朴素贝叶斯分类器及其改进算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分类是数据挖掘中一项非常重要的任务,在现实生活中有着广泛的应用。例如,根据电子邮件的标题和内容判断其是否为垃圾邮件。构造分类器的方法很多,常见的有贝叶斯网络、决策树、基于实例的学习、人工神经网络、支持向量机、遗传算法、粗糙集、模糊集等等。其中,贝叶斯网络正以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习特性等成为众多方法中最为流行的方法之一。
     鉴于学习最优的贝叶斯分类器如同学习贝叶斯网络是一个NP难问题,学习朴素贝叶斯分类器得到了广大学者的重视。朴素贝叶斯分类器基于一个简单而不现实的假设:在给定类标记时属性值之间相互条件独立。可最近的有导师学习表明:即便是这样一个惊奇简单且具有很强的属性条件独立性假设的贝叶斯分类器,简称为朴素贝叶斯分类器,其分类性能仍然可与决策树算法、k-近邻算法等经典算法相当。
     一个自然的问题是:释放朴素贝叶斯分类器的属性条件独立性是否可以使得它的分类性能更好?为回答这个问题,学者们提出了许多改进朴素贝叶斯分类器的方法,概括起来主要可以分为三类:1)结构扩展,这一类方法用有向边来表达属性之间的依赖关系;2)属性选择,这一类方法在属性空间搜索一个属性子集;3)局部学习,这一类方法在测试实例的局部构建一个朴素贝叶斯分类器。
     本文以朴素贝叶斯分类器为基本对象,研究朴素贝叶斯分类器的各种改进方法,提出了隐藏扩展的朴素贝叶斯分类器、演化选择的朴素贝叶斯分类器、动态局部的朴素贝叶斯分类器三种算法。在许多现实的数据挖掘应用中,排列也非常重要。因此,本文调查研究了朴素贝叶斯分类器的排列性能,并提出了一种局部克隆的朴素贝叶斯排列算法。此外,本文还调查研究了改进朴素贝叶斯分类器的一些其他方法:属性加权方法、实例加权方法、组合学习方法,提出了一种基于相似度的实例加权的朴素贝叶斯分类算法和一种基于C4.5和NB的组合分类算法。最后,探讨了新算法在若干实际问题的应用价值。
     本文的最主要的贡献包括:
     1)给出了学习扩展的朴素贝叶斯分类器的算法框架、综述了改进朴素贝叶斯分类器的结构扩展方法、提出了一种隐藏扩展的朴素贝叶斯分类算法(HANB)。HANB为每个属性结点产生一个隐藏的父亲结点,该结点对其儿子结点的影响为其他所有属性结点对该属性结点影响的加权平均,其中权值的大小为属性变量之间的条件相互信息。
     2)给出了学习选择的朴素贝叶斯分类器的算法框架、综述了改进朴素贝叶斯分类器的属性选择方法、提出了一种演化选择的朴素贝叶斯分类算法(ESNB)。ESNB的适应度函数为当前朴素贝叶斯分类器的分类精度。编码方式为二进制编码方式,二进制串的长度为原始属性的个数,二进制位“1”或者“0”分别代表属性被选择或没有被选择的状态,停止搜索的条件为演化的代数。
     3)给出了学习局部的朴素贝叶斯分类器的算法框架、综述了改进朴素贝叶斯分类器的局部学习方法、提出了一种动态局部的朴素贝叶斯分类算法(DLNB)。DLNB在训练实例集上利用留一交叉验证法来动态地选择一个最能拟合训练实例集的k值,一旦最佳的k值被学习到,它就可以被用来分类所有的测试实例。
     4)综述了排列算法的研究状况、调查了朴素贝叶斯分类器的排列性能、提出了一种局部克隆的朴素贝叶斯排列算法(LCNB)。LCNB首先运用k-近邻算法发现最接近测试实例的k个邻居,然后根据测试实例和每个邻居之间的相似度对每个邻居进行克隆,最后在增加了克隆实例后的训练实例集上构建朴素贝叶斯分类器。
     5)给出了学习属性加权和实例加权的朴素贝叶斯分类器的算法框架、综述了构造组合分类器的四类方法、提出了一种基于相似度的实例加权的朴素贝叶斯分类算法(IWNB-S)和一种基于C4.5和NB的组合分类算法(C4.5-NB)。
     6)探讨了新算法(HANB、ESNB、DLNB)在若干实际问题的应用价值。
Classification is one of very important tasks in data mining, and is widely used in real-world applications. For example, it can be used to judge whether a mail is a junk mail or not according to its tittle and content. There exist a lot of methods for building classifiers, such as Bayesian networks, decision trees, instance-based learning algorithms, artificial neural networks, support vector machines, genetic algorithms, rough sets, fuzzy sets, and so no. Amoung these mthods, Bayesian networks is the most popular one thanks to its special form for presenting uncertain knowledge, abundant ability for presenting probability, and incremental learning characteristic for synthesizing prior knowledge.
     Because learning an optimal Bayes classifier just like learning a Bayesian network and is an NP-hard problem, learning naive Bayes classifiers has attracted much attention from researchers. The naive Bayes classifiers is based on a simple but unrealistic assumption that the attribute values are conditionally independent given the class label. Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among attributes, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5 and the k-nearest neighbor algorithm.
     A natural question is: whether relaxing the attribute conditional independence assumption of the naive Bayes classifiers can scale up its classification performance or not. In order to answer this question, researchers presented a lot of improved methods, which can be broadly divided into three main categories: 1) Structure augmentation, this kind of approach uses directed arcs to represent the dependencies among attributes. 2) Attribute selection, this kind of approach selects an attribute subset from the whole space of attributes. 3) Local learning, this kind of approach builds a local naive Bayes classifier for a test instance.
     This thesis takes naive Bayes classifiers as the basic object, and researchs all kinds of improved methods of naive Bayes classifiers. Besides, three classifers, hidden augmented naive Bayes classifier, evolutional selective naive Bayes classifier, and dynamic local naive Bayes classifier, are presented in this thesis. In many real-world data mining applications, a ranking of test instances also is very important. Thus, this thesis surveys the ranking performance of the naive Bayes classifiers and presents a locally cloned naive Bayes ranking algorithm. Besides, this thesis studies some other methods for improving naive Bayes classifiers: attribute weighting, instance weighting, combining learning, and presents an instance weighted naive Bayes classification algorithm based on similarity and a combined classification algorithm based on C4.5 and NB. At last, this thesis explores the application values of the new algorithms in severeal real-world problems.
     The main contributions of this thesis include:
     1) This thesis gives the algorithm framework for learning augmented naive Bayes classifiers, reviews all kinds of structure augmentation methods for improving naive Bayes classifiers, and presents a hidden augmented naive Bayes classifier (simply HANB). HANB creates a hidden parent for each attribute node, which combines the influences from all the other attribute nodes by weightily averaging the conditional mutual information between each pair of attributes.
     2) This thesis gives the algorithm framework for learning selective naive Bayes classifiers, reviews all kinds of attribute selection methods for improving naive Bayes classifiers, and presents an evolutional selective naive Bayes classifier (simply ESNB). ESNB firstly uses an evolutional algorithm to select an attribute subset from the whole space of attributes, and then builds a naive Bayes classifier on the selected attributes. In ENB, the classification accuracy of naive Bayes classifiers is choosed as the fitness function, and the binary encoding method is used. In each binary string, the length is the number of original attributes, the bit of "0" or "1" respevtively means the status of an attribute being selected or not, and the condition for stopping selection is the maximum number of generations.
     3) This thesis gives the algorithm framework for learning local naive Bayes classifiers, reviews all kinds of local learning methods for improving naive Bayes classifiers, and presents a dynamic local naive Bayes classifier (simply DLNB). DLNB uses a brute-force search based on leave-one-out cross-validation to dynamically select a best k value for fitting the training data is learned at training time. Once the best k value is learned, it can be used to classify all test instances.
     4) This thesis reviews the reasearch status on ranking, surveys the ranking performance of the naive Bayes classifiers and presents a locally cloned naive Bayes ranking algorithm (simply LCNB). LCNB firstly applies the k-nearest neighbor algorithm to find k nearest neighbors of a test instance, and then clones each nearest neighbor according to the similarity between it and the test instance. At last, LCNB builds a naive Bayes classifier on the training instance set in which some clones have already been added.
     5) This thesis gives the algorithm framework for learning attribute weighted and instance weighted naive Bayes classifiers, reviews four kinds of methods of building combined classifiers, and presents an instance weighted naive Bayes classification algorithm based on similarity and a combined classification algorithm based on C4.5 and NB.
     6) This thesis explores the application valus of the new algorithms (HANB、ESNB、DLNB) in severeal real-world problems.
引文
[1]Pang-Ning Tan,Michael Steinbach and Vipin Kumar著,范明、范宏建等译,数据挖掘导论,人民邮电出版社,2006年5月印刷。
    [2]Jiawei Han and Micheline Kamber著,范明、孟小峰等译,数据挖掘-概念与技术,机械工业出版社,2001年8月印刷。
    [3]史忠植著,知识发现,清华大学出版社,2002年1月印刷。
    [4]Ian H.Witten and Eibe Frank著,董琳、邱泉等译,数据挖掘-实用机器学习技术,机械工业出版社,2006年2月印刷。
    [5]Tom M.Mitchell著,曾华军、张银奎等译,机械工业出版社,机器学习,2003年1月印刷。
    [6]Hand,D.著,张银奎译,机械工业出版社,数据挖掘原理,2003年4月印刷。
    [7]J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco, 1988.
    [8]Quinlan, J. R.: C4.5:Programs for Machine Learning. Morgan Kaufmann: San Mateo, CA(1993)
    [9]赵朝义,袁修干,孙金镖。遗传规划在采煤工作面瓦斯涌出量预测的应用。应用基础与工程科学学报,1999,7(4):387-392。
    [10]李曲,蔡之华,朱莉,赵云胜。基因表达式程序设计方法在采煤工作面瓦斯涌出量预测中的应用。应用基础与工程科学学报,2004,12(1):49-54。
    [11]陈遵德。基于Rough Set理论的油层识别方法。地球物理学进展,1998,13(4):52-59。
    [12]申辉林,王敏。应用模糊识别方法判别油水层。勘探地球物理进展,2007,30(2):140-143。
    [13]张文宾,林景晔等。对应分析油气水层识别方法及应用。大庆石油地质与开发,2002,21(2):8-9。
    [14]Chickering, D. M. (1996). Learning Bayesian networks is NP-Complete: In Fisher; D. and Lenz, H., editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121-130. pringer-Verlag.
    [15]Friedman, Geiger, and Goldszmidt. "Bayesian Network Classifiers", Machine Learning, Vol. 29, 131-163, 1997.
    [16]Keogh, E., Pazzani, M. : Learning augmented bayesian classifiers. Proceedings of Seventh International Workshop on AI and Statistics. (1999) Ft. Lauderdale.
    [17]L.Jiang, H.Zhang, Z.Cai and J. Su, One Dependence Augmented Naive Bayes, Proceedings of the 1st International Conference on Advanced Data Mining and Applications, ADMA 2005, LNAI 3584, pp.186-194, Springer Press.
    [18]Webb, G. I.; Boughton, J.; andWang, Z. 2005. Not so na(i|¨)ve bayes: Aggregating one dependence estimators. Machine Learning 58:5-24.
    [19] L. Jiang and H. Zhang, Weightily Averaged One-Dependence Estimators, Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, LNAI 4099, pp.970-974, Springer Press.
    [20] L. Jiang and H. Zhang. Lazy Averaged One-Dependence Estimators. Proceedings of the 19th Canadian Conference on Artificial Intelligence, CAI 2006, LNAI 4013, pp.515-525. Springer Press.
    [21] L. Jiang, Z. Cai, and D. Wang. Learning Averaged One-Dependence Estimators by Instance Weighting. Journal of Computational Information Systems, JCIS 2008, 4 (4): 1697-1704. Binary Information Press.
    [22] Langley, R, Sage, S. Induction of selective Bayesian classifiers, in Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, 1994, pp. 339-406.
    [23] Kohavi, R., and John, G., Wrappers for Feature Subset Selection. In Artificial Intelligence journal, special issue on relevance, Vol.97, Nosl-2, pp.273-324, 1997.
    [24] Hall, M. A. (1998). Correlation-based Feature Subset Selection for Machine Learning. Thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy at the University of Waikato.
    [25] Ratanamahatana, C.A., and Gunopulos, D., Scaling up the Naive Bayesian Classifier: Using Decision Trees for Feature Selection. In proceedings of Workshop on Data Cleaning and Preprocessing (DCAP 2002), at IEEE International Conference on Data Mining (ICDM 2002), Maebashi, Japan.
    [26] 刘同明等编著,数据挖掘技术及其应用,国防工业出版社,2001年9月。
    [27] Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 202-207, AAAI Press, Stanford (1996).
    [28] W. G. I. Zheng, Z. Lazy Learning of Bayesian Rules. Machine Learning, 41:53-84, 2000.
    [29] Xie, Z., Hsu, W., Liu, Z., Lee, M.: SNNB: A Selective Neighborhood Based Naive Bayes for Lazy Learning, Proceedings of the Sixth Pacific-Asia Conference on KDD, PAKDD 2002, pp. 104-114, Springer Press.
    [30] H. M. P.B. Frank, E. Locally Weighted Naive Bayes. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pages 249-256. Morgan Kaufmann, 2003.
    [31] L. Jiang, H. Zhang, and J. Su. Instance Cloning Local Naive Bayes. Proceedings of the 18th Canadian Conference on Artificial Intelligence, CAI 2005, LNAI 3501, pp.280-291. Springer Press.
    [32] 田凤占、张宏伟、陆玉昌、石纯一。处理连续变量的Bayes分类方法[J]。清华大学学报(自然科学版),2003,43(1):75-78。
    [33] 王志海、张璠。一种基于粗糙集合理论的树扩张型贝叶斯网络分类器[J]。复旦学报(自然科学版),2004,43(5):725-728。
    [34] 宫秀军、孙建平、史忠植。主动贝叶斯网络分类器[J]。计算机研究与发展[J]。2002,39(5):574-579。
    [35]周颜军、王双成、王辉。基于贝叶斯网络的分类器研究[J]。东北师大学报自然科学版,2003,35(2):21-27。
    [36]屈永华、王锦地、刘素红、万华伟、周红敏、林皓波。贝叶斯网络支持的地表参数混合反演模式研究[J]。遥感学报,2006,10(1):6-14。
    [37]陈雪、戴芹、马建文、李小文。贝叶斯网络分类算法在遥感数据变化检测上的应用[J]。北京师范大学学报(自然科学版),2005,44(1):97-100。
    [38]罗宁、穆志纯。基于贝叶斯网的分类器及其在CRM中的应用[J]。计算机应用,2004,24(3):79-81。
    [39]刘凤玉、李千目、衷宜。基于贝叶斯分类的分布式网络故障诊断模型[J]。南京理工大学学报,2003,27(5):546-550。
    [40]张敏、张恒义、郑筱祥。基于朴素贝叶斯分类器的大鼠体态自动识别[J]。航天医学与医学工程,2005,18(5):370-374。
    [41]王双成。混合贝叶斯网络隐藏变量学习研究[J]。计算机学报,2005,28(9):1564-1569。
    [42]王双成、苑森淼。具有丢失数据的贝叶斯网络结构学习研究[J]。软件学报,2004,15(7):1042-1048。
    [43]黄解军、万幼川、潘和平。贝叶斯网络结构学习及其应用研究[J]。武汉大学学报(信息科学版),2004,29(4):315-318。
    [44]胡玉胜、涂序彦、崔晓瑜、程乾生。基于贝叶斯网络的不确定性知识的推理方法[J]。计算机集成制造系统,2001,7(12):65-68。
    [45]胡振宇。基于贝叶斯网络的统计推断与问题求解[J]。广西师范大学学报,2000,52(S2):200-206。
    [46]冀俊忠、刘椿年、沙志强。贝叶斯网模型的学习、推理和应用[J]。计算机工程与应用,2003,39(5):24-27。
    [47]C. X. Ling, J. Huang and H. Zhang, AUC: a statistically consistent and more discriminating measure than accuracy, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI2003), pp.519-526, Morgan Kaufmann(2003).
    [48]A. R Bradley. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30:1145-1159, 1997.
    [49]D. J. Hand and R. J. Till. A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning, 45:171-186, 2001.
    [50]F. Provost and T. Fawcett. Analysis and visualization of classifier performance: comparison under imprecise class and cost distribution. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pages 43-48. AAAI Press, 1997.
    [51]Provost, F. J., Domingos, P.: Tree Induction for Probability-Based Ranking. Machine Learning 52(3) (2003) 199-215.
    [52]Saar-Tsechansky, M., Provost, F. (2004). Active sampling for class probability estimation and ranking. Machine Learning, 54:2, 153-178.
    [53]C.X. Ling and J. Yan, Decision Tree .with Better Ranking. Proceedings of 2003 International Conference on Machine Learning, ICML 2003, pp.480-487, AAAI Press.
    [54] B. Wang and H. Zhang, Improving the Ranking Performance of Decision Trees, Proceedings of The 17th European Conference on Machine Learning, ECML 2006, pp.461-472, Springer Press.
    [55] H. Zhang and Jiang Su, Learning probabilistic decision trees for AUC. Pattern Recognition Letters, 27:8, pp. 892-899.
    [56] J. Su and H. Zhang, Learning conditional independence trees for ranking, Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM 2004, pp.531-534, IEEE Computer Society Press.
    [57] J. Su and H. Zhang, Probabilistic Inference Trees for Classification and Ranking, Proceedings of the Nineteenth Canadian Conference on Artificial Intelligence, CAI 2006, pp.526-537, Springer Press.
    [58] Chris Burges, et. al: Learning to Rank using Gradient Descent. Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp.89-96, ACM Press.
    [59] Thorsten Joachims: Optimizing Search Engines using Clickthrough Data. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD2002, pp.133-142, ACM Press.
    [60] H. Zhang and J. Su, Naive Bayesian classifiers for ranking, Proceedings of the 15th European Conference on Machine Learning,ECML 2004, pp.501-512, Springer Press.
    [61] C. -X. Ling and H. Zhang, Toward Bayesian Classifiers with Accurate Probabilities, Proceedings of the Sixth Pacific-Asia Conference on KDD, PAKDD 2002, pp.123-134,Springer Press.
    [62] H. Zhang and S. Sheng, Learning weighted naive Bayes with accurate ranking, Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM 2004, pp.567-570,IEEE Computer Society Press.
    [63] H. Zhang, L. Jiang and J. Su, Augmenting Naive Bayes for Ranking , Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 1025-1032, ACM Press.
    [64] L. Jiang, C. Li, and Z. Cai. Learning Decision Tree for Ranking. Knowledge and Information Systems, in press.
    [65] L. Jiang, H. Zhang, Z. Cai and J. Su, Learning Tree Augmented Naive Bayes for Ranking,Proceedings of the 10th International Conference on Database Systems for Advanced Applications, DASFAA 2005, LNCS 3453, pp.688-698, Springer Press.
    [66] L. Jiang, H. Zhang and J. Su, Learning k-Nearest Neighbor Naive Bayes for Ranking, Proceedings of the 1st International Conference on Advanced Data Mining and Applications, ADMA 2005, LNAI 3584, pp. 175-185, Springer Press.
    [67] L. Jiang, D. Wang, Z. Cai, and X. Yan. Survey of Improving Naive Bayes for Classification. Proceedings of the 3rd International Conference on Advanced Data Mining and Applications,ADMA 2007, LNAI 4632, pp.134-145. Springer Press.
    [68] H, Zhang, L. Jiang, and J. Su. Hidden Naive Bayes. Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, pp.919-924. AAAI Press.
    [69] H. Zhang, L. Jiang and J. Su. Augmenting Naive Bayes for Ranking. Proceedings of the 22nd International Conference on Machine Learning, ICML 2005, pp. 1025-1032. ACM Press.
    [70] L. Jiang, H. Zhang, and Z. Cai. A Novel Bayes Model: Hidden Naive Bayes. IEEE Transactions on Knowledge and Data Engineering, in press,
    [71] L. Jiang, D. Wang, and Z. Cai. Scaling Up the Accuracy of Bayesian Network Classifiers by M-Estimate. Proceedings of the 3rd International Conference on Intelligent Computing, ICIC 2007, LNAI 4682, pp.475-484. Springer Press.
    [72] 潘正君,康立山,陈毓屏著,演化计算,清华大学出版社,2004年6月印刷。
    [73] G.F. Cooper and E. Herskovits, A Bayesian Method for the Induction of Probabilistic Networks from Data, Machine Learning, vol.9, pp.309-347, 1992.
    [74] 刘钊,康立山。用粒子群优化改进算法求解混合整数非线性规划问题。小型微型计算机系统,Vol.26(6),2005.
    [75] R.R. Bouckaert, Bayesian Belief Networks: from Construction to Inference, Ph.D. thesis, University of Utrecht, 1995.
    [76] Modrzejewski, M., Feature selection using rough sets theory. In: Proceedings of the European Conference on Machine Learning (P.B. Brazdil, ed.), 213-226, 1993.
    [77] Bobrowski, L., Feature selection based on some homogeneity coefficient. In: Proceedings of Ninth International Conference on Pattern Recognition, 544-546, 1988.
    [78] Caruana, R. and Freitag, D., Greedy attribute selection. In: Proceedings of Eleventh International Conference on Machine Learning, Morgan Kaufmann, New Brunswick, New Jersey, 28-36, 1994.
    [79] Doak, J., An evaluation of feature selection methods and their application to computer security. Technical report, Davis, CA: University of California, Department of Computer Science, 1992.
    [80] Domingos, P., Context-sensitive feature selection for lazy learners. Artificial Intelligence Review, 1996.
    [81] Foroutan, I. and Sklansky, J., Feature selection for automatic classification of non-gaussian data. IEEE Transactions on Systems, Man, and Cybernatics, SMC-17(2):187-198, 1987.
    [82] Ichino, M. and Sklansky, J., Feature selection for linear classifier. In: Proceedings of the Seventh International Conference on Pattern Recognition, volume 1, 124-127, July-Aug 1984.
    [83] Kira, K. and Rendell, L.A., The feature selection problem: Traditional methods and a new algorithm. In: Proceedings of Ninth National Conference on Artificial Intelligence, 129-134, 1992.
    [84] Liu, H. and Setiono, R., Feature selection and classification-a probabilistic wrapper approach. In: Proceedings of Ninth International Conference on Industrial and Engineering Applications of AI and ES, 284-292, 1996.
    [85] M. Dash and H. Liu, Feature selection for classification, Intelligent Data Analysis, 1(3), pp.131-156, 1997.
    [86] L. Jiang, H. Zhang, Z. Cai, and J. Su, Evolutional Naive Bayes, Proceedings of the 1st International Symposium on Intelligent Computation and its Applications, ISICA 2005,pp.344-350, China University of Geosciences Press.
    [87] L. Jiang, H. Zhang, and Z. Cai. Discriminatively Improving Naive Bayes by Evolutionary Feature Selection. Romanian Journal of Information Science and Technology, 2006, 9(3):163-174.
    [88] R. L. de Mantaras. A distance-based attribute selection measure for decision tree induction.Machine Learning, 6:81-92, 1991.
    [89] J. Mingers. An empirical comparison of selection measures for decision-tree induction. Machine Learning, 3:319-342, 1989.
    [90] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
    [91] D. Wang and L. Jiang, An Improved Attribute Selection Measure for Decision Tree Induction, Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, Vol.4, pp.654-658, IEEE Computer Society Press.
    [92] L. Jiang, Z. Cai, D. Wang, and S. Jiang. Survey of Improving K-Nearest-Neighbor for Classification. Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, Vol.1, pp.679-683. IEEE Computer Society Press.
    [93] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine.Learning, 6:37-66, 1991.
    [94] K. K. Han. text categorization using weight adjusted knearest neighbour classification.Technical report, Dept. of CS, University of Minnesota, 1999.
    [95] Z. Huang. A fast clustering algorithm to cluster very large categorical data sets in data. mining. In In Proc. SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1997.
    [96] M. J. Greenacre. Theory and Applications of Correspondence Analysis. Academic Press, 1984.
    [97] C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the ACM,29:1213-1228, 1986.
    [98] D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions. Artificial Intelligence Research, 6:1-34, 1997.
    [99] Atkeson, C. G., Moore, A. W., and Schaal, S., LocallyWeighted Learning, Artiicial Intelligence Review, Vol. 11, No. 1-5, 1997, pp.11-73.
    [100] C. Li and L. Jiang, Using Locally Weighted Learning to Improve SMOreg for Regression, Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, LNAI 4099, pp.375-384, Springer Press.
    [101] P. Langley, W. Iba, and K. Thomas. An analysis of bayesian classifiers. In Proceedings of the Tenth National Conference of Artificial Intelligence, pages 223-228. AAAI Press, 1992.
    [102] L. Jiang, H. Zhang, and Z. Cai. Dynamic K-Nearest-Neighbor Naive Bayes with Attribute Weighted. Proceedings of the 3rd International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2006, LNAI 4223, pp.365-368. Springer Press.
    [103] L. Jiang, D. Wang, Z. Cai, S. Jiang, and X. Yan. Scaling Up the Accuracy of K-Nearest-Neighbor Classifiers: A Naive-Bayes Hybrid. International Journal of Computers and Applications, 2009, 31(1).
    [104] L. Jiang and H. Zhang. Learning Naive Bayes for Probability Estimation by Feature Selection. Proceedings of the 19th Canadian Conference on Artificial Intelligence, CAI 2006, LNAI 4013, pp.503-514. Springer Press.
    [105] L. Jiang, H. Zhang, D. Wang, and Z. Cai. Learning Locally Weighted C4.4 for Class Probability Estimation. Proceedings of the 10th International Conference on Discovery Science, DS 2007, LNAI 4755, pp. 104-115. Springer Press.
    [106] L. Jiang, C. Li, and Z. Cai. Decision Tree with,Better Class Probability Estimation. International Journal of Pattern Recognition and Artificial Intelligence, in press.
    [107] L. Jiang and H. Zhang. Learning Instance Greedily Cloning Naive Bayes for Ranking. Proceedings of the 5th IEEE International Conference on Data Mining, ICDM 2005, pp.202-209. IEEE Computer Society Press.
    [108] L. Jiang and Y. Guo. Learning Lazy Naive Bayesian Classifiers for Ranking. Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2005, pp.412-416. IEEE Computer Society Press.
    [109] L. Jiang, D. Wang, H. Zhang, Z. Cai, and B. Huang. Using Instance Cloning to Improve Naive Bayes for Ranking. International Journal of Pattern Recognition and Artificial Intelligence, IJPRAI 2008, 22 (6): 1121-1140. World Scientific Press.
    [110] J. T. A. S. Ferreira, D. G. T. Denison, and D. J. Hand. Weighted naive bayes modelling for data mining. In Dept. of Mathematics, Imperial College, London, UK. 2001.
    [111] 邓维斌、王国胤、王燕,基于Rough Set的加权朴素贝叶斯分类算法[J],计算机科学,2007,34(2):204-206。
    [112] M. Hall. A decision tree-based attribute weighting filter for naive bayes. Knowledge-Based Systems, 20:120-126, 2007.
    [113] Elkan, C. (1997). Boosting and Naive Bayesian learning (Technical Report CS97-557). University of California, San Diego.
    [114] Leo Breiman. Bagging Predictors. Machine Learning, 24 (2): 123-140, 1996.
    [115] Yoav Freund and Robert E. Schapire: Experiments with a new boosting algorithm. Proceedings of the International Conference on Machine Learning, pages 148-156; Morgan Kaufmann, San Francisco. 1996
    [116] L. Jiang, C. Li, J. Wu, and J. Zhu. A Combined Classification Algorithm Based on C4.5 and NB. Proceedings of the 3rd International Symposium on Intelligent Computation and its Applications, ISICA 2008, LNCS 5370, pp.350-359. Springer Press.
    [117] Y. Guo, R. Greiner: Discriminative Model Selection for Belief Net Structures. Proceedings of the Twentieth National Conference on Artificial Intelligence (pp. 770-776), 2005. AAAI Press.
    [118] L. Jiang, H. Zhang, D. Wang, and Z. Cai, Learning Locally Weighted C4.4 for Class Probability Estimation, Proceedings of the 10th International Conference on Discovery Science, DS 2007, LNAI 4755, pp. 104-115, Springer Press.
    [119]D. Grossman, P. Domingos: Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood. Proceedings of the Twenty-First International Conference on Machine Learning (pp. 361-368), 2004. Banff, Canada: ACM Press.
    [120]冯亚丽,伊三泉等。ISODATA在油水层综合判别中的应用。大庆石油地质与开发,2005,24(5):87-89。
    [121]夏克文,李昌彪等。用于油水层识别的一种简化的神经计算方法。大庆石油地质与开发,2006,25(3):56-59。
    [122]陈遵德。基于Rough Set理论的油层识别方法。地球物理学进展,1998,13(4):52-59。
    [123]申辉林,王敏。应用模糊识别方法判别油水层。勘探地球物理进展,2007,30(2):140-143。
    [124]张文宾,林景晔等。对应分析油气水层识别方法及应用。大庆石油地质与开发,2002,21(2):8-9。
    [125]吴晓伟,史有刚,王顺华。基于遗传算法的人工神经网络在油水层识别中的应用。内蒙古石油化工,2004,30(1):160-162。
    [126]陈文霞著,铀矿床高光谱遥感信息处理与挖掘研究,中国地质大学(武汉)博士学位论文,2008。
    [127]冯夏庭著,智能岩石力学导论,科学出版社,2008年8月印刷。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700