiqashimoto Y, Appella E, Yao TP. MDM2-HDAC1 mediated deacetylation of P53 is required for its degradation. EMBO J, 2002, 21 : 6236-6245.
    22. Barlev NA , Liu L , Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL. Acetylation of P53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell,2001,8:1243-1254.
    1. Wang YJ ,Pan MH ,Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharmaceu & Biomed Analysis, 1997, 15(12) :1867 - 1876.
    2. Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S, Jukes R, Williams M, Steward WP, Gescher A. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo , and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res, 2001, 61 (3) : 1058-1064.
    3. Pan MH , Huang TM , Lin J K. Biot ransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos , 1999 , 27 (4) : 486-494
    4. Egan, ME., Pearson M, Weiner SA, Rajendran V, Rubin D, GlocknerPagel J, Canny S, Du K, Lukacs GL, Caplan MJ. Curcumin, a major constituent of turmeric, corrects cysticfibrosis defects. Science , 2004,304(5670):600–602.
    5. Huang HC, Jan TR, Yeh SF. Inhibitory effect of curcumin, an anti-inflammatory agent, on vascular smooth muscle cell proliferation. European Journal of Pharmacology , 1992,221 (2–3):381–384.
    6. Liu JY, Lin S., Lin JK. Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis , 1993. 14 (5): 857–861.
    7. Reddy S, Aggarwal BB. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Letters , 1994,341 (1) :19–22.
    8. Reddy AC, Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and Cellular Biochemistry , 1994,137(1):1–8.
    9. Unnikrishnan M., Rao MN. Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Molecular and Cellular Biochemistry , 1995,146 (1) :35–37.
    10. Sreejayan, Rao MN. Nitric oxide scavenging by curcuminoids. Journal of Pharmacy and Pharmacology , 1997, 49 (1) :105–107.
    11. Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V. Curcumin-induced inhibition of cellular reactive oxygen species generation : novel therapeutic implications. J Biosci , 2003 , 28 (6) : 715-721.
    12. Ghoneim AI , Abdel-Naim AB , Khalifa AE, El-Denshary ES. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain . Pharmacol Res , 2002 , 46 (3) : 273-279
    13. Cohly HH, Taylor A, Angel MF, Salahudeen AK. Effect of turmeric, turmerin and curcumin on H2O2-induced renal epithelial (LLCPK1) cell injury. Free Radical Biology and Medicine , 1998,24 (1) :49–54.
    14. Dikshit M, Rastogi L, Shukla R, Srimal RC. Prevention of ischaemia-induced biochemical changes by curcumin and quinidine in the cat heart. Indian Journal of Medical Research, 1995, 101:31–35.
    15. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, an antioxidant andanti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biology and Medicine , 2000,28 (8):1303–1312.
    16. Nirmala C, Puvanakrishnan R. Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats. Biochemical Pharmacology , 1996,51(1): 47–51.
    17. Nirmala C, Puvanakrishnan R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Molecular and Cellular Biochemistry , 1996,159 (2):85–93.
    18. Manikandan P, Sumitra M, Aishwarya S, Manohar BM, Lokanadam B, Puvanakrishnan R. Curcumin modulates free radical quenching in myocardial ischaemia in rats. International Journal of Biochemistry and Cell Biology , 2004,36 (10):1967–1980.
    19. Jones EA, Shahed A, Shoskes DA. Modulation of apoptotic and inflammatory genes by bioflavonoids and angiotensin II inhibition in ureteral obstruction. Urology , 2000, 56 (2):346–351.
    20. Gaddipati JP, Sundar SV, Calemine J, Seth P, Sidhu GS, Maheshwari RK. Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock , 2003, 19 (2):150–156.
    21. Rafiee P, Shi Y, Kong X, Pritchard Jr KA., Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Su J, Baker JE. Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection. Circulation , 2002, 106 (2): 239–245.
    22. Rafiee P, Shi Y, Pritchard KA, Ogawa H, Eis AL, Komorowski RA, Fitzpatrick CM, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Baker JE. Cellular redistribution of inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: role of protein kinases. Journal of Biological Chemistry, 2003, 278 (44):43636–43644.
    23. Calabrese V, Butterfield DA, Stella AM. Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer's disease. Italian Journal of Biochemistry, 2003, 52 (4):177–181.
    24 Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP,Kayed R, Glabe CG, Frautschy SA, Cole GM. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Journal of Biological Chemistry , 2005, 280 (7):5892–5901.
    25. Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sciences , 2004, 74 (8):969–985.
    26. Nadkarni KM. Curcuma longa. In: Nadkarni, K.M. (Ed.), Indian Materia Medica. Popular Prakashan Publishing Company, Bombay, pp , 1976. 414–416.
    27. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK. Enhancement of wound healing by curcumin in animals. Wound Repair and Regeneration , 1998, 6 (2): 167–177.
    28. Varga J, Rosenbloom J, Jimenez SA. Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochemical Journal , 1987, 247 (3):597–604.
    29. Quaglino D, Nanney LB, Kennedy R, Davidson JM. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model. Laboratory Investigation , 1990, 63 (3):307–319.
    30. Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, Maheshwari RK. Enhancement of wound healing by curcumin in animals. Wound Repair and Regeneration , 1998, 6 (2): 167–177.
    31 Mani H, Sidhu GS, Kumari R, Gaddipati JP, Seth P, Maheshwari RK. Curcumin differentially egulates TGF-β1, its receptors and nitric oxide synthase during impaired wound healing. BioFactors , 2002, 16:29–43.
    32. Sidhu GS, Mani H, Gaddipati JP, Singh AK, Seth P, Banaudha KK, Patnaik GK, Maheshwari RK. Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice.Wound Repair and Regeneration , 1999, 7 (5): 362–374.
    33. Phan TT, See P, Lee ST, Chan SY. Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. Journal of Trauma , 2001,51 (5):927–931.
    34. Gopinath D, Ahmed MR, Gomathi K, Chitra K, Sehgal PK, Jayakumar R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials , 2004, 25 (10):1911–1917.
    35 Jagetia GC, Rajanikant GK. Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody gammairradiation. Plastic and Reconstructive Surger, 2005, 115 (2) : 515–528.
    36 Swarnakar S, Ganguly K, Kundu P, Banerjee A, Maity P, Sharma AV. Curcumin regulates expression and activity of matrix metalloproteinases- 9 and -2 during prevention and healing of indomethacin-induced gastric ulcer. Journal of Biological Chemistry , 2005, 280 (10) : 9409–9415.
    37. Folkman J, Shing Y. Angiogenesis. Journal of Biological Chemistry, 1992, 267 (16) : 10931–10934.
    38. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine , 1995, 1 (1) : 27–31.
    39. Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR. Curcumin is an in vivo inhibitor of angiogenesis. Molecular Medicine, 1998, 4 (6) : 376–383.
    40. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, Raizman MB, Fini ME. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor-2, including expression of matrix metalloproteinase gelatinase B. Journal of Biological Chemistry, 2000, 275 (14) : 10405–10412.
    41. Shim JS, Kim DH, Jung HJ, Kim JH, Lim D, Lee SK, Kim KW, Ahn JW, Yoo JS, Rho JR, Shin J, Kwon HJ. Hydrazinocurcumin, a novel synthetic curcumin derivative, is a potent inhibitor of endothelial cell proliferation. Bioorganic and Medicinal Chemistry , 2002, 10 (9) : 2987–2992.
    42. Hahm ER, Gho YS, Park S, Park C, Kim KW, Yang CH. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochemical Biophysical Research Communication, 2004, 321 (2) : 337–344.
    43. Schnaper HW, Grant DS, Stetler-Stevenson WG, Friedman R, D'orazi G, Murphy AN,Bird RE, Hoythya M, Fuerst TR, French DL, Quigley JP, Kleinman H. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. Journal of Cellular Physiology , 1993, 156 (2) : 235–246.
    44. Kim JH, Shim JS, Lee SK, Kim KW, Rha SY, Chung HC, Kwon HJ. Microarray-based analysis of anti-angiogenic activity of demethoxycurcumin on human umbilical vein endothelial cells: crucial involvement of the down-regulation of matrix metalloproteinase. Japanese Journal of Cancer Research , 2002, 93 (12) : 1378–1385.
    45. Hahm ER, Gho YS, Park S, Park C, Kim KW, Yang CH. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochemical Biophysical Research Communication, 2004, 321 (2) : 337–344.
    46. Singh SV, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL, Zaren HA. Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis , 1998, 19 (8) :1357–1360.
    47. Deshpande SS, Ingle AD, Maru GB. Inhibitory effects of curcuminfree aqueous turmeric extract on benzo[a]pyrene-induced forestomach papillomas in mice. Cancer Letters , 1997, 118 (1): 79–85.
    48. Huang MT, Smart RC,Wong CQ, Conney AH. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Research, 1988, 48 (21) : 5941–5946.
    49. Mohandas KM, Desai DC. Epidemiology of digestive tract cancers in India. V. Large and small bowel. Indian Journal of Gastroenterology , 1999, 18 (3) : 118–121.
    50. Sugiyama Y, Kawakishi S, Osawa T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochemical Pharmacology , 1996, 52 (4) : 519–525.
    51. Simon A, Allais DP, Duroux JL, Basly JP, Durand-Fontanier S, Delage C. Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationships. Cancer Letters , 1998, 129 (1) : 111–116.
    52 Robinson TP, Ehlers T, Hubbard IR, Bai X, Arbiser JL, Goldsmith DJ, Bowen JP. Design, synthesis, and biological evaluation of angiogenesis inhibitors: aromatic enone and dienone analogues of curcumin. Bioorganic and Medicinal Chemistry Letters , 2003, 13 (1) :115–117.
    53. Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. Antitumour and antioxidant activity of natural curcuminoids. Cancer Letters , 1995, 94 (1) : 79–83.
    54. Bharti AC ,Donato N , Singh S , Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and I kappa B alpha kinase in human multiple myeloma cells , leading to suppression of proliferation and induction of apoptosis. Blood ,2003 , 101 (3) :1053-1062.
    55. Shishodia S ,Potdar P ,Gairola CG, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of I kappa B alpha kinase in human lung epithelial cells : correlation with suppression of COX-2 , MMP-9 and cyclin D1 . Carcinogenesis , 2003 , 24 (7) :1269-1279.
    56. Bierhaus A, Zhang Y, Quehenberger P, Luther T, Haase M, Muller M, Mackman N, Ziegler R, Nawroth PP. The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thrombosis and Haemostasis , 1997, 77 (4) : 772–782.
    57. Park S, Lee DK, Yang CH. Inhibition of fos–jun–DNA complex formation by dihydroguaiaretic acid and in vitro cytotoxic effects on cancer cells. Cancer Letters , 1998, 127 (1–2) : 23–28.
    58. Huang TS, Kuo ML, Lin JK, Hsieh JS. A labile hyperphosphorylated c-Fos protein is induced in mouse fibroblast cells treated with a combination of phorbol ester and anti-tumor promoter curcumin. Cancer Letters , 1995, 96 (1): 1–7.
    59. Leu TH, Maa MC. The molecular mechanisms for the antitumorigenic effect of curcumin. Current Medicinal Chemistry. Anti-Cancer Agents , 2002, 2 (3) : 357–370.
    60. Thresiamma KC, George J, Kuttan R. Protective effect of curcumin, ellagic acid and bixin on radiation induced genotoxicity. Journal of Experimental and Clinical Cancer Research , 1998, 17 (4) : 431–434.
    61 Shukla Y, Arora A, Taneja P. Antimutagenic potential of curcumin on chromosomal aberrations in Wistar rats. Mutation Research , 2002, 515 (1–2) : 197–202.
    62. Boedefeld WM, Bland KI, Heslin MJ. Recent insights into angiogenesis, apoptosis, invasion, and metastasis in colorectal carcinoma. Annals of Surgical Oncology , 2003, 10(8) : 839–851.
    63. Dorai T, Cao YC, Dorai B, Buttyan R, Katz AE. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate , 2001, 47 (4) : 293–303.
    64. Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene , 2001, 20 (52) : 7597–7609.
    65. Deeb D, Xu YX, Jiang H, Gao X, Janakiraman N, Chapman RA, Gautam SC. Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Molecular Cancer Therapeutics , 2003, 2 (1) : 95–103.
    66. Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Letters , 2002, 512 (1–3) : 334–340.
    67. Bush JA, Cheung KJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Experimental Cell Research , 2001, 271 (2) : 305–314.
    68. Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang S, Lee MJ, Yang CS. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis , 2004, 25 (9) : 1671–1679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700