野生二粒小麦高分子量谷蛋白亚基等位变异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦胚乳贮藏蛋白成分对小麦的品质具有重要作用,尤其是占贮减蛋白主要组分的小麦谷蛋白。小麦谷蛋白由高分子量谷蛋白亚基(HMW-GS)和低分子量谷蛋白亚基(LMW-GS)两部分组成;HMW-GS与LMW-GS的含量及组成可直接影响小麦面粉的加工和烘烤品质。本研究以由德国慕尼黑工业大学生命科学中心分子遗传室提供的175份野生二粒小麦为材料,利用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法和质谱技术对上述材料的HMW-GS组成进行鉴定和分析,以期鉴定和筛选一些新的谷蛋白亚基,为进一步克隆优质蛋白基因奠定基础,为今后研究野生二粒小麦HMW-GS与小麦品质的关系提供研究基础,并为探索利用野生二粒小麦上的特异HMW-GS改良小麦品质的新途径提供理论依据。主要研究结果如下:
     l HMW-GS的SDS-PAGE分离鉴定
     利用单向一步SDS-PAGE技术分析了供试材料的高分子量麦谷蛋白亚基等位变异,在Glu-1位点共检测到36种变异类型,其中Glu-A1位点有4种类型:1、1~*、2~*和Null,出现频率分别为45.14%、2.86%、4.57%和47.43%;Glu-B1位点有32种类型,比普通小麦1B染色体上HMW-GS的变异类型丰富得多,其中7+8和14.1+15.1亚基分布频率最高(20.00%),且有7个新亚基:1.1、5~*、7~*、12~*、14.1、15.1和16~*。供试小麦材料Glu-1位点的LMW-GS组合共有44种类型,以(null,14.1+15.1)组合为主要类型,占12.58%。该结果为进一步进行小麦亚基研究与品质改良提供了有意义的参考资料。
     l HMW-GS的MALDI-TOF-MS鉴定
     本研究对野生二粒小麦高分子量谷蛋白亚基采用基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)鉴定技术进行了优化,初步摸索出一套样品用量少、操作简便快速、适合高通量分析的技术体系。分析结果表明,15-20mg小麦种子样品足够进行质谱鉴定。图谱显示,不同高分子量蛋白组分分辨度较好,图谱清晰,分子量多集中在60-100kD之间。1Bx14.1、1By15.1、1Bx7~*、1By12~*和1Bx1.1这5个新亚基的质谱测定的分子量分别为82.9419kD、73.3575kD、86.1045kD、71.0637kD和88.4767kD。
Wheat seed storage proteins,especially glutenin,are important for processing-quality of wheat flour.The glutenins are the major components of wheat storage proteins,which consist of high-molecular-weight glutenin subunits(HMW-GS) and low-molecular-weight glutenin subunits(LMW-GS).It is well known that the composition and content of HMW and LMW glutenin subunits could influence the flour processing and bread-making quality.Genetic diversity of high molecular weight glutenin subunits(HMW-GS) encoded by the Glu-A1 and Glu-B1 loci were investigated by using one-dimensional sodium dodecylsulphate polyacrylamide gel electrophoresis(SDS-PAGE) and mass spectrometry(MS) in 175 wild emmer accessions which were from German Munich Industrial university.These datas may facilitate basic research on the relationship of industrial quality with HMW glutenin subunit and could be used to broaden the genetic basis for wheat breeding.The main results obtained were as the followings:
     Separation and identification of HMW-GS by SDS-PAGE
     HMW-GSs in Triticum dicoccoides were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) technique.36 allelic variations were found at Glu-1 locus,and four alleles were at the Glu-A1 locus:1,1~*,2~* and Null,32 alleles were at the Glu-B1 locus,a high degree of variation was evident for the HMW-GS in wild emmer accessions. The distribution of alleles appeared to be non random,the frequency of 7+8 and 14.1+15.1 were 20.0%,which were higher than others at the Glu-B1 locus.7 new allelic variations were found at Glu-B1 locus:1.1,5~*,7~*,12~*,14.1,15.1 and 16~*.Forty-four HMW glutenin subunit combinations have been observed at Glu-1 loci,of which the combinations(null,14.1+15.1) have accounted up to 12.58%.The results indicated that the combination of HMW is abundant among the tested wheat cultivars.
     Identification of HMW-GS by MALDL-TOF-MS
     The accurate measurement of molecular weights and characterization of wheat HMW-GS through matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was established in this study,which has the advantages of fast,simplified process,requirement of small samples and high resolution.The results show that HMW-GS components could be well characterized in the molecular weight range of 60-100kD.The molecular weight of the new subunits 1Bxl4.1,1By15.1,1Bx7~*,1By12~* and 1Bx1.1 which identified by MALDI-TOF-MS were 82.9419kD,73.3575kD,86.1045kD,71.0637kD and 88.4767kD respectively.
引文
段淑娥,赵文明.小麦谷蛋白亚基的快速提取分离及SDS-PAGE分析.陕西师范大学学报(自然科学版),2004,32:77-79
    郭尧君主编.蛋白质电泳实验技术.科学出版社,1999,54-68
    霍清涛,吕德彬.小麦主要品质性状的遗传模型研究.华北农学报,1996,11:8-14
    李保云,王岳光,刘凤鸣,孙辉,刘广田.小麦高分子量谷蛋白亚基与小麦品质性状关系的研究.作物学报,2000,26:322-326
    李保云,解超杰,尤明山,毛善锋,刘广田.野生二粒小麦高分子量谷蛋白亚基的多态性分析.麦类作物学报,2002,22:21-24
    李桂江,伍碧华,侯永翠,颜泽洪,郑有良.野生二粒小麦醇溶蛋白遗传多样性分析.麦类作物学报2004,24(3):29-33
    李巧云,安学丽,肖英华,张倩,张艳贞,夏先春,何中虎,晏月明.野生二粒小麦(Triticum dicoccoides)低分子量谷蛋白亚基基因的克隆与序列分析.中国农业科学2007,40(3):457-463
    李蓉,梁恒.生物质谱——蛋白质组研究的关键技术.化学通报,2002,11:48-751
    刘艳华,王洪刚,刘树兵,高居荣,张宏领.小麦高分子量谷蛋白亚基14+15、7+8、1与部分品质性状关系的研究.华北农学报,2003,18:4-7
    刘丽,何中虎,于亚雄,杨金华,程耿,胡银星.谷蛋白研究进展.西南农业学报,2003,16:54-61
    马传喜,吴兆苏.小麦染色体1A和1B制的一些谷蛋白亚基对烘烤品质的影响.南京农业大学学报,1995,18:7-10
    毛沛.小麦遗传资源HMW麦醇溶蛋白亚基组成及其与面包烘烤品质关系的研究.中国农业科学,1995,28(增刊):22-27
    王罡,季静,胡含.小麦种子贮藏蛋白的遗传学研究进展.遗传,1995,17:45-50
    王瑞,宁锟.一些优质小麦及其杂种后代高分子量谷蛋白亚基组成与面包品质之关系.西北农业学报,1995,4:25-30
    吴昆仑.小麦高分子量麦谷蛋白亚基组成与小麦品质的关系.青海农林科技,2002,4:30-31
    吴世荣,李志良,李根容,杨胜喜.生物质谱的研究及其应用.重庆大学学报,2004, 27:123-127
    夏其昌主编.蛋白质化学研究技术与进展,科学出版社,1997,pp99-107
    许崇峰,申华莉,宋浩威,杨原.毛细管电泳-电喷雾质谱联用技术及其在蛋白质分析领域中的应用.分析测试学报,2002,21:95-98
    许自成,段国新.对小麦不同HMW麦谷蛋白亚基评分系统的评价.粮食储藏,1998,1:76-82
    晏月明,刘广田,Prodanovic S,Mominovic G S,Zoric D,Perovic D.小麦谷蛋白亚基的凝胶电泳分离及其品种鉴定.中国粮油学报,1998a,13:1-5
    晏月明,刘广田,Prodanovic S,Zoric D.小麦醇溶蛋白基因的HPCE和A-PAGE染色体定位及其比较分析.农业生物技术学报,1998b,6:131-139
    晏月明,刘广田.毛细管区带电泳分离小麦种子醇溶蛋白的研究.色谱,1998c,16:252-254
    晏月明,刘广田.小麦醇溶蛋白毛细管电泳分离技术及其在品种鉴定上的利用研究.作物学报,1999,25:237-243
    余建中,晏月明,蔡民华,胡英考.毛细管电泳技术及其在作物贮藏蛋白研究中的应用.麦类作物学报,2002,22:78-81
    张怀刚,陈集贤,赵绪兰,胡含.小麦体细胞无性系HMW-GS变异及其变异体的研究.科学通报,1995,40:1190-1993
    冯军礼,赵会贤,吉万全等.陕西省农家小麦主要加工品质特性及其聚类分析.西北农业学报,1998,7:53-55
    Bean SR,Lookhart GL.Ultrafast Capillary electropooretic analysus of cereal storage proteins and its applications to protein characterization and cultivar differentitation.J Agric Food Chem.2000,48:344-353
    Bean SR,Lookhart GL.Recent developments in high-performance capillary electrophoresis of cereal proteins.Electrophoresis.2001 a,22:1503-1509
    Bean SR,Lookhart GL.High-performance capillary electrophoresis of meat,dairy,and cereal proteins.Electrophoresis.2001b,22:4207-4215
    Beccari De Frumento.De Bononiensi Scientiarum et Artium Instituto Atque Academia Commentarii,Ⅱ,Part Ⅰ,1745,122-127.
    Bietz JA,Schmalzried E.Capillary electrophoresis of wheat proteins:optimization and use for varietal identification. Cereal Foods World. 1992, 37: 555-560
    Branlard G, and Dardevet M. Diversity of grain protein and bread wheat quality. II. Correlation between high molecular subunits of glutenin and flour quality characteristics. J Cereal Sci. 1985, 3: 345-354
    Brett GM, Mills ENS, Tatham AS, Fido RJ, Shewry PR. Immunchemical identification of LMW subunits of glutenin associated with bread-making quality of wheat flours. Theor Appl Genet. 1993, 84: 442-448
    Brown JWS, Flavell RB. Fractionation of wheat gliadin and glutenin subunits by two-dimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis. Theor Appl Genet. 1981a, 59: 349-359
    Brown JWS, Law CN, Worland AJ, Flavell RB. Genetic variation in wheat endosperm proteins:an analysis by two-dimensional electrophoresis using intervarietal chromosomal substitution lines. Theor Appl Genet. 1981b, 59: 361-371
    Ciaffi M, Dominici L, Lafiandra D, Porceddu E Seed storage proteins of wild wheat progenitors and their relationships with technological properties. Hereditas. 1992, 116: 315-322
    Ciaffi M,Lafiandra D, Porceddu E, Benedettelli S. Storage-protein variation in wild emmer wheat (Triticum turgidum ssp. dicoccoides) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theor Appl Genet, 1993, 86: 474-480
    Dachkevitch T, Redaelli R, Biancardi AM, Metakovsky EV, Pogna NE. Genetics of gliadins coded by the group-1 chromosomes in the high-quality bread wheat cultivar Neepawa. Theor Appl Genet. 1993, 86: 389-399
    Draper SR. ISTA Variety committee report of the working group for biochemical tests for cultivar identification 1983-1986. Seed Sci & Technol. 1987, 15: 431-434
    Dworschak RG, Ens W, Standing KG, Preston KR, Marchylo BA, Nightingale MJ, Stevenson SG, Hatcher DW. Analysis of wheat gluten proteins by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom. 1998, 33: 429-435
    Foti S, Maccarrone G, Saletti R, Roepstorff P, Gilbert S, Tatham AS, Shewry PR. Verification of the cDNA deduced sequence of glutenin subunit 1Dx5 and M_r 58000 repetitive peptide by matrix-assisted laser desorptin/lonisation mass spectrometry (MALDI-MS). J Cereal Sci. 2000, 31:173-183
    Galili G, Feldman M. Genetic control of endosperm proteins in wheat. 2. Variation of HMW glutenin and gliadin subunits of Triticum aestivum. Theor Appl Genet, 1983, 66: 77-86
    Gianibelli MC, Masci S, Larroque R, Lafiandra D. Biochemical characterization of a novel polymeric protein subunit from bread wheat (Triticum aestivum L.). J Cereal Sci. 2002a, 35: 265-276
    Gianibelli MC, Gupta RB, Lafiandra D, Margiotta B, MacRitchie F. Polymorphism of high M_r glutenin subunits in Triticum tauschii: characterization by chromatography and electrophoretic methods. J Cereal Sci. 2002b, 35: 277-286
    Gupta RB, Macritchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1,Glu-3 and Gli-1 of common wheats. II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci. 1994, 19: 19-29
    Gupta RB, Macritchie F. Rapid communication a rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunit composition of glutenin in wheat. J Cereal Sci. 1991,14:105-109
    Gupta RB, Shepherd KW. Two- step one- dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theor Appl Genet. 1990, 80: 65-74
    Halford NG, Forde J, Shewry PR, Kreis M. Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci, 1989, 62: 207-216
    Hickman DR, Roepstorff P, Shewry PR, Tatham AS. Molecular weights of high molecular weight subunits of glutenin determined by mass spectrometry. J Cereal Sci. 1995, 22: 99-103
    Jackson EA, Holt LM, Payne PI. Characterisation of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimension electrophoresis and the chromosomal localization of their controlling genes. Thero Appl Genet. 1983,66:29-37
    Jackson EA, Morel MH, Strohm TS, Branlard G, Metakovsky EV, Redaelli R. Proposal for combining the classification systems of alleles of Gli-1 and Glu-3 loci in bread wheat (Triticum aestivum L.). J Genet & Breed. 1996, 50: 321-336
    Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Human Genetics. 1975,26:231-243
    Kolster P, Krechting CF, Gelder WMJ van. Variation in high molecular weight glutenin subunits of Triticum aestivum and T.turgidum ssp.dicoccoides. Euphytica , 1988, S: 141-145
    Kolster P, Vereiken JM. Evaluating HMW glutenin subunits to improve breadmaking quality of Wheat. Cereal Food World. 1993, 38: 76-82
    Lew EJL, Kuzmicky DD, Kasarda DD. Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem. 1992, 69: 508-515
    Luo C, Griffin WB, Branlard G, Mcneil DL. Comparison of low- and high molecular-weight wheat glutenin allele effects on flour quality. Theor Appl Genet. 2001,102: 1088-1098
    Masci S, Lafiandra D, Porceddu E, Lew EJ, Tao HP, Kasarda DD. D-Glutenin Subunits:N-Terminal Sequences and Evidence for the Presence of Cysteine. Cereal Chem. 1993,70:581-585
    Masci S, Rovelli L, Kasarda DD, Vensel WH, Lafiandra D. Characterisation and chromosomal localization of C-type low-molecular-weight glutenin subunits on the bread wheat cultivar Chinese Spring. Theor Appl Genet. 2002, 104: 422-428
    Mecham DK, Kasarda DD, Qualset CO. Genetic aspects of wheat gliadin proteins. Biochem Genet. 1978,16: 831-853
    Morel MH. Acid-polyacrylamide gel electrophoresis of wheat glutenins: a new tool for the separation of high and low molecular weight subunits. Cereal Chem. 1994, 71: 238-242
    Muccili V, Cunsolo V, Saletti R, Foti S, Masci S, Lafiandra. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Proteomics. 2005, 5: 719-728
    Nieto-Taladriz MT, Ruiz M, Martinez MC, Vazquez JF, Carrillo JM. Variation and classification of B-low-molecular-weight glutenin subunit alleles in durum wheat. Theor Appl Genet. 1997, 95: 1155-1160
    O' Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Bio Chem. 1975,250:4007-4021
    
    Osborne TB. Carnegie Institute of Washington Publication, 1907, No.84 Washington D.C. Payne PI, Corfield KG. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta. 1979,145: 83-88
    Payne PI, Corfield KG, Blackman JC. Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and breadmaking quality in progenies of six crosses of bread wheat. J Sci Food Agric. 1981, 32: 51-60
    Payne PI, Holt LM, Lawrence GJ, Law CN. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Qual Plant Foods Hum Nutr. 1982, 31: 229-241
    Payne PI, Lawrence GJ. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Res Communi. 1983,11: 29-35
    Payne PI, Holt LM, Jackson EA, Law CN. Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos. Trans. R. Soc. Lond. B. 1984, 3(04): 359-371
    Pfluger LA, Martin LM, Alvarez JB. Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum) Schrank. Theor Appl Genet. 2001, 102: 767-772
    Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P. Chromosome 1B-encoded gliadins and glutenin subunits durum wheat: Genetics and relationship to gluten strength. J Cereal Sci. 1990,11: 15-34
    Redaelli R, Morel MH, Autran JC, Pogna NE. Genetic analysis of low Mr glutenin subunits fractionated by two-dimensional electrophoresis (A-PAGE×SDS-PAGE). J Cereal Sci. 1995, 21:5-13
    Ruizm, Carrllo J M, Lnkage. Relationships between prolamin genes on chromosome 1A and 1B of durum wheat. Theor Appl Genet. 1993, 87: 353- 360
    Shapiro AL, Vinuela E, Maizel JV Jr. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967, 28: 815-820
    Singh NK, Shepherd KW. Linkage mapping of the genes controlling endosperm proteins in wheat.1.Genes on the short arms of group 1 chromosomes. Theor Appl Genet. 1988, 75: 628-641
    Singh NK, Shepherd KW, Cornish GB. A Simplified SDS-PAGE for Separating LMW Subunit of Glutenin. J Cereal Sci. 1991,14: 203-207
    Sissons MJ, Bekes F, Skerritt JH. Isolation and Functionality testing of low molecular weight glutenin subunits. Cereal Chem. 1998, 75: 30-36
    Toufeili I, Iamail B, Shadarevian S, Baalbakib R,. Khatkarc BS, Bellc AE and. Schofieldc JD. The role of gluten protein in the baking of Ababic Bread. J Cereal Sci. 1999, 30: 255-265
    Vensel WH, Tarr GE, Kasarda DD. C-terminal and internal sequences of a low molecular weight (LMW-s) type of glutenin subunit. Cereal Chem. 1995, 72: 356-359
    Weber K and Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969, 244: 4406
    Wrigley CW. Protein mapping by combined gel electrofocusing and electrophoresis: application to the study of genotypic variations in wheat gliadins. Biochem Genet. 1970,4:509-516
    Xu SS, Khan K, Klindworth DL, Faris JD. Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L.var.dicoccoides). Theor Appl Genet, 2004, 108: 1221-1228
    Yan Y, Prodanovic S, Mladenov N, Milovanovic M. Genetic control of low molecular weight glutenin subunits in wheat by A-PAGE analysis. Cereal Res Communi. 1999a, 27:251-257
    
    Yan Y, Surlan-Momirovic G, Prodanovic S, Zoric D, and Liu G. Capillary zone electrophoresis analysis of gliadin proteins from Chinese and Yugoslav winter wheat cultivars. Euphytica. 1999b, 105: 197-204
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ. Genetic polymorphisms at Gli-D' gliadin loci in Aegilops tauschii as revealed by acid polyacrylamide gel and capillary electrophoresis. Plant Breed. 2003a, 122: 120-124
    Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by Sodium Dodecyl Sulphate (SDS-PAGE), Acid Polyacrylamide Gel (A-PAGE) and Capillary Electrophoresis. Euphytica. 2003b, 130: 377-385
    Yan Y, Yu J, Jiang Y, Hu Y, Cai M, Hsam SLK, Zeller FJ. Capillary electrophoresis separation of high molecular weight glutenin subunits in bread wheat (Triticum aestivum L.) and related species with phosphate-based buffers. Electrophoresis. 2003 c, 24: 1429-1436
    Yan Y, Hsam SLK, Yu J, Jiang Y, Ohtsuka I, Zeller FJ. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor Appl Genet. 2003d, 107: 1321-1330
    Yan Y, Jiang Y, Yu J, Cai M, Hu Y, Perovic D. Characterization of seed hordeins and varietal identification in three barley species by high-performance capillary electrophoresis. Cereal Res Communi. 2003e, 31:3-4
    Yan Y, Zheng J, Xiao Y, Yu J, Hu Y, Cai M, Li, Y, Hsam SLK and Zeller FJ (2004) Identification and molecular characterization of a novel y-type Glu-1Dt1 glutenin gene of Aegilops tauschii. Theor Appl Genet 108: 1349-1358
    Yates III JR. Special feature :tutorial —Mass spectrometry and the age of the proteome. Journal of Mass Spectrometry. 1998, 33: 1-19
    Zhu J, Khan K. Separation and quantification of HMW glutenin subunits by capillary electrophoresis. Cereal Chem. 2001, 78: 737-742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700