燃料电池供电系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类生活水平的不断提高,对能源的需求大幅度增加。化石能源等不可再生能源正日益枯竭,而且它所造成的环境污染日益严重。氢能作为一种绿色新能源,得到越来越多的应用。氢能利用的一个重要方面就是燃料电池,它将氢和大气中的氧反应转换为电能,其反应产物为纯净水,对环境没有污染,而且噪声也很小。因此燃料电池供电系统的研究对新能源的发展和应用具有重要的意义。
     本文提出了燃料电池供电系统的通用结构,根据实际设计情况,通过分析和对比,确定了复合式燃料电池供电系统结构作为本文所要研究系统的结构。该系统由燃料电池、单向变换器、双向变换器、蓄电池和逆变器构成,其中蓄电池通过双向变换器与直流母线并联,该系统具有以下优点:1)由于蓄电池的引入,燃料电池的功率等级只需按照系统额定功率进行配置,从而降低整个系统的成本;2)当负载发生突变燃料电池来不及反应时,可由蓄电池通过双向变换器向负载供电,动态响应快。系统开机时,可以由蓄电池向负载供电,因此便于燃料电池的自启动;3)双向变换器可以控制蓄电池的充放电电流,延长蓄电池的寿命;4)双向变换器的一端与直流母线并联,而直流母线的电压相对比较稳定,因此双向变换器优于设计,可以减小电感大小,从而提高动态性能;5)可以通过选择双向变换器的工作模式来实现系统的能量管理,确保燃料电池和蓄电池协调工作,使得系统可以高效工作。
     燃料电池没有功率调节能力,外特性很软,这就要求单向DC-DC变换器可以在很宽的输入电压范围内高效工作。本文将LLC谐振网络引入到复合式全桥三电平变换器中,得到了适合于燃料电池供电系统的复合式全桥三电平LLC谐振变换器。该变换器集成了复合式全桥三电平变换器和LLC谐振变换器的优点:1)适合于宽输入电压范围的应用场合,可以在很宽的输入电压范围内高效工作;2)三电平桥臂的开关管电压应力只有输入电压的一半;3)输出整流二极管实现ZCS,而且其电压应力仅为输出电压;4)可以在全负载范围内实现ZVS;5)输入电流纹波和输出滤波器可以减小。实验结果验证了理论分析的正确性。
     在高压的燃料电池供电系统中可采用加箝位二极管ZVS PWM三电平变换器,但原有的变换器存在一定的缺点,本文对原变换器进行改进,将变压器和谐振电感交换位置,使变压器与滞后管相连。改进型加箝位二极管ZVS PWM三电平变换器保留了原变换器消除输出整流管反向恢复引起的电压振荡的优点,并且还具有以下优点:1)在一个周期中,箝位二极管只导通一次,因此其电流定额可以减小;2)零状态时导通损耗小,效率可以提高;3)占空比丢失小。此外,还讨论了隔直电容在不同位置时对变换器工作的影响,确定了一种最佳工程方案,即在改进后变换器的变压器中串联隔直电容,并以一个3kW的原理样机进行了实验验证。
     燃料电池动态响应慢,自启动困难,所以系统中引入了蓄电池和双向变换器。本文提出了适合于燃料电池供电系统的三电平Buck/Boost双向变换器。该变换器具有以下优点:1)电感可以大大减小,提高变换器的动态响应,从而优化整个系统的动态特性;2)开关管电压应力仅为高电压端输入电压的一半。由于系统中除了燃料电池外,还有蓄电池作为能量存储装置用来在不同的条件下给负载辅助供电或吸收多余的能量。为了确保系统具有很高的效率和可靠的稳定性,必须保证燃料电池和蓄电池协调工作,对整个系统的能量走向流进行管理。本文提出了系统的能量管理控制思路,其核心是根据燃料电池和蓄电池的状态来控制双向变换器,使其分别工作在Buck、Boost或关机模式,以此来控制蓄电池的充放电状态,从而对整个系统进行能量管理。本文确定了单向和双向变换器稳压和限流值,以及蓄电池切入切出系统的切换点,着重分析了系统在冷启动和过载时的情况。
     根据以上的分析,本文构建了一个1kW的燃料电池供电系统,并对该系统进行了深入的实验研究。实验结果表明,系统在稳态、冷启动、负载突变、过载等条件下均能很好的工作,验证了能量管理控制的有效性。
The environment concern is now the driving force for seeking new clean energy such as geothermal, photovoltaic, hydroelectric, wind generation, etc. Fuel cell is an electrochemistry device, it uses hydrogen, propane, natural gas, or other fuels to generate electricity without increasing pollution. The emission of fuel cell is only water, and the noise is very low. Therefore, it has been receiving more and more attention in distributed generation power system and electrical vehicles.
     This paper proposes a universal fuel cell power system structure. Based on the system specifications we design, a hybrid fuel cell power system structure is employed in this system. It consists of a fuel cell, an isolated uni-directional converter, a bi-directional converter, an inverter and a battery. The proposed system has several advantages as follows: 1) Fuel cell is the most expensive component in the system. Thanks to the introduction of battery, the power rating of fuel cell can be decreased, so the total cost of the system is reduced. 2) When the load varies, the fuel cell cannot response immediately, battery will provide or absorb the dynamic energy, so the dynamic characteristic of the system can be improved. Battery also powers the system during the system start process, which make the system be easy to cold start.3) Bi-directional converter can limit battery charge and discharge current and lead to a longer life of battery. 4) One side of bi-directional converter is connected to DC bus, whose voltage is steady, thus the inductor of bi-directional converter can be minimized, leading to a good dynamic characteristic.5) Power management can be employed to ensure that fuel cell and battery cooperate well and improve system efficiency.
     Zero-voltage-switching pulse-width-modulation three-level converter (ZVS PWM TL converter) is widely used in high voltage applications. But it has some shortages. This paper proposes a improved ZVS PWM TL converter, which is improved from the original ZVS PWM TL converter just by exchanging the position of the resonant inductor and the transformer, such that the transformer is connected with the lagging switches. The improved converter not only keeps the advantages of original converter, but also has several advantages over the original one, e.g., the clamping diodes conduct only once in a switching period, and the resonant inductor current is smaller in zero state, leading to a higher efficiency and reduced duty cycle loss. A blocking capacitor is usually introduced to the primary side to prevent the transformer from saturating, this paper analyzes the effects of the blocking capacitor in different positions, and a best scheme is determined. A 3kW prototype converter verifies the effectiveness of the improved converter and the best scheme for the blocking capacitor.
     The output voltage of fuel cell fluctuates with the load significantly, which is too wide to power the inverter. Therefore, a uni-directional DC-DC converter is needed to convert the variable output voltage of the fuel cell to a constant one. The DC-DC converter should be adaptive to the wide input voltage range. This paper proposes a novel hybrid full-bridge three-level LLC resonant converter. It integrates the advantages of the hybrid full-bridge three-level converter and the LLC resonant converter. It can operate under both three-level mode and two-level mode, so it is very suitable for wide input voltage range application, such as fuel cell power system. Compared with the traditional full-bridge converter, the input current ripple and output filter can be reduced. In addition, all the switches can realize zero-voltage- switching from zero to full load, and the switches of the three-level leg only sustain half of the input voltage. Moreover, the rectifier diodes can achieve zero-current- switching, and the voltage stress across them is the output voltage. A 200-400V input, 360V/4A output prototype is built to verify the operation principle of the proposed converter.
     Fuel cell has slow response and it is difficult to cold start. Therefore, a battery and a bi-directional converter are employed in the system. This paper proposes a new three-level Buck/Boost bi-directional converter, which is suitable for fuel cell power system. Compared with the traditional Buck/Boost bi-directional converter, the inductor also can be reduced significantly, so the dynamic response can be improved. The voltage stress on the switch of the proposed converter is just half of the voltage on the high voltage side. Therefore, it is very suitable for fuel cell power systems. This paper illustrates the operation principle and implementation of the control circuit. A 1kW prototype converter is built to verify the theoretical analysis.
     In the system, there are two power sources: fuel cell and battery. Therefore, it needs to manage two sources to ensure the system operate with high efficiency and high reliability. This paper proposes a power management scheme. The key point of this power management scheme is to control bi-directional operates under Buck, Boost or Shut-Down mode according to the conditions of fuel cell and battery. Cold start and overload processes are analyzed in detail.
     According to the theoretical analysis, a 1kW fuel cell power system is built in lab to verify the theoretical analysis. Experimental results illustrate that system operates well under steady, cold start, overload, load step up and down.
引文
[1] Larminie J, Dicks A. Fuel cell systems explained, USA: Wiley, 2003.
    [2] Cheng K W E, Sutanto D, Ho Y L, Law K K. Exploring the power conditioning system for fuel cell. Proc. IEEE PESC, 2001. 2197-2202.
    [3] Friede W, Rael S, Davat B. Mathematical model and characterization of the transient behavior of a PEM fuel cell. IEEE Transactions on Power Electronics, 2004, 19(5): 1305-1314.
    [4] 衣宝廉. 燃料电池: 原理技术应用. 北京: 化学工业出版社, 2003.
    [5] 衣宝廉. 燃料电池现状与未来. 电源技术, 1998, 22(5): 216-221.
    [6] 孟黎清. 燃料电池的历史和现状. 电力学报, 2002, 17(2): 99-104.
    [7] 黄镇江. 燃料电池及其应用. 北京: 电子工业出版社, 2005.
    [8] Sedghisigarchi K, Feliachi A. Dynamic and transient analysis of power distribution systems with fuel cells – part I: fuel-cell dynamic model. IEEE Transactions on Energy Conversion, 2004, 19(2): 423-428.
    [9] Wang C, Nehrir M, Shaw S. Dynamic models and model validation of PEM fuel cells using electrical circuits. IEEE Transactions on Energy Conversion, 2005, 20(2): 442-451.
    [10] Pasricha S, Shaw S. A dynamic PEM fuel cell model. IEEE Transactions on Energy Conversion, 2006, 21(2): 484-490.
    [11] 许世森, 程健. 燃料电池发电系统. 北京: 中国电力出版社, 2006.
    [12] Emadi A, Rajashekara K, Williamson S, et al. Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations. IEEE Transactions on Vehicle Technology, 2005, 54(3): 763-780.
    [13] Gao W. Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain. IEEE Transactions on Vehicle Technology, 2005, 54(3): 846-855.
    [14] Sharma R, Gao H. Low cost high efficiency dc-dc converter for fuel cell powered auxiliary power unit of a heavy vehicle. IEEE Transactions on Power Electronics, 2006, 21(3): 587-591.
    [15] Schofield N, Yap H, Bingham C. Hybrid energy sources for electric and fuel cell vehiclepropulsion. Proc. IEEE VPP, 2005. 522-529.
    [16] Candusso D. Rulliere E. Toutain E. A fuel cell hybrid power source for a small electric vehicle. Universities Power Engineering Conference 2001. 85-92.
    [17] 马紫峰, 陆天虹, 袁权. 绿色机动车—燃料电池汽车. 上海环境科学, 1999, 18(12): 551-554.
    [18] 胡骅, 宋慧. 燃料电池电动汽车的电控系统(I). 汽车电器, 2004, (6): 50-52.
    [19] 胡骅, 宋慧. 燃料电池电动汽车的电控系统(II). 汽车电器, 2004, (7): 48-53.
    [20] 胡骅, 宋慧. 燃料电池电动汽车的电控系统(III). 汽车电器, 2004, (8): 53-56.
    [21] 胡骅, 宋慧. 燃料电池电动汽车的电控系统(续完). 汽车电器, 2004, (9): 51-53.
    [22] Sedghisigarchi K. Feliachi A. Dynamic and transient analysis of power distribution systems with fuel cells – part II: control and stability enhancement. IEEE Transactions on Energy Conversion, 2004, 19(2): 429-434.
    [23] Aki H, Yamamoto S, Ishikawa Y, et al. Operational strategies of networked fuel cells in residential homes. IEEE Transactions on Power Systems, 2004, 21(3): 1405- 1414.
    [24] Staunton R, Berry J, Dunn C. Compatibility study of fuel-cell protective relaying and local distribution system. IEEE Transactions on Power Delivery, 2005, 20(3): 1825-1829.
    [25] Jacobs R, Christopher H, Hamlen R, et al. Portable power source needs of the future army-batteries and fuel cells. IEEE Aerospace and Electronics Systems Magazine, 1996, 11(6): 19-25.
    [26] Patil A, Jacobs R. US army small fuel cell development program. IEEE Aerospace and Electronics Systems Magazine, 2000, 15(3): 35-37.
    [27] Patel-Predo P. Traveling light – micro fuel cells could give soldiers less weight to catty. IEEE Spectrum, 2006, 43(7): 20-21.
    [28] Blaabjerg F, Chen Z, Kjaer S. Power electronics as efficient interface in dispersed power generation systems. IEEE Transactions on Power Electronics, 2004, 19(5): 1184-1194.
    [29] Carrasco J, Franquelo L, Bialasiewicz J, et al. Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1002-1016.
    [30] Xue Y, Chang L, Kj?r S, et al. Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Transactions on Power Electronics, 2004, 19(5): 1305-1314.
    [31] Macken K, Vanthournout K, Keybus J, et al. Distributed control of renewable generationunits with integrated active filter. IEEE Transactions on Power Electronics, 2004, 19(5): 1353-1360.
    [32] Liserre M, Teodorescu R, Blaabjerg F. Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Transactions on Power Electronics, 2006, 21(1): 263-272.
    [33] Bialasiewicz J, Muljadi E. Analysis of renewable-energy systems using RPM-SIM simulator. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1137-1143.
    [34] Kjaer S, Pedersen J, Blaabjerg F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industrial Applications, 2005, 41(5): 1292- 1306.
    [35] Kwon J, Nam K, Kwon B. Photovoltaic power conditioning system with line connection. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1048-1054.
    [36] Shimizu T, Hirakata M, Kamezawa T, et al. Generation control circuit for photovoltaic modules. IEEE Transactions on Power Electronics, 2001, 16(3): 293-300.
    [37] Petru T, Thiringer T. Modeling of wind turbines for power system studies. IEEE Transactions on Power Systems, 2002, 17(6): 1132-1139.
    [38] Teodorescu R, Blaabjerg F. Flexible control of small wind turbines with grid falure detection operating in stand-alone and grid-connected mode. IEEE Transactions on Power Electronics, 2004, 19(5): 1323-1332.
    [39] Popa L, Blaabjerg F, Boldea I. Wind turbine generator modeling and simulation where rotational speed is the controlled variable. IEEE Transactions on Industrial Applications, 2004, 40(1): pp.3-10.
    [40] Petersson A, Thiringer T, Harnefors L, et al. Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Transactions on Energy Conversion, 2005, 20(4): 878-886.
    [41] Li H, Steurer M, Shi K, et al. Development of a unified design, test, and research platform for wind energy systems based on hardware-in-the-loop real-time simulation. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1144-1151.
    [42] Chen Y, Cheng C, Wu H. Grid-connected hybrid PV/wind power generation system with improved dc bus voltage regulation strategy. Proc. IEEE APEC, 2006. 1088- 1094.
    [43] Schenck M E, Lai J, Stanton K. Fuel cell and power conditioning system interactions. Proc. IEEE APEC, 2005. 114-120.
    [44] Attanasio R, Cacciato M, Consoli A, et al. A novel converter system for fuel cell distributed energy generation. Proc. IEEE PESC, 2005.1621-1627.
    [45] Jiang Z, Gao L, Dougal R. Flexible multiobjective control of power converter in active hybrid fuel cell/battery power sources. IEEE Transactions on Power Electronics, 2005, 20(1): 244-253.
    [46] Jiang Z, Dougal R. A compact digitally controlled fuel cell/battery hybrid power source. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1094-1104.
    [47] Jiang Z, Dougal R. A hybrid fuel cell power supply with rapid dynamic response and high peak-power capacity. Proc. IEEE APEC, 2006. 1250-1255.
    [48] Santi E, Franzoni D, Monti A, et al. A fuel cell based domestic uninterruptible power supply. Proc. IEEE APEC, 2002. 605-613.
    [49] Wang J, Peng F Z, Anderson J, et al. Low cost fuel cell converter system for residential power generation. IEEE Transactions on Power Electronics, 2004, 19(5): 1315-1322.
    [50] Yuwen B, Jiang X, Zhu D. Structure optimization of the fuel cell powered electric drive system. Proc. IEEE PESC, 2003. 391-394.
    [51] Jiang Z, Dougal R. Control design and testing of a novel fuel-cell-powered battery- charging station. Proc. IEEE APEC, 2003. 1127-1133.
    [52] Choi W, Enjeti P, Howze J W. Fuel cell powered ups systems: design considerations. Proc. IEEE PESC, 2003. 385-390.
    [53] Nergaard T A, Ferrell J F, Leslie L G, et al. Design considerations for a 48V fuel cell to split single phase inverter system with ultracapacitor energy storage. Proc. IEEE PESC, 2002. 2007-2012.
    [54] Candusso D, Valero I, Walter A, et al. Modeling, control and simulation of a fuel cell based power supply system with energy management. Proc. IEEE IECON, 2002. 1294-1299.
    [55] Xu H, Li K, Wen X. Fuel cell power system and high power dc-dc converter. IEEE Transactions on Power Electronics, 2004, 19(5): 1250-1255.
    [56] 周未, 王金全, 仲未秧. PEM 燃料电池的应用前景. 电池工业, 2004, 9(4): 208-212.
    [57] 沈国桥, 徐德鸿, 朱选才等. 燃料电池发电系统结构与逆变控制. 2006 台达电力电子新技术研讨会, 2006. 91-96.
    [58] Liu C, Nergaard T, Leslie L, et al. Power balance control and voltage conditioning for fuel cell converter with multiple sources. Proc. IEEE PESC, 2002. 2001-2006.
    [59] Palma L, Todorovic M, Enjeti P, et al. Analysis of dc-dc converter stability in fuel cellpowered portable electronic systems. Proc. IEEE PESC, 2006. 2204-2209.
    [60] Todorovic M, Palma L, Enjeti P. A hybrid dc-dc converter for fuel cell powered laptop computers. Proc. IEEE PESC, 2006. 2210-2214.
    [61] Erickson R W, Maksimovic D. Fundamentals of Power Electronics. 2nded, Massachusetts: Kluwer Academic, 1999.
    [62] 阮新波, 严仰光. 直流开关电源的软开关技术. 北京: 科学出版社, 2000.
    [63] 阮新波, 严仰光. 脉宽调制 DC/DC 全桥变换器的软开关技术. 北京: 科学出版社, 1999.
    [64] 阮新波. 移相控制零电压开关 PWM 变换器的研究. 工学博士学位论文, 南京: 南京航空航天大学, 1996.
    [65] 阮新波. PWM DC/DC 全桥变换器的软开关技术的研究. 博士后研究报告, 南京: 南京航空航天大学, 1998.
    [66] Redl R, Sokal N O, Balogh L. A novel soft-switching full-bridge DC/DC converter: analysis, design considerations, and experimental results at 1.5KW, 100kHz. IEEE Transactions on Power Electronics, 1991, 6(3): 408-418.
    [67] Redl R, Balogh L, Edwards D W. Optimum ZVS full-bridge DC/DC converter with PWM phase-shift control: analysis, design considerations, and experimental results. Proc. IEEE APEC 1994. 159-165.
    [68] Ruan X, Yan Y. Soft-switching techniques for PWM full bridge converters. Proc. IEEE PESC 2000. 634-639.
    [69] Ruan X, Wang J, Chen Q. An improved current-doubler-rectifier ZVS PWM full- bridge converter. Proc. IEEE PESC 2001. 1749-1754.
    [70] Ruan X, Liu F. An improved ZVS PWM full-bridge converter with clamping diodes. Proc. IEEE PESC 2004. 1476-1481.
    [71] Su G J, Peng F Z, Adams D J. Experimental evaluation of a soft-switching dc/dc converter for fuel cell vehicle applications. Power Electronics in Transportation, 2002. 39-44.
    [72] Zhou L, Ruan X. A zero-current and zero-voltage-switching PWM boost full-bridge converter. Proc. IEEE PESC 2003. 957-962.
    [73] Ma Y, Ruan X, Yan Y. Zero-voltage and zero-current-switching PWM push-pull three-level converters. Proc. IEEE PESC, 2002. 1823-1828.
    [74] Napoli A D, Crescimbini F, Rodo S, et al. Multiple input dc-dc power converter for fuel- cell powered hybrid vehicles. Proc. IEEE PESC, 2002. 1685- 1690.
    [75] Krein P, Balog R, Geng X. High-frequency link inverter for fuel cell based on multiple-carrier PWM. IEEE Transactions on Power Electronics, 2004, 19(5): 1279- 1288.
    [76] Krein P, Balog R. Low cost inverter suitable for medium-power fuel cell sources. Proc. IEEE PESC, 2002. 321- 326.
    [77] Sable D M, Lee F C, Cho B H. A zero-voltage-switching bidirectional battery charger/discharger for the NASA EOS satellite. Proc. IEEE APEC, 1992. 614-621.
    [78] 朱成花, 张方华, 严仰光. 两段稳压软开关双向 Buck/Boost 变换器研究. 南京航空航天大学学报, 2004, 36(2): 226-230.
    [79] Wang K, Lin C Y, Zhu L, et al. Bi-directional dc to dc converters for fuel cell systems. Power Electronics in Transportation, 1998. 47-51.
    [80] Chan H L, Cheng K W E, Sutanto D. A novel square-wave converter with bidirectional power flow. Proc. IEEE PEDS, 1999. 966-971.
    [81] Wang K, Zhu L, Qu D, et al. Design, implementation, and experimental results of bi-directional full-bridge dc/dc converter with unified soft-switching scheme and soft-starting capability. Proc. IEEE PESC, 2000. 1058-1063.
    [82] Song Y. Enjeti P N. A new soft switching technique for bi-directional power flow, full-bridge dc-dc converter. Proc. IEEE IAS, 2002. 2314-2319.
    [83] Chan H L, Cheng K W E, Sutanto D. Zcs-zvs bi-directional phase-shifted dc-dc converter with extended load range. Proc. IEE EPA, 2003. 269-277.
    [84] Himmelstoss F A. Analysis and comparison of half-bridge bidirectional dc-dc converters. Proc. IEEE PESC, 1994. 922-928.
    [85] Jain M, Jain P K. A bidirectional dc-dc converter topology for low power application. IEEE Transactions on Power Electronics, 2000, 15(4): 595-606.
    [86] Li H. Modeling and control of a high power soft-switched bi-directional dc/dc converter for fuel cell applications. PhD dissertation, the University of Tennessee, 2002.
    [87] Li H, Peng F Z, Lawler J S. A natural zvs medium-power bidirectional dc-dc converter with minimum number of devices. IEEE Transactions on Industrial Applications, 2003, 39(2): 525-535.
    [88] Li H, Peng F Z. Modeling of a new zvs bi-directional dc-dc converter. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 272-283.
    [89] Peng F Z, Li H, Su G J, et al. A new zvs bidirectional dc-dc converter for fuel cell and battery application. IEEE Transactions on Power Electronics, 2004, 19(1): 54-65.
    [90] Chiu H, and Lin L. A bi-directional dc-dc converter for fuel cell electric vehicle driving system. IEEE Transactions on Power Electronics, 2006, 21(4): 950-958.
    [91] Ruan X, Chen Z, and Chen W. Zero-voltage-switching pwm hybrid full-bridge three-level converter. IEEE Transactions on Power Electronics, 2005, 20(2): 395-404.
    [92] Ruan X, Li B. Zero-voltage and zero-current-switching pwm hybrid full-bridge three-level converter. IEEE Transactions on Industrial Electronics, 2005, 52(1): 213-220.
    [93] Yang B, Lee F C, Zhang A J, et al. LLC resonant converter for front end dc/dc conversion. Proc. IEEE APEC, 2002. 1108-1112.
    [94] Yang B, Lee F C, Concannon M. Over current protection methods for llc resonant converter. Proc. IEEE APEC, 2003. 605-609.
    [95] Gu Y, Lu Z, Qian Z. Three level LLC series resonant dc/dc converter. Proc. IEEE APEC, 2004. 1647-1652.
    [96] Raju G S N, Doradla S. An LCL resonant converter with pwm control - analysis, simulation, and implementation. IEEE Transactions on Power Electronics, 1995, 10(2): 164-174.
    [97] Canales F, Barbosa P, Aguilar C, et al. A high-power-density dc/dc converter for high- power distributed power systems. Proc. IEEE PESC, 2003. 11-18.
    [98] Ruan X, Li B, Wang J, et al. Zero-voltage-switching PWM three-level converter with current-double-rectifier. IEEE Transactions on Power Electronics, 2004, 19(6): 1523-1532.
    [99] Ruan X, Li B, Chen Q. Three-level converters -- a new approach in high voltage dc-to-dc conversion. Proc. IEEE PESC, 2002. 663-668.
    [100] Ruan X, Wei J, Xue Y. Three-level converters with the input and output sharing the ground. Proc. IEEE PESC, 2003. 1919-1923.
    [101] Meynard T A, Foch H. Multi-level conversion: high voltage choppers and voltage-source inverters. Proc. IEEE PESC, 1992. 397-403.
    [102] J.R. Pinherio and Ivo Barbi. Three-level zvs pwm converter - a new concept in high-voltage dc/dc conversion. Proc. IEEE IECON, 1992, pp.173-178.
    [103] Pinherio J R, Barbi I. Wide load range three-level zvs-pwm dc-to-dc converter. Proc. IEEE PESC, 1993. 171-177.
    [104] Ruan X, Zhou L, Yan Y. Soft-switching pwm three-level converters. IEEE Transactions on Power Electronics, 2001, 16(5): 612-622.
    [105] Ruan X, Xu D, Zhou L, et al. Zero-voltage-switching pwm three-level converter with two clamping diodes. IEEE Transactions on Industrial Electronics, 2001, 49(4): 790-799.
     [106] Chen Q, Loft A, Lee F C. Design trade-offs in 5-V output off-line zero-voltage-switched pwm converter. Proc. IEEE INTELEC, 1991. 616-623.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700