直流电阻率与瑞雷面波非线性联合反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前常用于浅层物探的直流电阻率法以及瑞雷面波法在环境与工程物探中发挥了重要作用,这些方法技术日趋成熟,其正反演理论、解释方法及应用等正在逐步完善。但多解性仍是反演过程中无法克服的弊病,有必要采用联合反演方法,通过增加约束条件来降低其多解性。本文提出将人工蜂群算法用于多种方法的反演中,研究了多种方法的联合反演,以达到克服多解性,提高反演精度与效率的目的。
     首先在详细分析了直流电阻率测深法、高密度电阻率法和瑞雷面波法的原理、方法及正演理论基础上,利用工具,分别编制了直流电阻率测深法、高密度电阻率法和瑞雷面波法的正演程序,其中电阻率测深法采用了线性滤波法,高密度电阻率法采用了有限单元法,瑞雷面波法采用了快速标量传递算法。对一维的二层、三层、四层地质模型和二维单体低阻异常、一高一低双阻异常、混合异常模型进行了正演计算,并对计算结果进行了分析,为直流电阻率测深法、高密度电阻率法和瑞雷面波反演提供研究基础。
     其次在阐述人工蜂群算法的原理基础上,根据直流电阻率测深法、高密度电阻率法和瑞雷面波法的各自原理和特点,建立适合于人工蜂群算法的非线性反演目标函数。通过试验分析,选择适合于各种反演方法的最佳参数组合,并利用
     程序实现了基于人工蜂群算法的直流电阻率测深、高密度电阻率法、瑞雷波基阶模式非线性反演算法。进一步研究了瑞雷波多阶模式联合非线性反演算法、电测深与瑞雷波基阶模式联合反演算法、电测深与瑞雷波多阶模式联合反演算法。经过对理论模型的试算,得出基于人工蜂群算法反演模型的稳定性和可推广性结论。
     最后通过河北承德民用机场勘查项目实例验证,结果表明基于人工蜂群算法的电测深与瑞雷面波联合非线性反演方法能够有效解决单一方法的多解性问题,具有反演收敛速度快和较好的拟合性和推广能力。
Currently the electrical method and Rayleigh wave seismic method used in the near-surface geophysical played an important role in the Environmental and Engineering Geophysical. These exploration methods including forward and inversion theory, explain the methods and applications are gradually improving. However in the inversion process, it is necessary to adopt a joint inversion by adding constrains to reduce the multiplicity. This dissertation proposed artificial bee colony algorithm for multiple methods of inversion, studied joint inversion of many methods to overcome the multiplicity to improve inversion accuracy and efficiency.
     First of all, detailed analysis of principles, methods and forward modeling theory of DC resistivity sounding method, high-density resistivity method and Rayleigh wave method, using Matlab respectively programmed the forward modeling of DC resistivity sounding, High-density resistivity and Rayleigh wave mothod, which used linear filter algorithm in DC resistivity sounding method, used limited unit algorithm in High-density resistance rate law, used speed scalar transfer algorithm int Rayleigh wave. Fitted for the two-story, three-story, four-story model of the one-dimensional geological model and the single low resistance, one high and one low double resistance, mixed abnormal model of the two-dimensional geological model and analyzed the fitting results. These works provided preparation for inversion.
     Second of all, based on the artificial bee colony algorithm principle, established suitable non-linear inversion objective function of the artificial bee colony algorithm according to the respective principles and characteristics of DC resistivity sounding, high-density resistivity method and Rayleigh wave method. Through experimental analysis, chosen the best combination of parameters for a variety of inversion methods, and used Matlab respectively programmed nonlinear inversion algorithm based on artificial bee colony algorithm for DC resistivity sounding, High-density resistivity method, the first model of Rayleigh wave, and studied Rayleigh wave multi-stage mode joint nonlinear inversion algorithms, electrical sounding and first mode of Rayleigh wave joint inversion algorithm, electrical sounding and Rayleigh wave multi-stage model joint inversion algorithm. After calculating the theoretical model, obtained the conclusion that inversion model based on artificial bee colony algorithm has the advantages of stability and promotional.
     Finally, validating by Hebei Chengde Civil Airport Exploration Project, the results showed that joint nonlinear inversion method of the electrical sounding and the Rayleigh wave based on artificial bee colony algorithm has effectively solved the problem of multiplicity of a single method, and has convergence rate, better fitting and generalization.
引文
Banharnsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection inartificial bee colony algorithm[J]. Applied Soft Computing,2011,11(2):2888-2901.
    Basturk B, Karaboga D. An artificial bee colony(ABC) algorithm fornumericfunction optimization[C], Proc of IEEE Swarm Intelligence Symposium.2006.
    Bernardino A M, Bernardino E M, Sanchez-Perez J M, et al.Efficient load balancingfor a resilient packet ring using artificial bee colony[J].EvolutionaryApplications,2010,6025(2):61-70.
    Calderon-Macias C, Luke B. Improved parameterization to invert Rayleigh-wavedata for shallow profiles containing stiff inclusions[J]. Geophysics,2007,72(1):U1-U10.
    Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[A].Proc of1stEuropean Conf Artificial Life[C]. Pans: Elsevier,1991,134-142.
    Constable S C,Parker R L,Constable C G. Occam’s Inversion: A practical algorithmfor generating smooth models from electromagnetic sounding data[J]. Geophysics,1987,52(3):289-399.
    Dal Moro G, Pipan M, Gabrielli P. Rayleigh wave dispersion curve inversion viagenetic algorithms and Marginal Posterior Probability Density estimation[J].Journal of Applied Geophysics,2007,61(1):39-55.
    Feng S, Sugiyama T, Yamanaka H. Effectiveness of multi-mode surface waveinversion in shallow engineering site investigation[J]. Exploration Geophysics,2005,36:26-33.
    Fothriger T. Inversion of shallow-seismic wavefields:ⅡInferring subsurfaceproperties from wavefield transforms[J]. Geophysical Journal International,2003,153:735-752.
    Gabriels P, Snieder R, Nolet G. In situ measurements of shear-wave velocity insediments with higher-mode Rayleigh waves[J]. Geophysical Prospecting,1987,35:187-196.
    Ghosh, D. P. The application of linear filter theory to the direct interpretationof geoelectrical resistivity sounding measurements[J].Geophysical prospecting,1971,2:19.
    Goldman M, Eckard M, Rabinovich M, et al. Onedimensional joint inversion of3Dtransient electromagnetic (TEM) and audiomagnetotellurics (AMT) data[J]. EuropeanAssociation of Exploration Geophysicists, Meeting, Abstracts of Papers.1993,55.
    Gomez-Trevino E, Edwards R N. Electromagnetic sounding in the sedimenary basinof southern Ontario a case history[J]. Geophysics,1983,48(3):311-330.
    H. Yamanaka. Comparison of the performance of heuristic search methods for phasevelocity inversion in the shallow surface wave method [J]. Journal of Environmental&Engineering Geophysics,2005,10(2):163-173.
    Hering A, Misiek R, Gyulai A. A joint inversion algorithm to process geoelectricand surface wave seismic data Part Ⅰ: basic ideas[J]. Geophysical Prospecting,1995,43(2):135-156.
    Ho S L, YANG Shi-you. An artificial bee colony algorithm for inverse problems[J].International Journal of Applied Electromagnetics and Mechanics,2009,31(3):181-192.
    Jiang Fan, Wu jiansheng, Wang Jialin. Joint inversion of gravity and magneticdata for a two-layer model[J]. Applied geophysics,2008,5(4):331-339.
    Jupp D L B, Vozoff K. Stable iterative methods for the inversion of geophysicaldata[J]. The Geophysical Journal of the Royal Astronomical Society,1975,42(3):957-976.
    K. S. Beaty and D. R. Schmitt. Repeatability of multimode Rayleigh-wavedispersion studies [J]. Geophysics,2003,68(3):782-790.
    Karaboga D, Akay B. A modified artificial bee colony (ABC) algorithm forconstrained optimization problems[J].Applied Soft Computing,2011,11(3):3021-3031.
    Karaboga D.An idea based on honey bee swarm for numerical optimization[R],Technical Report-TR06, Turkey: Erciyes University,2005.
    Karaboga D, Ozturk C. Neural networks training by artificial bee colonyalgorithm on pattern classification[J].Neural Network World,2009,19(3):279-292.
    Karaboga D, Ozturk C. A novel clustering approach: artificial bee colony (ABC)algorithm[J]. Applied Soft Computing,2011,11(1):652-657.
    Keller G.V. and Frischknecht F.C.1966. Electrical methods in geophysicalprospecting[M]. Oxford: Pergamon Press Inc,1966.
    Kennedy J, Eberhart R. Particle swarm optimization[A].Proc IEEE Int Conf onNeural Networks[C].Perth:IEEE,1995,1942-1948.
    Kennedy J, Eberhart R C. Swarm Intelligence[M]. San Francisco: Morgan Kaufmanndivision of Academic Press,2001.
    Kirkpatrick S, Gelatt C D, Vecchi Jr M P. Optimization by simulated annealing.Science,1983,220(4598):671-680.
    Koefoed,O. The application of the kernel function in interpreting geoelectricalresistivity measurements[J]. Geoexploration monographs,1968,Series1,2.
    Lai C G, Foti S, Rix G J. Propagation of data uncertainty in surface waveinversion[J]. Journal of Environmental&Engineering Geophysics,2005,10(2):219-228.
    Li.Y, Oldenburger, D.W. Approximate inverse mappings in DC resistivityproblem[J]. Geophysical Jounral International,1992,109:343-362.
    Li.Y, Oldenburger, D.W. Inversion of3-D DC resistivity data using anapproximate inverse mapping[J]. Geophysical Jounral International,1994,116:527-537.
    Lines L, Schultz A K, Treitel S. Cooperative inversion of geophysical data[J].Geophysics,1988,53(1):8-20.
    Loke M H,Barker RD. Practical techniques for3D resistivity surveys and datainversion[J],Geophysical Prospecting.1996,44,499.
    Lu L, Wang C, Zhang B. Inversion of multimode Rayleigh waves in the presenceof a low-velocity layer:numerical and labortatory study[J]. Geophysical JournalInternational,2007,168:1235-1246.
    M. D. Martinez, X. Lana, and J. Olarte,et al. Inversion of Rayleigh wave phaseand group velocities by simulated annealing[J]. Physics of the Earth and PlanetaryInteriors,2000,122:3-17.
    Meier R W, Rix G J. An initial study of surface wave inversion using artificialneural networks[J]. Geotechnical Testing Journal,1993,16(4):425-431.
    Meju M A. Joint inversion of TEM and distorted MT soundings: some effectivepractical considerations[J]. Geophysics,1996,61(1):56-65.
    Misiek R, et al. A joint inversion algorithm to process geoelectric and surfacewave seismic data Part Ⅱ: applications[J].Geophysical Prospecting,1997,45,65–85
    Mottl J. Mottlova L. The simultaneous solution of the inverse problem ofgravimetry and magnetics by means of nonlinear programming[J]. Geophysical Journalof the Royal Astronomical Society,1984,76:563-579.
    O’Neill A, Dentith M, List R. Full-waveform P-SV reflectivity inversion ofsurface waves for shallow engineering applications[J]. Exploration Geophysics,2003,34:158-173.
    Park,S.K.,and Van,G.P. Inversions of Pole-Pole data of3-D resistivitystructure beneath arrays of electrodes[J].GeoPhysies,1991,56:951-960.
    Paul M. Surface wave inversion by neural networks[D]. The University of Utan,1993.
    Pelton,W.H., Rijo,L., and Switf,J.r,C.M., Inversion of two-dimensionalresistivity and induced-PolariZation data[J]. Geophysics,1978.43:788-803.
    Petrick,W.R.,J.r,Sill W.R.,and Wadr,S.H., Three dimensional resistivityinversion using alpha centers[J]. Geophysics,1981,46:1148-1163.
    Pezeshk S, Zarrabi M. A new inversion procedure for spectral analysis of surfacewaves using a genetic algorithm[J]. Bulletin of the Seismological Society ofAmerica,2005,95(5):1801-1808.
    Pulikantt S, Singh A. An artificial bee colony algorithm for the quadraticknapsack problem[C], Proc of the16thInternational Conference on Neural InformationProcessing. Berlin: Springer-Verlag,2009:196-205.
    R. E. Chavez, et al. Joint interpretation of gravity and magnetic data over axialsymmetric bodies with application to the Darnley bay anomaly[J]. Nwt CanadaGeophysical prospecting,1987,35(4):374-392.
    Raiche A P, Jupp K L B. Rutter H. et al. The joint use of coincident loop transientelectromagnetic and schlumberger sounding to resolve layered structures[J].Geophysics,1985,50:1618-1627.
    Reynolds C W. Flocks, herds, and schools: A distributed behavioral model[J].Computer Graphics,1987,21(4):25-34.
    Sambridge M. Geophysical inversion with a neighbourhood algorithm-Ⅰ. Searchinga parameter space[J]. Geophysical Journal International,1999,138(2):479-494.
    Sambridge M. Geophysical inversion with a neighbourhood algorithm-Ⅱ. Searchinga parameter space[J]. Geophysical Journal International,1999,138(3):727-746.
    Sasaki Y. Two-dimensional joint inversion of magnetotelluric and dipole data[J].SEG Abstracts,1986,1986(1):55-57.
    Saskai.Y.3-D resistivity inversion using the finite-element method[J].Geophysies,1994,59:1839-1848.
    Savino, J M. Rodi, W L. Masso, J F. Simultaneous inversion of multiplegeophysical data sets for earth structure[A]. Presented at the50thAnn. Internal.Mtg. Soc. Explor, Geophys.1980.
    Seeley T D. The wisdom of the hive[M]. Massachusetts: Harward University Press,1995.
    Send M K,Bhattacharya B B, Stoffa P L. Nonlinear inversion of resistivitysounding data[J].Geophysics,1993,58(4):496-507.
    Sharma S P, Kaikkonen P. Appraisal of equivalence and suppression problems in1D EM and DC measurements using global optimization and joint inversion[J].Geophysical Prospecting,1999,47(2):219-249.
    Shirazi H. Implementation of artificial neural networks to automate spectralanalysis of surface waves method[D]. University of Texas at EI Paso,2005.
    Song X H, Gu H M, Liu J P, Zhang X Q. Estmation of shallow subsurface shear-wavevelocity by inverting fundamental and higher-mode Rayleigh waves[J].Soil Dynamicsand Earthquake Engineering,2007,27(7):599-607.
    Song X H, Gu H M. Utilization of multimode surface wave dispersion forcharacterizing roadbed structure[J]. Journal of Applied Geophysics,2007,63(2):59-67.
    Sundar S, Singh A. A swarm intelligence approach to the quadratic minimumspanning tree problem[J]. Information Sciences,2010,180(17):3182-3191.
    Tillmann A. An unsupervised wavelet transform method for simultaneous inversionof multimode surface waves[J]. Journal of Environmental&Engineering Geophysics,2005,10(3):287-294.
    Tripp AC, Hohmann GW, Swift CM jr. Two dimensional resistivity inversion[J].Geophysics,1984,49:1708-1717.
    Wathelet M, Jongmans D, Ohrnberger M. Surface-wave inversion using a directsearch algorithm and its application to ambient vibration measurements[J]. NearSurface Geophysics,2004,2:211-221.
    Williams T P, Gucunski N. Neural networks for backcalculation of moduli fromSASW test[J]. Journal of Computing in Civil Engineering,1995,9(1):1-8.
    Wu H. Feasibility of artificial neural network approach to inversion of spectralanalysis of surface waves data for pavement structures[D]. University of Texas,2001.
    Xia J, Miller R D, Park C B. Estimation of near-surface shear-wave veloctiy byinversion of Rayleigh wave[J]. Geophysics,1999,64(3):691-700.
    Yamanaka H, Ishida H. Application of genetic algorithms to an inversion ofsurface wave dispersion data[J]. Bulletion of the seismological Society of America,1996,86:436-444.
    Zhang S X, Chan L S. Possible effects of misidentified mode number on Rayleighwave inversion[J]. Journal of Applied Geophysics,2003,53:17-29.
    Zhang.J.,Mackie.R.L.,Madden,T.R.3-D resistivity forward modeling andinversion using conjugate gradients[J]. Geophysics,1995,60:1313-1325.
    Zhdnov M S, Traynin P, Anonymous. Joint inversion of TE and TM modemagnetotelluric data using electromagnetic migration[J]. Eos, Transactions,American Geophysical Union,1995,76(46):168.
    艾东海,程庆群.低速软弱夹层二维横波速度结构的OCCAM反演[J].工程勘察,2009,4:87-90.
    曹丹平,印兴耀,张繁昌等.多尺度地震资料联合反演方法研究[J].地球物理学报,2009,52(4):1059-1067.
    曹小林,洪学海,曹俊兴.面波波形反演中的模拟退火法[J].成都理工学院学报,2000,27(3):296-301.
    陈晓,于鹏,张罗磊.大地电磁与地震正则化同步联合反演[J].地震地质,2010,32(3):402-408.
    崔建文.一种改进的全局优化算法及其在面波频散曲线反演中的应用[J].地球物理学报,2004,47(3):521-527.
    樊小毛,马良.0-1背包问题的蜂群优化算法[J].数学的实践与认识,2010,40(6):155-160.
    范兴才,王家林.松辽盆地北部杏山地区典型的地质地球物理模型及综合解释[A].上海:同济大学出版社,1995,112-124.
    冯锐,陶裕录.地震-重力联合反演中的非块状一致性模型[J].地球物理学报,1993,36(4):463-475.
    关小平,黄嘉正.谈重震联合反演问题[J].物探与化探,1994,(6):431-439.
    何委徽,王家林,于鹏.地球物理联合反演研究的现状与趋势分析[J].地球物理学进展,2009,24(2):530-540.
    贺懿,张进,刘怀山.基于神经网络的面波迭代反演应用研究[J].西南石油大学学报(自然科学版),2010,32(1):40-44.
    胡家富,温一波,谢应齐.利用地震面波频散反演岩石圈结构的奇异值分解算法[J].地球物理学报,1998,41(2):211-217.
    胡建德.瞬变电磁测深和直流电测深资料的联合反演[J].石油地球物理勘探,1989,24(5):549-558.
    胡珂,李迅波,王振林.改进的人工蜂群算法性能[J].计算机应用,2011,31(4):1107-1110.
    胡中华,赵敏,撒鹏飞.基于人工蜂群算法的JSP的仿真与研究[J],机械科学与技术,2009,28(7):851-856.
    胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,29(11):978-982.
    黄国娇,白超英.二维复杂层状介质中地震多波走时联合反演成像[J].地球物理学报,2010,53(12):2972-2981.
    黄俊革.三维电阻率/极化率有限元正演模拟与反演成像[博士学位论文].中南大学,2003.
    康飞,李俊杰,许青等.改进人工蜂群算法及其在反演分析中的应用[J].水电能源科学,2009,27(1):126-129.
    李翠琳.基于非线性贝叶斯理论的多模态界面波频散曲线反演研究[博士学位论文].中国海洋大学,2011.
    李金铭.地电场与电法勘探[M].北京:地质出版社,2005.
    李庆春,邵广周,刘金兰等.瑞雷面波勘探的过去、现在和未来[J].地球科学与环境学报,2006,28(3):74-77.
    李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究[J].电路与系统学报.2003,8(1):1-6.
    李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践.2002,22(11):32-38.
    李学良,杨长春,王真理.基于奇异值分解算法的瑞雷波相速度反演研究[J].人民长江,2011,42(21):19-21.
    李云平,刘金连,林治模,等.合肥盆地重磁资料处理及重磁震联合反演[J].石油实验地质,2002,3:261-266.
    刘海飞,直流激电反演中的线性与非线性方法研究[博士学位论文].长沙:中南大学,2007.
    刘江平,侯卫生,许顺芳.相邻道瑞雷波法及在防渗墙强度检测中的应用[J].人民长江,2003,34(2):34-36.
    刘云祯,王振东.瞬态面波法的数据采集处理系统及其应用实例[J].物探与化探,1996,20(1):28-34.
    卢成武.直流电测深反演算法的研究[硕士学位论文].西安:西北大学,2005.
    鲁来玉,张碧星,汪承濒.基于瑞利波高阶模式反演的实验研究[J].地球物理学报,2006,49(4):1082-1091.
    罗银河,夏江海,刘江平等.基阶与高阶瑞利波联合反演研究[J].地球物理学报,2008,51(1):242-249.
    毛承英.基于改进遗传算法的瑞雷波频散曲线反演[硕士学位论文].中南大学,2010.
    毛先进,鲍光淑.边界积分方程法二维电阻率层析成像[J].物探化探计算技术.1998,20(23):226-229.
    欧阳联华,王家林,吴健生.利用面波频散反演场地参数的Occam法[J].物探化探计算技术,2003,25(1):1-4.
    裴江云,吴永刚,刘英杰.近地表低速带反演[J].长春地质学院学报,1994,24(3):317-320.
    彭淼,谭捍东,姜枚.远震接收函数和大地电磁数据联合反演在南迦巴瓦东构造结的应用[A].第十届中国国际地球电磁学术讨论会,2011,4-6.
    阮百尧,村上裕,徐世浙.电阻率激发极化法的二维反演程序[J].物探化探计算技术.1999,21:121-125.
    石耀霖,金文.面波频散反演地球内部构造的遗传算法[J].地球物理学报,1995,38(2):189-198.
    宋先海.瑞雷波频散曲线正反演研究[硕士学位论文],中国地质大学(武汉),2001.
    宋先海.基于模式识别法的高频瑞雷波频散曲线非线性反演研究[博士学位论文].中国地质大学(武汉),2008.
    宋先海.瑞雷波勘探理论及其应用[M].北京:中国水利水电出版社,2010.
    汤井田,陈程,全朝红等.一种改进的电阻率断面反演方法[J].物探化探计算技术.2008,30(4):297-302.
    王浩,汤再江,范锐.蜂群算法在装备维修任务调度中的应用[J].计算机工程,2010,36(7):242-245.
    王家映.地球物理反演理论[M].北京:中国地质大学出版社,1998.
    王家映.地球物理及反演问题概述[J].工程地球物理学报,2007,4(1):1-3.
    王天意.直流电阻率测深非线性反演理论的研究[硕士学位论文].石家庄经济学院,2011.
    王兴泰,李晓芹,孙仁国.电测深曲线的遗传算法反演[J].地球物理学报,1996,39(2):279-285.
    王彦飞,I.E.斯捷潘诺娃,V.N.提塔连科.地球物理数值反演问题[M].北京:高等教育出版社,2011.
    王一新,廉西京.重力与地震联合解释在石油勘探中的应用[J].石油物探,1983,22(3):34-41.
    王云安,顾汉明.基于OCCAM算法的多模式表面波联合反演研究[J].人民黄河,2009,31(3):92-94.
    魏贇.用SVD算法反演瞬态瑞雷波频散曲线[J].人民长江,2008,39(8):84-85.
    文成哲.遗传算法和LM算法联合反演瑞雷波相速度[J].地球物理学进展,2010,25(1):303-309.
    邬世英,王延江,李莉,等.支持向量机在重震联合反演中的应用研究[J].地球物理学进展,2007,5:1611-1616.
    肖永豪,余卫宇.基于蜂群算法的图像边缘检测[J].计算机应用研究.2010,27(7):2748-2750.
    徐海浪,吴小平.电阻率二维神经网络反演[J].地球物理学报,2006,49(2):584-589.
    阎汉杰.重磁电震信息联合反演的随机建模技术[J].厦门大学学报(自然科学版),2003,4:467-470.
    杨成林.瑞雷波勘探[M].北京:地质出版社,1993.
    杨辉,戴世坤,牟永光.三维重力地震剥层联合反演[J].石油地球物理勘探,2004,39(4):468-471.
    杨进.环境与工程地球物理[M].北京:地质出版社,2011.
    杨文采,焦富光.利用联合反演技术进行反射地震的波速成象[J].地球物理学报,1987,30(6):617-627.
    杨学林,吴世明.考虑高阶模态时SASW法的反演[J].浙江大学学报,1996,30(2):149-156.
    杨云见,何展翔,王绪本等. AMT、TEM、VES地层响应特征模拟分析及其联合反演探讨[J].地球物理学进展,2008,23(5):1550-1555.
    于鹏,戴明刚,王家林等.电阻率和速度随机分布的MT与地震联合反演[J].地球物理学报,2009,52(4):1089-1097.
    于鹏,戴明刚,王家林等.密度和速度随机分布共网格模型的重力与地震联合反演[J].地球物理学报,2008,51(3):845-852.
    翟佳羽,赵园园,安丁酉.面波频散反演地下层状结构的蚁群算法[J].物探与化探,2010,34(4):476-481.
    张碧星,肖柏勋,杨文杰等.瑞瑞利波勘探中“之”字型频散曲线的形成机理及反演研究[J].地球物理学报,2000,43(4):557-567.
    张贵宾,申宁华,王喜臣,等.位场广义线性综合反演系统的建立[J].吉林大学学报(地球科学版),1993,2:197-204.
    张凌云.高密度电阻率勘探反演的非线性方法研究[博士学位论文].太原理工大学,2011.
    张致付,程志平,阮百尧等.三维电阻率测深数据Zohdy近似反演方法[J].地球物理学进展.2004,19(1):131-136.
    赵东,王光杰,王兴泰等.用遗传算法进行瑞利波反演[J].物探与化探,1995,19(3):178-185.
    周丽芬,谭捍东.大地电磁与地震数据交差梯度约束二维联合反演[A].第十届中国国际地球电磁学术讨论会,2011,253-255.
    周晓华,林君,陈祖斌等.改进的神经网络反演微动面波频散曲线[J].吉林大学学报(地球科学版),2011,41(3):900-906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700