磁悬浮隔振器的动态建模与自收敛控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动控制是船舶领域内一个非常重要的问题。传统的被动隔振一旦安装完成,其参数难以改变,对隔振对象的状态变化和振源的变化没有较强的适应性,且被动隔振不能保证低频段的隔振性能。与其相比,主动隔振具有自适应性强、对低频振动控制效果好等优势,逐渐成为研究的热点。本文基于自行设计的第2版磁悬浮隔振器,开展了主动隔振相关的理论与实验研究。
     详细推导了隔振系统中振级落差、插入损失和力传递率三个隔振评价指标的表达式,得出了在一定的条件下三个指标相差一个常量的关系,提出了一种能全面准确反映主被动复合隔振效果的方法,然后介绍了第2版磁悬浮隔振器及弹性基座的设计情况,通过实验结果验证了评价指标之间的关系,并通过仿真研究了三个指标与系统的阻尼、刚度和质量之间的关系。
     磁悬浮隔振器中的作动器是电磁作动器,通过控制输入电磁铁的电流来控制电磁力的大小。为了进行有效的振动主动控制,需要建立电磁力与电流、气隙之间的关系。对电磁力实验建模方法进行改进,通过实验建立了电磁作动器动态电磁力与电流、气隙之间的关系,得到了比较准确的考虑频率因素的动态电磁力模型。给出了一种自寻优前馈控制方案,在磁悬浮隔振系统中获得了较好的实验效果。
     为了解决振动主动控制算法中次级通道建模的问题,在对滤波x最小均方(滤波x-LMS)算法几何分析的基础上,给出了一种不需要次级通道模型的自收敛前馈控制算法,在磁悬浮隔振实验平台上进行实验,在5.0Hz-15.0Hz频段内取得了良好的实验效果,最后研究了分块归一化对自适应前馈控制收敛速度的影响。
Vibration control is a very important issue in the field of the ship. Because once the installation of the traditional passive vibration isolation is completed, it is difficult to change parameters. So it does not have strong adaptability for the changes of vibration objects and seismic focus. Furthermore, passive vibration isolation can not guarantee the performance of vibration isolation in low frequency. Compared with this, active vibration isolation is self-adaptive and has good control effect in low frequency. So it becomes a research hotspot gradually. This paper conducts the research on the theory and experiment related to active vibration isolation, based on self-designed version 2 of Electromagnetic Suspension Vibration Isolator (2nd ESVI).
     Three expressions of evaluation indices of vibration isolation (Vibration Level Difference, Insertion Loss and Force Transmissibility) are derived in detail. A constant difference between the three indices is obtained under certain conditions. An accurately and full method that reflects the combined effect of active and passive vibration isolation is proposed. Then the designs of 2nd ESVI and flexible base are introduced. The relationship between the evaluation indices is verified through the experimental results, and the relationship between the three indices and damping, stiffness, quality of the system is researched through simulations.
     The actuator in 2nd ESVI is an electromagnetic actuator. The electromagnetic force is controlled by controlling the input current of the electromagnet. In order to carry out effective active vibration control, the relationship between the electromagnetic force and current, gap is needed to establish. The experimental modeling method of electromagnetic force is improved. The relationship between the dynamic electromagnetic force and current, gap is established through experiments. The more accurate dynamic electromagnetic force model considering the frequency factor is obtained. A self-optimizing feed-forward control scheme is proposed and good experimental results are achieved in the electromagnetic suspension vibration isolation system.
     In order to resolve the problem of modeling the secondary path in the active vibration control algorithm, an self-converging feed-forward control algorithm without the secondary path model is presented based on the geometric analysis of filtered x Least Mean Square (filtered x-LMS) algorithm. Through the experiments on the electromagnetic suspension vibration isolation experimental platform, good experimental results are achieved in the 5.0 Hz - 15.0Hz band. Finally the impact on convergence speed of the block-normalized adaptive filtering algorithms is studied.
引文
陈斌. 2008.浮筏隔振系统建模及振动主动控制研究[D].硕士学位论文,合肥:中国科学技术大学.
    陈光. 2003.挠性梁的实验建模及其振动主动控制[D].硕士学位论文,合肥:中国科学技术大学.
    陈光. 2006.密集模态挠性结构的多变量实验辨识及自适应逆控制[D].博士学位论文,合肥: 中国科学技术大学.
    陈大跃,胡宗武,范祖尧. 1991.振动控制的特征结构配置[J].振动工程学报, 4(2): 75 - 81.
    董卓敏, 2003.柔性结构的实验建模与主动控制[D].博士学位论文,合肥:中国科学技术大学.
    盖玉先,李旦,董申. 2000.基于模糊神经融合的超精密机床振动主动控制[J].中国机械工程, 11(8): 872 - 874.
    葛研军,王磊,蒋成勇. 2007.基于BP的PID算法在磁轴承控制系统中研究[J].微计算机信息, 23(8-1): 41 - 42.
    顾仲权. 1990.振动主动控制中低阶控制器的优化设计[J].振动工程学报, 3(3): 1 - 8.
    黄群,文立华,李双. 2006.基于压电堆式作动器的主动隔振研究及其仿真分析[J].西安工业大学学报, 126(14): 361 - 364.
    赖胜. 2005.具有模型不确定性柔性结构的鲁棒振动主动控制[D].博士学位论文,合肥:中国科学技术大学.
    李嘉全. 2008.浮筏系统的振动主动控制技术[D].博士学位论文,合肥:中国科学技术大学. 刘淑琴. 2005.磁悬浮轴承技术在电主轴中的应用[J].金属加工, (8): 21 - 22.
    刘雍,顾家柳. 1994.转子动力系统的鲁棒H∞控制器设计[J].振动工程学报, 7(3): 251 - 255.
    刘志刚,李伟,张洪田,张文平,柳贡民,张天元. 1997.自适应(LMS算法)主动隔振模拟实验研究[J].内燃机学报, 15(3): 359 - 363.
    龙飞. 1997.一种新型电磁式执行机主动振动控制的理论分析[J].华中师范大学学报(自然科学版), 31(4): 425 - 428.
    龙志强,郝阿明,陈革,常文森. 2003.磁悬浮控制的主动式隔振平台研究[J].宇航学报, 24(5): 510 - 514.
    龙志强,洪华杰,周晓兵. 2003.磁悬浮列车的非线性控制问题研究[J].控制理论与应用20(3): 399 - 402.
    鲁力. 2007.基于动磁式主动吸振器的振动主动控制[D].硕士学位论文,合肥:中国科学技术大学.
    马宝山,刘志刚,孙建民,赵振宇. 2003.自适应LMS算法在汽车悬架振动主动控制中的仿真研究[J].噪声与振动控制, 24(3): 3 - 6.
    马扣根,顾仲权. 1991.最优极点配置法在梁式结构振动主动控制中的应用[J].振动与冲击, (3): 85 - 89.
    马运领. 2004.桁架结构的建模与振动主动控制[D].硕士学位论文,合肥:中国科学技术大学.
    马志刚. 2005.桁架结构振动主动控制[D].硕士学位论文,合肥:中国科学技术大学.
    马忠宝,孙荣斌. 2007.磁悬浮列车电磁悬浮系统的自适应模糊滑模控制[J].机车电传动, (1): 29 - 32.
    孟令雷. 2009.磁悬浮隔振器的建模与控制[D].硕士学位论文,合肥:中国科学技术大学.
    孟令雷,倪向贵,段小帅,王永. 2009.基于MTS809的磁悬浮隔振器电磁力测量[J].自动化与仪表, 24(3): 4 - 7.
    彭程. 2007.柔性梁的降阶控制器设计与实验研究[D].博士学位论文,合肥:中国科学技术大学.
    屈文忠,邱阳,张陵. 2000.模糊自适应滤波的主动控制方法研究[J].振动工程学报, 13(1): 273 - 276.
    孙德敏. 1997.工程最优化方法及应用[M].合肥:中国科学技术大学出版社.
    孙红灵. 2007.振动主动控制若干问题的研究[D].博士学位论文,合肥:中国科学技术大学.
    孙勇,李万莉,潘存治. 2007.基于工程车辆减振系统的单向电磁作动器结构及控制律设计[J].中国机械工程, 18(9): 1131 - 1133.
    谭善光,汪希宣. 1989.结构强迫振动最优响应和模态主动控制[J].振动工程学报, 2(4): 76 - 81.
    王家林,朱石坚. 1999.振级落差和插入损失对应关系的研究[J].海军工程大学学报, 87(2) : 37 - 40.
    王颖. 2002.挠性结构振动抑制的建模与控制研究[D].硕士学位论文,合肥:中国科学技术大学.
    王永,董卓敏,陆国华,吴亦农,孙德敏. 2003.微型斯特林制冷机振动主动控制[J].实验力学, 18(4): 506 - 512.
    王永,张国庆,陈光. 2005.斯特林制冷机的自寻优前馈振动控制[J].振动工程学报, 18(3): 261 - 265.
    吴伟光,马履中,朱伟,陈修祥. 2008.新型混合磁悬浮主动隔振的研究[J].机械设计, 25(5): 49 - 51.
    肖斌,杨铁军,刘志刚. 2006.柴油机主动隔振液压执行器线性化控制仿真研究[J].哈尔滨工程大学学报, 27(2): 212 - 217.
    严济宽,柴敏,陈小琳. 1997.振动隔离效果的评定[J].噪声与振动控制, (6) : 22 - 30.
    俞孟萨,黄国容,伏同先. 2003.潜艇机械噪声控制技术的现状与发展概述[J].船舶力学, 7(4): 110 -120.
    詹训慧. 2007.分布式压电智能结构的建模与振动控制[D].博士学位论文,合肥:中国科学技术大学.
    赵冉. 2008.磁悬浮主动隔振器的建模研究[D].硕士学位论文,合肥:中国科学技术大学.
    张国庆. 2008.柔性多体系统建模与控制[D].博士学位论文,合肥:中国科学技术大学.
    张国庆,王永,陈光. 2005.一类多频线谱振动的主动控制方法[J].南京理工大学学报, 29(144): 37– 40.
    张磊,刘永光,付永领,何琳. 2004.基于磁致伸缩作动器的主动隔振系统分析[J].航空动力学报, 19(6): 782 - 786.
    周烽. 2002.斯特林制冷机振动主动控制[D].硕士学位论文,合肥:中国科学技术大学.
    朱英富,张国良. 2005.舰船隐身技术[M].哈尔滨:哈尔滨工程大学出版社.
    Benassi L, Elliott S J. 2004. Active vibration isolation using an inertial actuator with local displacement feedback control [J]. Journal of Sound & Vibration, 278: 705 - 724.
    Daley S, Johnson F A, Pearson J B, Dixon R. 2004. Active Vibration Control for Marine Applications [J]. Control Engineering Practice, 12(4): 465 - 474.
    Elias Bjarnason. 1994. Algorithms for Active Noise Cancellation without Exact Knowledge of the Error-Path Filter [C]. Proceedings of IEEE International Symposium on Circuits and Systems: 573 - 576.
    Giua A, Seatzu C, Usai G. 2000. Active Axletree Suspension for Road Vehicles with Gain-Switching [C]. Proceedings of IEEE Conference on Decision and Control, Vol.1: 438–443.
    Gong Y, Song Y, Liu S J. 2003. Performance Analysis of the Unconstrained FXLMS Algorithm for Active Noise Control [C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol.5: V- 569 - 72.
    Hwang K H, Cho Y H. 2004. Design and Dynamic Characteristics Analysis of Moving Magnet Linear Actuator for Human [C]. Proceedings of the IEEE International Conference on Mechatronics: 251 - 254.
    Kang M S, Yoon W H. 2006. Acceleration Feed-forward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm [J].IEEE Transactions on Control Systems Technology, 14(1): 134 - 140.
    Kensaku Fujii, Mitsuji Muneyasu, Juro Ohga. 2002. Active Noise Control System Using the Simultaneous Equation Method without the Estimation of Error Path Filter Coefficients [J].Electronics and Communications in Japan, 85(12): 101 - 108.
    Kim J M, Kim C K, Park M K, Kim K H. 2001. A Robust Control of a Magnetic Suspension System with a Flexible Rail [C]. Proceedings of IEEE International Symposium on Industrial Electronics, Vol.2: 1309 - 1312.
    Kim S M, Pietrzko S, Brennan M J. 2008. Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber [J]. IEEE Transactions on Control Systems Technology, 16(2): 245 - 254.
    Li G P, Zhang C L. 2005. Active Vibration Control of a Isolation Platform Based on State Space LQG [C]. IEEE International Conference on Robotics and Biomimetics: 427 - 431.
    Lin C E, Chen C L, Ker C C. 2005. An One Dimensional Hybrid Magnetic Vibration Actuator Design and Implementation [C]. Conference of IEEE Industrial Electronics Society: 2059 - 2064.
    Lin C H, Hung S K, Chen M Y, Li S T, Fu L C. 2008. A Novel High Precision Electromagnetic Flexure-Suspended Positioning Stage with an Eddy Current Damper [C]. International Conference on Control, Automation and Systems: 771 - 776.
    Liu Z G. 2006. A Protocol Analysis Method of Acceleration Sensor in Maglev Train [C]. Proceedings of IEEE International Conference on Networking, Sensing and Control: 342-345.
    Mathias Winberg, Sven Johansson, Thomas L Lag?. 2001. Active Control of Engine Induced Noise in a Naval Application [J], ICSV 8: 294 - 300.
    Meirovitch L. 1987. Some problems associated with the control of distributed structures [J]. Optimal Theory and Application, 54: 1– 12.
    Sinha P K, Pechev A N. 2004. Nonlinear H∞Controllers for Electromagnetic Suspension Systems [J]. IEEE Transactions on Automation Control, 49(4): 563– 568.
    Snyder S D, Tanaka N. 1993. Modification to Overall System Response When Using Narrowband Adaptive Feed-forward Control System [J]. Journal of Dynamic Systems, Measurement and Control, 115(11): 612 - 626.
    Vipperman J S, Burdisso R A, Fuller C R. 1993. Active control of broadband structural vibration using the LMS adaptive algorithm [J]. Journal of Sound and Vibration, 166(2): 283 - 299.
    John Walrod. 1999. Sensor and Actuator Networks for Acoustic Signature Monitoring and Control [J], Undersea Defense Technology: 1 - 6.
    Watanabe K, Hara S, Kanemitsu Y, Haga T, Yano K, Mizuno T, Katamura R. 1996. Combination of H∞and PI Control for an Electromagnetically Levitated Vibration Isolation System [C]. Proceedings of the 35th Conference on Decision and Control, Vol.2: 1223 - 1228.
    Xiao Y G, Ikuta A, Ma L Y, Khorasani K. 2008. Stochastic Analysis of the FxLMS Based Narrowband Active Noise Control System [J]. IEEE Transactions on Audio, Speech, and Language Processing, 16(5): 1000 - 1014.
    Yeh T J, Ying Jer Chung, Wu W C. 2001. Sliding Control of Magnetic Bearing Systems [J]. Journal of Dynamic Systems, Measurement and Control, (123): 353– 356.
    Yoda M, Shiota Y. 1994. An Electromagnetic Actuator for a Robot Working with a Man [J]. IEEE International Workshop on Robot and Human Cmmunlcatlon: 373 - 377.
    Yoshinobu Kajikawa, Yasuo Nomura. 2000. Active Noise Control System without Secondary Path Model [C]. Proceedings of IEEE International Symposium on Circuits and Systems: 349 - 352.
    Yuhsukel Ohta, Toshikazu Kohno, Hiromitsu Ohmori, Akira Sano. 2002. Direct Fully Adaptive Noise Control Algorithms without Identification of Secondary Path Dynamics [C]. Proceedings of IEEE International Conference on Control Applications: 453 - 458.
    Zhou J, Wen C Y. 2007. Adaptive Inverse Control of a Magnetic Suspension System with Input Backlash [C]. IEEE International Conference on Control Applications: 1347 - 1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700