汽车动力总成振动主动控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文深入研究了动力总成主动隔振系统中涉及的作动器、主动悬置结构设计、控制系统建模和主动控制方法等关键技术。分别采用压电作动器和动线圈式电磁作动器设计了两种主动悬置结构,建立了它们的动力学模型,讨论了在不同控制方式下新型压电式主动悬置的隔振性能;设计了动力总成隔振试验台架,建立了系统十自由度动力学模型,并分析了在开环结构和采用线性二次型最优控制下系统的隔振性能。为降低实际车辆上控制系统的复杂性和减少控制成本,建立了动力总成隔振系统的五自由度简化模型;分别采用前馈控制和反馈控制两种方法对动力总成主动隔振系统进行了设计。由于与动力总成干扰信号相关性好的参考信号可以通过采集发动机转速来得到,前馈控制是一个较好的选择,采用滤波x-LMS自适应前馈控制方法收到了很好的控制效果。因为动力总成主动隔振可看作是干扰抑制问题,而H_∞最优控制的控制指标是使干扰对系统的输出影响最小,因而设计了基于H_∞控制器的输出反馈控制系统,控制器采用线性矩阵不等式的方法求解。为提高怠速工况和启动停车过程中的隔振效果,在性能加权函数的选取时,重点考虑了1~50Hz频率段的控制性能。仿真实验表明,基于H_∞控制器的输出反馈控制方法能较好地抑制动力总成干扰对车身的影响。为消除压电作动器的迟滞非线性特性,采取了基于逆补偿原理的自适应逆控制方法。在分析和比较各种迟滞模型的基础上,采用了Prandtl-Ishlinskii迟滞模型,推导出基于梯度法的在线参数估计自适应律。证明了采用Prandtl-Ishlinskii模型时,如果间隙模型算子采用对称结构,且各间隙模型的间隙和斜率都成比例时,迟滞非线性的补偿效果与斜率参数无关,斜率参数只会影响参考输入与实际输出之间的比例关系,因此在线估计参数可简化为一个。
Automobile power-train is the dominant source of noise and vibration in automobiles, and the vibration isolation of automobile power-train is crucial to the improvement of NVH (Noise, Vibration and Harshness) characteristics.
     In order to reduce the power-train vibration’s impact on the passenger-comfort, the main methods have been disturbance attenuation, anti-resonance and vibration isolation. The vibration isolation system is the flexible connection device between the power-train and chassis. A sound system of vibration isolation can reduce the vibration of automobiles, vibration power from the power-train to the chassis and the noise induced. As a result, durability and passenger-comfort of automobiles are improved.
     At present, the power-train vibration isolation systems in most cars are rubber mounts and hydraulic damping mounts, which perform the function of vibration isolation and reducing noise to a great extent. Because of the problems of energy and environment protection, cars are being designed to be even lighter in weight. With the wide application of former driving motors, most cars use four-cylinder engines with poor performance in balancing, which make the problem of vibration in power-trains more obvious.
     Research indicates that the feature of ideal dynamical force in the mount system is that the system has a high static stiffness to hold weight of power-train and the output torque. When in low frequency, it should have a high stiffness with large damping to reduce large-amplitude vibrations caused by torque variations of engines when starting, braking, shifting and quick accelerating and decelerating. When in high frequency, it should have a low stiffness with small damping to reduce the transmitting of vibrations and improve the effect on reducing the noise. Ideal stiffness and damping of mount system should vary with the frequencies and amplitude of vibrations, which is hard to realize in real project. Although hydraulic damping mounts performed much better than the rubber mounts did in vibration isolation, there still exist some shortcomings, such as the stiffness not being big enough in low frequency and a phenomenon of hardening in high frequency.
     Active mounts system of power-train is an efficient way for vibration isolation of the automobile power-train. Active control technique should be applied to the vibration isolation system in the power-train with active mount system and proper control strategies. In this way vibration amplitude of chassis will be reduced greatly. This paper focuses on the key techniques of actuator selection, structure design of active mount, modeling of the control system and selection of control strategy. Content of the paper is as follows:
     Literatures about the research of active mount system are systematically reviwed, including both domestic and foreign development. Some foreign active and semi-active mount systems are mainly introduced. Different sensors and control algorithms for active control of vibration are summarized. Previous techniques in active control of vibration in automobile power-train are analyzed, and the problems in each situation are pointed out.
     According to the requirements for mount performance of the automobile power-train, two conditions which should be considered for design of active mount are proposed. Two active mount structures based on piezo-actuator and electromagnetic actuator are respectively designed. Dynamical models of the two active mounts are established. Performance of vibration-isolation with the piezo-actuator is discussed under different control schemes, which provides theoretical foundation for the design of active mount in power-train.
     Experimental platform of active mount in power-train is designed and the mathematical model with 10 DOF (degree of freedom) is established, which will facilitate the research. Performances of vibration isolation without control and with a linear quadratic regulator are analyzed by simulation experiments. The results indicated that performance of vibration isolation with active control scheme was better than passive control. A simplified mathematical model of active mount in power-train system with 5 DOF is built to reduce the cost of control and the complexity of actual control system in automobiles. Simulation results showed that the simplified model could capture dynamics of the complicated 10 DOF model well.
     Active vibration isolation system of power-train is designed by means of feedforward control and feedback control schemes respectively. As signals correlated with disturbance could be obtained by rotation speed of engines, feedforward control with adaptive x-LMS filter could eliminate vibration better than feedback control. In addition, the essence of active vibration in power-train is the problem of noise attenuation. The target of H∞optimal robust control is to minimize disturbance’s influence to system output. Considering the conclusions above, H∞output feedback control system is designed with LMI method. In order to improve the performance of vibration isolation in low-speed section, starting and stopping section, frequency between 1Hz and 50Hz is taken into consideration in the selection of weighting function. The results of experiment in simulation indicate that H∞output feedback control scheme can better restrain the influence caused by power-train to the body of the car.
     Adaptive inverse compensation is adopted to eliminate the hysteresis nonlinearity of piezo-actuator in active control system. The adaptive control law based on grads method is obtained with Prandtl-Ishlinskii model. It is proved that when Prandtl-Ishlinskii model is used, results of compensation have no contact with slopes under the assumption that backlash model has a symmetry structure and backlashes as well as slopes are all proportional with each other. As only proportion of reference input and output is related with slopes, the estimated parameters are reduced to only one. The results of simulation indicated that compensation effect of adaptive inverse control to hysteresis nonlinearity was much better when signal frequency was low ( less than 25Hz).
     The technology of active vibration isolation on power-train in China is still in the earlier phase of development. There are only few relevant reports abroad. The problem of the key technologies that are involved in active vibration isolation on power-train are not solved properly, which restricts the development of active vibration isolation in power-train. The study of this paper is helpful for the research and design of power-train vibration control system. It can also provide valuable reference for engineering design related with active vibration control system.
引文
[1] 谭达明. 内燃机振动控制[M]. 西南交通大学出版社, 1993.6:9.
    [2] 严济宽. 机械振动隔离技术[M]. 上海科技文献出版社, 1985.
    [3] 严济宽. 隔振降噪技术的新进展[C]. 振动与噪声控制学术会议论文集, 1991: 3-9.
    [4] 何渝生. 汽车噪声控制[M]. 机械工业出版社, 1999.
    [5] C. H.汉森, S. D.斯奈德. 噪声与振动的主动控制[M], 科学出版社, 2002.
    [6] 余成波等. 内燃机振动控制及应用[M]. 国防工业出版社, 1997.
    [7] Hamid Reza Karimi. Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions[J]. International Journal of Control, Automation, and Systems, vol. 4, no. 6, December 2006, 714-724.
    [8] K. Kowalczyk, F. Svaricek. An Overview of Recent Automotive Applications of Active Vibration Control[C]. The RTO AVT Symposium on “Habitability of Combat and Transport Vehicles: Noise, Vibration and Motion”, Prague, Czech Republic, published in RTO-MP-AVT-110, 4-7 October 2004: 24.1 -24.16.
    [9] Aaron A. Geisberger. Hydraulic Engine Mount Modeling, Parameter Identification and Experimental Validation[D]. The degree of Master, 2000, University of Waterloo.
    [10] Thanh Quoc Truong. Optimal Switching Parameter Control of Semi-Active Engine Mount[C]. ICCASS2005, June 2-5, Kintex, Gyeonggi-Do, Korea.
    [11] G. Kim and R. Singh. A Study of Passive and Adaptive Hydraulic Engine Mount Systems with Emphasis on Non-Linear Characteristics[J]. Journal of Sound and Vibration.(1995) 179(3): 427-453.
    [12] Seung-Bok Choi. Characteristics and Applications of Electrorheological Fluids[R]. Internet, 2006.03.05, http://www.ssslab.com.
    [13] Young Kong Ahn, Mehdi Ahmadian and Shin Morishita. On the Design and Development of a Magneto-Rheological Mount[J]. Vehicle System Dynamics, 32(1999): 199-216.
    [14] Takao Ushijima, Syoichi Kumakawa. Active Engine Mount with Piezo Actuator for Vibration Control[J]. SAE Paper 930201.
    [15] Chong-Won Lee, Yong-Wook Lee. Performance Test of Active Engine Mount System In Passenger Car[C]. Seventh International Congress on Sound and Vibration, Garmisch-Partenkirchen, Germany, 4-7 July 2000: 403-410.
    [16] 王加春等. 机械振动主动控制技术的研究现状和发展综述[J]. 机械强度, 2001.2: 156-160.
    [17] 陈大跃等. 振动控制的特征结构配置[J]. 振动工程学报, 1991, 2(2): 75-81.
    [18] 顾仲权. 振动控制中低阶控制器的优化设计[J]. 振动工程学报, 1990, 3(3): 1-8.
    [19] 祁 建 城 , 李 若 新 等 . 汽 车 主 动 悬 架 最 优 控 制 [J]. 汽 车 工 程 , 1999(Vol.2)No.1: 15-20.
    [20] 王洪礼等. 汽车悬架系统非线性振动的主动控制[J]. 机械强度, Vol.22, No.3. Sep. 2000: 164-166.
    [21] 王启瑞等. 基于遗传算法和 LQG 控制的汽车半主动悬架结构和控制参数的集成优化研究[J]. 汽车工程, 2002 (Vol.24) No.3: 236-240.
    [22] 喻凡, 郭孔辉. 车辆悬架的最优自适应与自校正控制[J]. 汽车工程, 1998(Vol.20)16 No.4: 193-200.
    [23] 方敏等, 汽车半主动悬架的自适应 LQG 控制[J], 汽车工程, 1997(Vol.19) No.4: 200-205.
    [24] 顾家柳等. 转子系统振动主动控制的目的及对策[J]. 振动与冲击, 1993.2: 1-7.
    [25] Yoshikazu. μ-Synthesis of Robust Control on Active Mounts for Vehicle Vibration Reduction[J]. SAE Technical Papers, 1996, No.960186: 158-166.
    [26] Vlsoy A G, Hrovat D, Tseng T. Staility Robustness of LQ and LQG Active Suspensions[J]. Journal of Synamic Systems Measurement and Control. 1994, 116: 123-131.
    [27] Toshio Yoshimura. Active Suspension of Vehicle Systems Using Fuzzy Logic[J]. Int. J. of System Science, 1996, 27(2): 215-219.
    [28] 缪斌, 龚雅萍等. 柴油机双层隔振的自适应模糊控制方法及模拟试验的研究[J]. 船舶工程, 2001, 6: 36-39.
    [29] 顾仲权, 马扣根, 陈卫东. 振动主动控制[M]. 国防工业出版社, 1998.11.
    [30] Gennesseaux, A. Research for New Vibration Techniques From Hydro -mounts to Active Mounts[C]. In SAE Proceedings of the 1993 Noise and Vibration Conference, 1993: 491-499.
    [31] G. Nakhaie Jazar, A. Narimani, M. F. Golnaraghi, D. A. Swanson. Pratical Frequency and Time Optimal Design of Passive Linear Vibration Isolation Mounts[J]. Vehicle System Dynamics, 2003, Vol.39, No.6: 437-466.
    [32] M. Lorenz, B. Heimann, V. H?rtel. A Novel Engine Mount with Semi-active dry Friction Damping[J], Shock and Vibration, Volume 13, Number 4-5 2006: 559-571.
    [33] Khalid Abidi. Sliding-Mode Control For High-Precision Motion ControlSystems[D]. Dissertation for the Degree of Master of science. Sabanci University. Spring 2004.
    [34] S. Chandrasekaran, Douglas K. Lindner, Ralph C. Smith. Optimized Design of Switching Amplifiers for Piezoelectric Actuators[J]. Journal of Intelligent Material Systems and Structures, Vol. 11, No. 11, (2000): 887-901.
    [35] J. R. Phillips. Piezoelectric Technology: A Primer[R]. Internet, December 2003. http://www.techonline.com/community/tech_group/analog/feature _article/8277
    [36] Thorsten Muller, Stefan Hurlebaus. Modelling and Control Techniques of an Active Vibration Isolation System[C]. IMAC2005. http://www.halcyonics.de/en/pdf_download/IMAC2005.pdf.
    [37] 张阿舟, 诸德超等. 实用振动工程(2)—振动控制与设计[M], 航空工业出版社, 1997.
    [38] 俞立. 鲁棒控制_线性矩阵不等式处理方法[M]. 清华大学出版社, 2002.
    [39] 王德进. H2和H∞优化控制理论[M]. 哈尔滨工业大学出版社, 2001.
    [40] 陈虹, 赵桂军, 孙鹏远, 郭孔辉. H2和H∞主动悬架统一的理论框架与比较[J]. 汽车工程, 2003 (Vol.25) No.1: 1-6.
    [41] 周淼磊. 压电型电液伺服阀及其控制方法研究[D], 吉林大学博士论文, 2004.12.25.
    [42] Gang Tao, Petar V. Kokotovic. Adaptive Control of Plants with Unknown Hystereses[J]. IEEE Tran. Auto. & Control, Feb 1995, Vol.40, No.2: 200-212.
    [43] Webb G, Kurdila A. Adaptive hysteresis model for model reference control with actuator hysteresis[J]. J of Guidance, Control and Dynamics, 2000, 23(3): 459-465.
    [44] Song D, James Li C. Modeling of piezo actuator's nonlinear and frequency dependent dynamic[J]. Mechatronics, 1999, 9(4): 391-409.
    [45] Gang Tao, Petar V. Kokotovic. Adaptive Control of System With Actuator And Sensor Nonlinearities[M], John Wiley & Sons, Inc., 1996.
    [46] Bouc R. Forced Vibration of Mechanical Systems with Hysteresis[C]. Proceedings of the Fourth Conference on Nonlinear Oscillation. Prague: [s. n.]1967: 32-39.
    [47] Jonq-Jer Tzen, Shyr-Long Jeng, Wei-Hua Chieng. Modeling of piezoelectric actuator for compensation and controller design[J]. Precision Engineering 27 (2003): 70–86.
    [48] K. Kuhnen, H. Janocha. Adaptive Inverse Control of Piezoelectric Actuators with Hysteresis Operators. Proc. Euro. Control Conf. ECC’99, Karlsruhe, Germany, 1999: F0291.
    [49] Ioannou P., J. Sun. Robust Adaptive Control[M]. Published by Prentice Hall, Inc in 1996.
    [50] Y. K. Ahn, J. Y. Ha, B. S. Yang, D. J. Kim, M. Ahmadian, Dynamic Properties of Squeeze Type Mount Using MR Fluid[J], Trans. ASME Journal of Vibration and Acoustics, 126(3), July, 2004: 380-383.
    [51] Vahdati, N., Ahmadian, M. Single Pumper semi-active fluid mount[C]. Proceedings of the 2003 ASME International Mechanical Engineering Congress, Washington, DC: American Society of Mechanical Engineers, 2003,72(1): 167-175.
    [52] 吕振华, 梁伟, 上官文斌. 汽车发动机液阻悬置动特性仿真与试验分析[J]. 汽车工程, 2002(Vol.24)No.2, 105-111.
    [53] 刘福水, 葛蕴珊, 唐志伟, 郭良平. 半主动控制液力悬置的模拟和试验研究[J]. 北京理工大学学报, Vol. 20, No.5 Oct. 2000: 570-575.
    [54] Toshio Yoshimura. Active suspension of vehicle systems using fuzzy Logic[J]. Int. J. of System Science, 1996, 27(2): 215-219.
    [55] Eric H. Anderson, John P. Fumo, R. Scott Erwin. Satellite Ultra-quiet Isolation Technology Experiment[C], Proceedings of IEEE Aerospace Conference, 2000: 299-313.
    [56] Kiduck Kim, Doyoung Jeon. Vibration Suppression in an MR Fluid Damper Suspension System[J]. Journal of Intelligent Material Systems and Structures, 1999,Vol.10: 779-786.
    [57] Baz, A. Iman, K., Mc Coy, J. Active Vibration Control of flexible beams using shape memory actuators[J]. Journal of Sound and Vibration, 1990, 140: 437-456.
    [58] Y. Gu, R. L. Clark, C. R. Fuller. Experiments on Active Control of Plate Vibration Using Piezoelectric Actuators and Polyvinylidene Fluoride (PVDF) Model Sensors[J]. Journal of Vibration and Acoustics, Transactions of the ASME. July 1994, Vol.116: 303-308.
    [59] 欧进萍, 结构振动控制-主动半主动和智能控制[M]. 科学出版社, 2000.11.
    [60] 解学书, 钟宜生. 控制理论[M], 清华大学出版社, 1994.
    [61] 周克敏. 鲁棒与最优控制[M], 国防工业出版社, 2002.
    [62] 申铁龙. 控制理论及应用[M], 清华大学出版社, 1996.
    [63] 成大先. 机械设计手册(单行本)_机械振动_机架设计[M]. 化学工业出版社, 2004.1.
    [64] 喻凡, 林逸. 汽车系统动力学[M]. 机械工业出版社, 2005.9.
    [65] 胡海岩, 郭大蕾, 翁建生. 振动主动控制技术的进展、振动、测试与诊断[J], Vol.21, No.4 Dec.2001: 235-244.
    [66] Michael Goldfarb, Nikola Celanovic, Modeling Piezoelectric Stack Actuators for Control of Micromanipulation[J], IEEE Contr. Sys. Mag., 1997, Vol. 17: 69-79.
    [67] S. Haykin, Adaptive Filter Theory[M]. Upper Saddle River, NJ, Prentice-Hall, 1996.
    [68] B. Widrow, S. Sterns, Adaptive Signal Processing[M]. Englewood Cliffs, NJ, Prentice-Hall, 1985.
    [69] Fredrik Jansson, Oskar Johansson, A Study of Active Engine Mounts[R], Internet, 2004.08.12, http://www.diva-portal.org.
    [70] H. Hu, R. Mrad. On the Classical Preisach Model for Hysteresis in Piezoceramic actuators[J]. Mechatronics, 2002, 13(2): 479-489.
    [71] H. J. M. T. A. Adriaens, W. L. de Koning, R. Banning. Modeling Piezoelectric Actuators[J]. IEEE/ASME Trans. Mechatronics, 2000. 12, vol.5: 331-341.
    [72] G. Robert, D. Damjanovic, N. Setter. Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics[J]. J. Appl. Phys, May 2001, vol.89: 5067-5074.
    [73] H. Hu, R. B. Mrad. On the Classical Preisach Model for Hysteresis in Piezoceramic Actuators[J]. Mechatronics, 2003, vol.13: 85-94.
    [74] Yunhe Yu, Saravanan M. Peelamedu, Nagi G. Naganathan, Rao V. Dukkipati. Automotive Vehicle Engine Mounting Systems: A Survey[J]. Journal of Dynamic Systems, Measurement and Control, 2001.6, Volume123, Issue2: 186-194.
    [75] Venhovens P J Th. The Development and Implementation of Adaptive semi -Active Suspension Control[J]. Vehicle System Dynamics, 1994, 23: 211-235.
    [76] Ge. P, Jouaneh.M. Modeling of Hysteresis in Piezoceramic Actuators[J], Prec Eng, 1995, 17: 211-221.
    [77] H. Hu, R. Ben Mrad, On the Classical Preisach Model for Hysteresis in Piezoceramic Actuators[J], Mechatroncis 2003(13): 85-94.
    [78] Ge P, Jouaneh M, Generalized Preisach Model for Hysteresis Nonlinearlity of Piezoceramic Actuators[J]. Prec. Eng, 1997, 20: 99-111.
    [79] W. S. Galinaitis, R. C. Rogers. Control of a Hysteretic Actuator Using Inverse Hysteresis Compensation in Mathematics and Control in Smart Structures[C]. V. Varadan, ed., Proc. SPIE 3323, 1998: 267-277.
    [80] Hartmut Janocha, Klaus Kuhnen. Real-time Compensation of Hysteresis and Creep in Piezoelectric Actuators[J]. Sensors and Actuators, 2000(79): 83-89.
    [81] Lining Sun, Changhai Ru; Weibin Rong. Hysteresis compensation for piezoelectric actuator. based on adaptive inverse control[C]. IntelligentControl and Automation, 2004. WCICA 2004. Fifth World Congress on Vol.6, Issue, 15-19 June 2004: 5036–5039.
    [82] Y. Lee, D. Jeon. A Study on the Vibration Attenuation of a Driver Seat Using an MR Fluid Damper[J]. Journal of Intelligent Material Systems and Structures, July 1, 2002; 13(7-8): 437-441.
    [83] 曲东升, 孙立宁, 丁庆勇. 压电陶瓷驱动器的建模分析与自适应逆控制[J]. 机器人, 2001. 10, Vol.23, No.7: 689-694.
    [84] KREJC I P, KU HN EN K. Inverse Cont ro l of System with Hysteresis and Creep[J]. IEEE Proc Control Theory, Appl, 2001, 148(3): 185-192.
    [85] C. Y. Su, Y. Stepanenko. Robust Control of Piezoelectric Actuated Systems with Unknown Hysteresis[C]. SPIE Proceedings Vol. 3984, Smart Structures and Materials 2000: Mathematics and Control in Smart Structures: 186-194.
    [86] S. Salapaka, A. Sebastian, J. P. Cleveland, M. V. Salapaka. High Bandwidth Nanopositioner: A Robust Control Approach[J], Review of scientific instruments, 2002, vol. 73, Issue 9: 3232-3241.
    [87] 周淼磊, 田彦涛, 杨志刚, 程光明. 一种新型双喷嘴挡板阀控制系统设计[J]. 中国机械工程, 2004, 12(24): 2231-2234.
    [88] Kurt Schlacher, Andreas Kugi, Hans Irschik. H∞ control of random structural vibration with piezoelectric actuators[J]. Computers and Structures, 1998, 67: 137-145.
    [89] M. Sunar, S. J. Hyder, B. S.Yilbas. Robust design of piezoelectric actuators for structural control[J]. Comput. Methods Appl. Mech. Engrg., 2001, 190: 6257-6270.
    [90] Moran A, Nagai M. Optimal Active Control of Nonlinear Vehicle Suspensions Using Neural Networks[J]. JSME Int J Series iii. 1994, 37(4): 707-718.
    [91] Moran A., Nagai M. Analysis and Design of Active Suspensions by H∞ robust Control Theory[J]. ASME Int J III. 1992, 35: 427-437.
    [92] Park J H, Kim Y S. A Hinf Controller for Active Suspensions and Hits Robustness Based on a Full-Car Model[C]. Proc 14 IFAC World Congress, 1999, Beijing, CDLM, P-8b-02-3.
    [93] 喻凡. 车辆悬架控制系统的研究[R]. Tech. Rep., 机械工程博士后流动站, 长春, 1999.
    [94] J. Wang, D. A. Wilson, Halikias G. D. H∞ robust performance control of decoupled active suspension systems based on LMI method[C]. Proc. Amer. Contr.Conf. Arlington, 2001: 2658-2663.
    [95] 陈虹. 汽车悬架系统的鲁棒性分析与综合[R]. Tech. Rep., 机械工程博士后流动站, 长春, 2000.
    [96] 陈虹, 孙鹏远. 约束线性系统的鲁棒H∞/广义H2混合控制及其在主动悬架系统设计中的应用[C]. 第二十一届中国控制会议论文集, 2002: 227-232.
    [97] Ray L R. Robust linear optimal control laws for active suspension systems[J]. Advanced Automotive Technologies, ASME, 1991, DE-40: 291-302.
    [98] Uisoy A G, Hrovat D, Tseng T . Stability robustness of LQ and LQG active suspensions[J]. ASME J. Dynamic Systems, Measurement and Control, 1994, 116(1): 123-131.
    [99] Kidczi S., Kashani R. Robust Control of Active Car Suspension with Parameter Uncertainty and Non-white Road Unevenness Disturbance Input[J]. SAE Paper, 1990, No.902283: 75-81.
    [100] Kiriczi S, Kashani R. Robust Control of Active Car Suspension with Model Uncertainty Using H∞ Methods[J]. Advanced Automotive Technologies, ASME, 1991, DE-40: 375-390.
    [101] Yamashita M, Fujimori K, Uhlik C, Kawatani R, Kimura H. H∞ control of an automotive active suspension[C]. Proc. IEEE Conference on Decision and Control, 1990: 2244-2250.
    [102] Moran A., Nagai M. Analysis Design of Active Suspensions by H∞ Robust Control Theory[J]. ASME Int. J. III, 1992, 35:427-437.
    [103] Rahman, Z., Spanos, J. Active Engine Mount Technology for Automobiles[C]. Proceedings of the Third International Conference on Motion and Vibration Control, 1996, 3: 159-163.
    [104] Lee, Y. W., Lee, C. W., Jeong, G.S., Lee H.S. Modeling and Dynamic Analysis of Active Engine Mount Using Electro-magnetic Actuator[C]. Proceedings of AVEC '96, 1996, 2: 829-838.
    [105] Lee, Y. W., Lee, C. W., Jeong, G.S. and Moon, H.S. Design of active engine mount and evaluation of vibration control performance using normalized filtered-x LMS algorithm[C]. Proceedings of the Fourth International Conference on Motion and Vibration Control, 1998, 2, 533-538.
    [106] Na, H. S., Park, Y. An adaptive feedforward Controller for Rejection of Periodic Disturbances[J]. Journal of Sound and Vibration, 1997, 201(4): 427-435.
    [107] Fukumoto, M., Kubota, H., Tsujii, J. Improvement in Stability and Convergence Speed on Normalized LMS Algorithm[J]. Proceedings of the IEEE International Symposium on Circuits and Systems, 1995, 2: 1243-1246.
    [108] Yamashipa M, Fujimori K, Hayakawa K, Kimura H. Application of H∞ Control to Active Suspension System[J]. Automatica, 1994, 30(11): 1717 -1729.
    [109] Brad B., Schubert. Development of a MR Hydraulic Bushing for Automotive Applications[D]. A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Mechanical Engineering Waterloo, Ontario, Canada, 2005.
    [110] Ping G., Musa J. Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuators[J]. Precision Engineering, 1997,20: 99-111.
    [111] B. S. Yang. Optimal Design of an Engine Mount Using an Enhanced Genetic Algorithm with Simplex Method[J], Vehicle System Dynamics, 2005, 43(1): 57-81.
    [112] Douglas A. Swanson. Active Engine Mount for Vehicles[J]. 1993, SAE Paper 932432: 1980-1988.
    [113] Nader Jalili, John Wagner, Mohsen Dadfarnia. A Piezoelectric Driven Ratchet Actustor Mechanism with Application to Automotive Engine Valves[J]. Mechatronics 13(2003): 933-956.
    [114] Yanqing Liu, Hiroshi Matsuisa, Hideo Utsuno, Jeong Gyu Park. Controllable Vibration of the Car-Body Using Magnetorheological Fuid Damper[J]. Vehicle System Dynamics Supplement 42(2004): 627-636.
    [115] Zheng Geng, S. H. Leonard. Six-Degree-of-Freedom Active Vibration Isolation Using a Steward Platform Mechanism[J]. Journal of Robotic Systems, 1993(10): 725-744.
    [116] Kajiwara K, Hayatu M, Imaoka S, et al. Large Scale Active Micro-vibration Control System Using Piezoelectric Actuators Applied to Semiconductor Manufacturing Equipment[J]. JSME, 1997, 63: 3735-3742.
    [117] Yang Tiejun. Active vibration isolation technology for diesel plant [D] . Harbin, Harbin Engineering University, 2001.
    [118] Wu, J. D., Bai, M. R. Application of Feedforward Adaptive Active Noise Control for Reducing Blade Passing Noise in Centrifugal Fans’ [J], Journal of Sound and Vibration, 2001, Vol. 239: 1051-1062.
    [119] Nakajima, Z., Ichikawa, A. Active Engine Mount for Large Amplitude of Idling Vibration, 1995, SAE Paper 951298: 2232-2239.
    [120] Cabell, R. H., Fuller, C.R. A Principal Component Algorithm for Feedforward Active Noise and Vibration Control[J], Journal of Sound and Vibration, 1999, Vol. 227: 159-181.
    [121] R. Shoureshi, L. Ogundipe, J. Vance, K. Schaaf, G. Eberhard, H. J. Karkosch. Active Vibro-Acoustic Control in Automotive Vehicles[C], SAE Noise and Vibration Conference and Exposition, Traverse City, Michigan, May 20-22, 1997, 971886: 131-136.
    [122] Shoureshi, R. A., R. Gasser, J. Vance. Automotive applications of a hybrid active noise and vibration control[C]. Proceedings of the IEEE International Symposium on Industrial Electronics. Guimaraes, Portugal, 1997: 1071-1076.
    [123] Bohn, C., A. Cortabarria, V. H?rtel, K. Kowalczyk. Active control of engine -induced vibrations in automotive vehicles using disturbance observer gain scheduling[J]. Control Engineering Practice 12, 2004: 1029-1039.
    [124] Kowalczyk, K., F. Svaricek, C. Bohn. Disturbance-observer-based active control of transmission-induced vibrations[C]. Proceedings IFAC Symposium Advances in Automotive Control. Salerno, Italy, 2004: 78-83.
    [125] Bohn, C., A. Cortabarria, V. H?rtel, K. Kowalczyk. Disturbance-observer -based active control of engine-induced vibrations in automotive vehicles[C]. Proceedings of the 10th Annual International Symposium on Smart Structures and Materials. San Diego. USA, 2003, Paper 5049-68.
    [126] K?sler, R. 2000. Development trends and vibro-acoustic layout criteria for powertrain mounting systems[C]. Proceedings of the International Congress Engine & Environment. Graz, 2000: 155-172.
    [127] Doppenberg, E. J. J., A. P. Berkhoff. Smart materials and active noise and vibration control in vehicles[C]. Proceedings of the 3rd IFAC Workshop Advances in Automotive Control. Karlsruhe, Germany, 2000: 205-214.
    [128] Sano, H., T. Yamashita, M. Nakamura. Recent application of active noise and vibration control to automobiles[C]. Proceedings ACTIVE 2002. South -ampton, UK, 2002: 29-42.
    [129] Yunhe Yu, Nagi G. Naganathan, Rao V. Dukkipati, A literature review of automobile engine mounting systems[J], Mechanism and machine theory 36 (2001): 123-142
    [130] Young Kong Ahn, Bo-Suk Yang, Mehdi Ahmadian, Shin Morishita, A small -sized Variable-damping Mount using Magnetorheological Fluid[J], Journal of Intelligent Material Systems and Structures, 2005, Vol.16, No.2: 127-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700