液货船液舱晃荡问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的发展,对于液化天然气(LNG)、液化石油气(LPG)等能源的消费需求也在快速增长,这大大刺激了船舶运输技术的不断提高,从而开发了大型液化天然气船(LNG船)、超大型液化气船(VLGC船)等液货船。大型LNG、VLGC船液舱宽度大,装载深度高,在带来更大装载能力的同时,也带来了一定的安全隐患,其在航行过程中可能发生更剧烈的晃荡,产生的冲击压力会威胁到舱壁以及船体结构的安全。因此,晃荡载荷已经成为大型液货船安全性评估的重要内容之一,如何降低晃荡载荷、保证船舶结构的安全,是当今迫切需要解决的问题。
     针对液货船液舱的晃荡问题,本文主要做了以下工作:
     (1)讨论了数值模拟液体晃荡的基本控制方程以及相应数值方法;
     (2)开展了液舱模型晃荡试验,内容包括试验方法设计、试验结果的分析及评估等,并分别进行了LNG,VLGC船液舱模型晃荡试验,在对试验数据分析的基础上,对比讨论了装载率、激励频率等参数对于晃荡冲击压力的影响;
     (3)计算分析了VLGC船液舱内水平桁、强肋框和制荡舱壁等内部结构对于晃荡压力、内部液体固有频率的影响;
     (4)研究讨论了液舱内部液体密度、粘性以及气体压力等参数对晃荡冲击压力的影响;
     (5)对考虑泵塔结构的LNG液舱模型进行了晃荡试验,试验结果表明泵塔结构不会影响液舱内部液体的固有频率。同时测量了泵塔顶部的受力情况,并与数值方法做了对比,该数值方法首先由Morison公式及晃荡数值模拟得到晃荡载荷,进而对泵塔进行结构强度分析。
     本文研究的创新性可以总结为以下三个方面:
     (1)设计了大型LNG船液舱模型晃荡试验方法,通过分析试验结果表明,LNG液舱70%H高度以上的舱壁是受到晃荡冲击压力最大的危险区域,液舱纵摇运动时,70%H是最危险装载高度;液舱横摇运动时,52.5%H是最危险装载高度,一旦船舶运动频率接近舱内液体固有频率,会产生最大的晃荡冲击压力;
     (2)设计并进行了含有内部结构的VLGC船液舱模型晃荡试验,验证了数值方法的准确性。通过对VLGC液舱数值模型的研究,表明内部结构虽然能够减小共振频率下的晃荡冲击压力,但是,如果某一外部激励频率更接近于含内部结构液舱液体的固有频率,相比不含内部结构的液舱,含内部结构的液舱受到的冲击压力反而可能更大。因此,液舱结构设计时,需结合船舶实际航行工况优化合理的内部结构。
     (3)提出了考虑泵塔结构的LNG液舱模型晃荡试验方法,通过测量晃荡压力和泵塔顶部支座力,分析了泵塔对于晃荡的影响,以及泵塔结构在晃荡载荷下的响应。在此基础上采用液舱晃荡数值模型和Morison公式对泵塔模型结构进行了分析,通过与试验结果的比较,验证了数值方法的准确性。
With the development of world economy, Liquefied natural gas (LNG),liquefied petroleum gas (LPG) and other energy consumer demand are growingrapidly. So that the LNG transport technology continues to improve, and LNGships and VLGC ships become larger and larger. Large-scale liquid cargo ships havegreater load capacity because of large width and loading depth, but at the same time,it also brings security risks that may occur during the voyage, large impact pressurecaused by severe sloshing has a hazard for bulkheads and hull structures. So sloshingloads has become an important part of safety assessment of liquid cargo. How toreduce the sloshing loads and how to ensure the safety of the ship structure is anurgent problem.
     Following work is done in this thesis:
     (1) The basic governing equations and corresponding numerical methods ofnumerical simulation of liquid sloshing are deeply discussed
     (2) Tank model sloshing test including testing processes, analysis and discussionof the test results. Sloshing tests of LNG and VLGC model tanks are designed inthe study. Through statistical analysis of test data, the influence of filling level andexcitation frequency on the impact pressure is also discussed, and some regularityconclusions are made.
     (3) A numerical model of Very Large Gas Carriers(VLGC) tank is established.The influence of horizontal grider and swash bulkheads on the impact pressure dueto sloshing and liquid natural frequency are studied.
     (4) With the LNG tank sloshing numerical model, the parameters of the tank internal fluid density, viscosity and gas pressure on the sloshing impact pressure arestudied.
     (5) An LNG tank model test including the pump tower structure is designed. Thetest results showed that the pump tower will not affect the natural frequency og theliquid within the tank. At the same time, the force on the top of the pump tower wasmeasured. The strength analysis of pump tower is made based on Morison formulaand numerical method.
     Through this study, the conclusions can be made as follow:
     (1) LNG tank model sloshing test is designed. The effect of filling level,excitation frequency on the impact pressure and liquid natural frequency are studied.Through the analysis of the impact pressure, the bulkhead above70%H height ofLNG tank is the greatest danger area withstand the maxium sloshing impact. Thefilling level of70%H is the most dangerous under pitch condition; The filling levelof70%H is the most dangerous under roll condition, when the excitation frequencyis near the liquid natural frequency in the tank, violent sloshing will be occurred.
     (2) VLGC tank model sloshing test is designed. Based on the numerical modeltank, the effect of horizontal grider and swash bulkheads on the impact pressure andliquid natural frequency are studied. The results show that the internal structure cannot only reduce the sloshing impact pressure on the bulkhead, but also change theliquid natural frequency. The tank with internal structures may have larger sloshingthan the tank without internal structures if the excitation frequency is nearer theliquid natural frequency of the tank with internal structures than that of the tankwithout internal structures.
     (3) An LNG tank model test including the pump tower structure is designed. Bymeasuringthe pressure and bearing force on the top of pump tower, the effect ofpump tower on sloshing and the response of the pump tower under sloshing loads areanalyzed. The numerical method based on Morison formula and numerical sloshingtank model are used for the analysis of the pump tower. By comparison with testresults, the accuracy of the numerical method is verified.
引文
[1]张晓霞,天然气应用与节能减排[J].河北工程大学学报:社会科学版2010,27(001),31-32.
    [2]钱伯章,朱建芳,世界液化石油气的市场与应用进展[J].天然气与石油2008,26(3),48-50.
    [3]黄鹏程, LNG船舶特性及其管理的思考[J].航海技术2006,5,44-46.
    [4]叶彼得,高附加值船舶-LPG船[J].上海造船1998,1,42-47.
    [5] Abramson, H. N., The dynamic behavior of liquids in moving containers. NASASP-106[J]. NASA Special Publication1966.
    [6]周叮,贮液圆筒在水中的弯曲自由振动[J].应用数学和力学1990,11(5),439-446.
    [7]夏益霖,液体晃动等效力学模型的参数识别[J].应用力学学报1991,8(4),27-35.
    [8]包光伟,平放柱形贮箱内液体晃动的等效力学模型[J].上海交通大学学报2003,37(12),1961-1964.
    [9] Faltinsen, O. M., A nonlinear theory of sloshing in rectangular tanks[J]. Journalof Ship Research1974,18(4),224-241.
    [10] Faltinsen, O. M., A numerical nonlinear method of sloshing in tanks withtwo-dimensional flow[J]. Journal of Ship Research1978,22(3),193-202.
    [11] Lou, Y. K., Wu, M., Lee, C., Further studies on liquid sloshing[J]. NASASTI/Recon Technical Report N1985,85,35388.
    [12] Waterhouse, D., Resonant sloshing near a critical depth[J]. Journal of FluidMechanics1994,281(1),313-318.
    [13] Ikeda, T., Nakagawa, N., Non-linear vibrations of a structure caused by watersloshing in a rectangular tank[J]. Journal of Sound and Vibration1997,201(1),23-41.
    [14] Ikeda, T., Nonlinear parametric vibrations of an elastic structure with arectangular liquid tank[J]. Nonlinear Dynamics2003,33(1),43-70.
    [15] Verhagen, J., Van Wijngaarden, L., Non-linear oscillations of fluid in acontainer[J]. Journal of Fluid Mechanics1965,22(4),737-751.
    [16] Dillingham, J., Motion studies of a vessel with water on deck[J]. MarineTechnology1981,18,38-50.
    [17] Shimizu, T., Hayama, S., Nonlinear responsed of sloshing based on the shallowwater wave theory: vibration, control engineering, engineering for industry[J]. JSMEInternational Journal: Bulletin of the JSME1987,30(263),806-813.
    [18] Reed, D., Yeh, H., Yu, J., et al., Tuned liquid dampers under large amplitudeexcitation[J]. Journal of Wind Engineering and Industrial Aerodynamics1998,74,923-930.
    [19]方智勇,端木玉,朱仁庆,基于Level-set法的液舱液体晃荡数值模拟[J].船舶力学2007,11(1),62-67.
    [20]朱仁庆,方智勇,张照钢, et al., Level-set法预报液舱内剧烈晃荡引起的冲击压强[J].船舶力学2008,12(3),344-351.
    [21]潘徐杰,张怀新,用移动粒子半隐式法模拟液舱横摇晃荡现象[J].上海交通大学学报2008,42(11),1904-1907.
    [22]潘徐杰,张怀新,移动粒子半隐式法晃荡模拟中的压力震荡现象研究[J].水动力学研究与进展:A辑2008,23(4),453-463.
    [23]龚少军,姚震球,基于粒子法的液舱共振晃荡现象研究[J].江苏科技大学学报:自然科学版2011,24(6),534-538.
    [24] Torrey, M. D., Cloutman, L. D., Mjolsness, R. C., et al., NASA-VOF2D: acomputer program for incompressible flows with free surfaces[J]. NASA STI/ReconTechnical Report N1985,86,30116.
    [25]金忠青, N-S方程的数值解和紊流模型[M].南京:河海大学出版社:1989.
    [26] Ye, T., Mittal, R., Udaykumar, H., et al., An accurate Cartesian grid method forviscous incompressible flows with complex immersed boundaries[J]. Journal ofComputational Physics1999,156(2),209-240.
    [27] Russell, D., Jane Wang, Z., A cartesian grid method for modeling multiplemoving objects in2D incompressible viscous flow[J]. Journal of ComputationalPhysics2003,191(1),177-205.
    [28] Marella, S., Krishnan, S., Liu, H., et al., Sharp interface Cartesian grid method I:an easily implemented technique for3D moving boundary computations[J]. Journalof Computational Physics2005,210(1),1-31.
    [29] Choi, J. I., Oberoi, R. C., Edwards, J. R., et al., An immersed boundary methodfor complex incompressible flows[J]. Journal of Computational Physics2007,224(2),757-784.
    [30] Hirt, C., Amsden, A. A., Cook, J., An arbitrary Lagrangian-Eulerian computingmethod for all flow speeds[J]. Journal of Computational Physics1974,14(3),227-253.
    [31] Donea, J., Giuliani, S., Halleux, J., An arbitrary Lagrangian-Eulerian finiteelement method for transient dynamic fluid-structure interactions[J]. ComputerMethods in Applied Mechanics and Engineering1982,33(1-3),689-723.
    [32] Hughes, T. J. R., Liu, W. K., Zimmermann, T. K., Lagrangian-Eulerian finiteelement formulation for incompressible viscous flows[J]. Computer Methods inApplied Mechanics and Engineering1981,29(3),329-349.
    [33] Ramaswamy, B., Kawahara, M., Arbitrary Lagrangian-Eulerianc finite elementmethod for unsteady, convective, incompressible viscous free surface fluid flow[J].International Journal for Numerical Methods in Fluids1987,7(10),1053-1075.
    [34]曾江红,王照林,粘性流体大幅晃动的ALE有限元模拟[J].强度与环境1996,3,22-31.
    [35] Ri-sa, N., Hui-long, R., Zhi-long, G., et al., Simulation of sloshing and structuralresponse in VLCC tanks[J]. Journal of Ship Mechanics2007,11(6),879-887.
    [36]周宏,李俊峰,王天舒,基于ALE有限元方法的充液刚体耦合动力学仿真[J].清华大学学报:自然科学版2008,48(11),2013-2016.
    [37]管延敏,叶恒奎,陈庆任, et al.,三维带挡板箱体液体晃荡数值模拟[J].华中科技大学学报:自然科学版2010,38(4),102-104.
    [38]管延敏.箱体中非线性液体晃荡现象的数值模拟[D].武汉:华中科技大学,2011.
    [39] Kjellgren, P., Hyv rinen, J., An arbitrary Lagrangian-Eulerian finite elementmethod[J]. Computational Mechanics1998,21(1),81-90.
    [40] Soulaimani, A., Saad, Y., An arbitrary Lagrangian-Eulerian finite elementmethod for solving three-dimensional free surface flows[J]. Computer Methods inApplied Mechanics and Engineering1998,162(1-4),79-106.
    [41] Lomtev, I., Kirby, R., Karniadakis, G., A discontinuous Galerkin ALE methodfor compressible viscous flows in moving domains[J]. Journal of ComputationalPhysics1999,155(1),128-159.
    [42] Braess, H., Wriggers, P., Arbitrary Lagrangian Eulerian finite element analysisof free surface flow[J]. Computer Methods in Applied Mechanics and Engineering2000,190(1-2),95-109.
    [43] Kuhl, E., Hulshoff, S., De Borst, R., An arbitrary Lagrangian Eulerianfinite-element approach for fluid-structure interaction phenomena[J]. InternationalJournal for Numerical Methods in Engineering2003,57(1),117-142.
    [44] Donea, J., Huerta, A., Ponthot, J. P., et al., Arbitrary Lagrangian-Eulerianmethods[J]. Encyclopedia of computational mechanics2004,1,413-437.
    [45] Chen, W., Haroun, M. A., Liu, F., Large amplitude liquid sloshing in seismicallyexcited tanks[J]. Earthquake Engineering&Structural Dynamics1996,25(7),653-669.
    [46] Kim, Y., Numerical simulation of sloshing flows with impact load[J]. AppliedOcean Research2001,23(1),53-62.
    [47] Kim, Y., Shin, Y. S., Lee, K. H., Numerical study on slosh-induced impactpressures on three-dimensional prismatic tanks[J]. Applied Ocean Research2004,26(5),213-226.
    [48] Chen, B. F., Nokes, R., Time-independent finite difference analysis of fullynon-linear and viscous fluid sloshing in a rectangular tank[J]. Journal ofComputational Physics2005,209(1),47-81.
    [49] Wu, C. H., Chen, B. F., Sloshing waves and resonance modes of fluid in a3Dtank by a time-independent finite difference method[J]. Ocean Engineering2009,36(6),500-510.
    [50] Ramaswamy, B., Kawahara, M., Nakayama, T., Lagrangian finite elementmethod for the analysis of two-dimensional sloshing problems[J]. InternationalJournal for Numerical Methods in Fluids1986,6(9),659-670.
    [51] Okamoto, T., Kawahara, M., Two-dimensional sloshing analysis by Lagrangianfinite element method[J]. International Journal for Numerical Methods in Fluids1990,11(5),453-477.
    [52] Tang, Y., Ma, D. C., Chang, Y. W., Sloshing response in a tank containing twoliquids[J]. NASA STI/Recon Technical Report N1991,91,26487.
    [53] Rabier, S., Medale, M., Computation of free surface flows with a projectionFEM in a moving mesh framework[J]. Computer Methods in Applied Mechanics andEngineering2003,192(41),4703-4721.
    [54] Cho, J., Lee, H., Ha, S., Finite element analysis of resonant sloshing response in2-D baffled tank[J]. Journal of Sound and Vibration2005,288(4),829-845.
    [55] Wang, C., Khoo, B., Finite element analysis of two-dimensional nonlinearsloshing problems in random excitations[J]. Ocean Engineering2005,32(2),107-133.
    [56] Wang, W., Li, J., Wang, T., Damping computation of liquid sloshing with smallamplitude in rigid container using FEM[J]. Acta Mechanica Sinica2006,22(1),93-98.
    [57] Wei, W., Junfeng, L., Tianshu, W., Modal analysis of liquid sloshing withdifferent contact line boundary conditions using FEM[J]. Journal of Sound andVibration2008,317(3),739-759.
    [58] Nagashima, T., Sloshing analysis of a liquid storage container using level setX-FEM[J]. Communications in Numerical Methods in Engineering2009,25(4),357-379.
    [59] Huerta, A., Liu, W., Large-amplitude sloshing with submerged blocks[J].Journal of Pressure Vessel Technology1990,112(1),104-108.
    [60]岳宝增,李笑天, ALE有限元方法研究及应用[J].力学与实践2002,2,7-11.
    [61]岳宝增,俯仰激励下三维液体大幅晃动问题研究[J].力学学报2005,37(2),199-203.
    [62] Okamoto, T., Kawahara, M.,3-D sloshing analysis by an arbitraryLagrangian-Eulerian finite element method[J]. International Journal ofComputational Fluid Dynamics1997,8(2),129-146.
    [63] Kashiyama, K., Tanaka, S., Sakuraba, M., PC cluster parallel finite elementanalysis of sloshing problem by earthquake using different network environments[J].Communications in Numerical Methods in Engineering2002,18(10),681-690.
    [64] Aquelet, N., Souli, M., Gabrys, J., et al., A new ALE formulation for sloshinganalysis[J]. Structural Engineering and Mechanics2003,16(4),423-440.
    [65] Lee, C. J. K., Noguchi, H., Koshizuka, S., Fluid-shell structure interactionanalysis by coupled particle and finite element method[J]. Computers&Structures2007,85(11-14),688-697.
    [66] Lee, S. H., Kim, J. Y., Lee, K. J., et al., Simulation of3-D sloshing andstructural response in ships tank taking account of fluid-structure interaction.Discussion[J]. Transactions-Society of Naval Architects and Marine Engineers1995,103,321-342.
    [67] Sames, P. C., Marcouly, D., Schellin, T. E., Sloshing in rectangular andcylindrical tanks[J]. Journal of Ship Research2002,46(3),186-200.
    [68] Muzaferija, S., Peri, M., Computation of free-surface flows using thefinite-volume method and moving grids[J]. Numerical Heat Transfer1997,32(4),369-384.
    [69] Kleefsman, K., Fekken, G., Veldman, A., et al., A volume-of-fluid basedsimulation method for wave impact problems[J]. Journal of Computational Physics2005,206(1),363-393.
    [70] Kishev, Z. R., Hu, C., Kashiwagi, M., Numerical simulation of violent sloshingby a CIP-based method[J]. Journal of Marine Science and Technology2006,11(2),111-122.
    [71] Yang, W., Liu, S., Wu, Y. A numerical method for damping computation ofrigid cylindrical containers, Proceedings of the ASME Fluids Engineering DivisionSummer Conference[C], Jacksonville, Florida, USA,2008; pp423-428.
    [72] Krata, P., Jachowski, J.,3D CDF modeling of ship's moment due to liquidsloshing in tanks-a case study[J]. Journal of KONES Powertrain and Transport2010,17(4).
    [73] Pal, P., Bhattacharyya, S., Sloshing in partially filled liquidcontainers-Numerical and experimental study for2-D problems[J]. Journal of Soundand Vibration2010,329(21),4466-4485.
    [74] Faltinsen, O. M., Firoozkoohi, R., Timokha, A., Effect of central slotted screenwith a high solidity ratio on the secondary resonance phenomenon for liquid sloshingin a rectangular tank[J]. Physics of Fluids2011,23(6),062106.
    [75] Nakayama, T., Washizu, K., The boundary element method applied to theanalysis of two-dimensional nonlinear sloshing problems[J]. International Journalfor Numerical Methods in Engineering1981,17(11),1631-1646.
    [76] Nakayama, T., Boundary element analysis of nonlinear water wave problems[J].International Journal for Numerical Methods in Engineering1983,19(7),953-970.
    [77] Liu, Z., Huang, Y., A new method for large amplitude sloshing problems[J].Journal of Sound and Vibration1994,175(2),185-195.
    [78] Koh, H. M., Kim, J. K., Park, J. H., Fluid-structure interaction analysis of3-Drectangular tanks by a variationally coupled BEM-FEM and comparison with testresults[J]. Earthquake Engineering&Structural Dynamics1998,27(2),109-124.
    [79] Zhu, R., Saito, K., Multiple domain boundary element method applied to fluidmotions in a tank with internal structure[J]. Journal of the Society of NavalArchitects of Japan2000,188,135-141.
    [80] Amano, K., Iwano, R., Sibata, Y., Three-dimensional analysis method forsloshing behavior and its application to FBRs[J]. Nuclear Engineering and Design1993,140(3),297-308.
    [81]李遇春,楼梦麟,渡槽中流体非线性晃动的边界元模拟[J].地震工程与工程振动2000,20(2),51-56.
    [82] Dutta, S., Laha, M., Analysis of the small amplitude sloshing of a liquid in arigid container of arbitrary shape using a low-order boundary element method[J].International Journal for Numerical Methods in Engineering2000,47(9),1633-1648.
    [83] Zang, Y., Xue, S., Kurita, S., A boundary element method and spectral analysismodel for small‐amplitude viscous fluid sloshing in couple with structuralvibrations[J]. International Journal for Numerical Methods in Fluids2000,32(1),69-83.
    [84] Gedikli, A., Ergüven, M., Evaluation of sloshing problem by variationalboundary element method[J]. Engineering Analysis with Boundary Elements2003,27(9),935-943.
    [85] Kita, E., Katsuragawa, J., Kamiya, N., Application of Trefftz-type boundaryelement method to simulation of two-dimensional sloshing phenomenon[J].Engineering Analysis with Boundary Elements2004,28(6),677-683.
    [86] Chen, Y. H., Hwang, W. S., Ko, C. H., Sloshing behaviours of rectangular andcylindrical liquid tanks subjected to harmonic and seismic excitations[J]. EarthquakeEngineering&Structural Dynamics2007,36(12),1701-1717.
    [87] Firouz-Abadi, R., Haddadpour, H., Noorian, M., et al., A3D BEM model forliquid sloshing in baffled tanks[J]. International Journal for Numerical Methods inEngineering2008,76(9),1419-1433.
    [88] Abbaspour, M., Hassanabad, M., A Novel2D BEM with composed elements tostudy sloshing phenomenon[J]. Journal of Applied Fluid Mechanics2009,2(2),77-83.
    [89] Firouz-Abadi, R., Haddadpour, H., Ghasemi, M., Reduced order modeling ofliquid sloshing in3D tanks using boundary element method[J]. Engineering Analysiswith Boundary Elements2009,33(6),750-761.
    [90] Liu, Y., Dommermuth, D. G., Yue, D. K. P., A high-order spectral method fornonlinear wave-body interactions[J]. Journal of Fluid Mechanics1992,245,115-136.
    [91] Robertson, I., Sherwin, S., Free-Surface Flow Simulation Using SpectralElements[J]. Journal of Computational Physics1999,155(1),26-53.
    [92] Ferrant, P., Le Touze, D. Simulation of sloshing waves in a3D tank based ona pseudo-spectral method,16th Workshop on Water Waves and Floating Bodies[C],Hiroshima,2001.
    [93] Veldman, A., Liquid sloshing under low gravity conditions: Mathematicalmodel and basic numerical method(based on finite difference calculations)[J].1979.
    [94]沈国光,矩形容器内流体晃动的数值模拟[J].水动力学研究与进展A辑1997,12(3),281-288.
    [95] Roh, W. J., Cho, S. H., JAE, I. N. P., Simulation of sloshing in fuel tanks andparametric study on noise reduction by decreasing impact pressure[J]. SAETransactions2005,114(6),2431-2436.
    [96] Arai, M., Experimental and numerical studies of sloshing pressure in a liquidcargo tank[J]. Journal of Soc. of Naval Arch. of Japan1984,155,114-122.
    [97] Ishida, Y. FEM Analysis for Sloshing problem with MAC method,1985.
    [98] Nagahama, M., Nekado, Y., Numerical simulation of sloshing in a tank of liquidcargo carrier[J]. Hitachi Zosen Tech Rev1993,54(1),17-27.
    [99] Popov, G., Sankar, S., Sankar, T., et al., Dynamics of liquid sloshing inhorizontal cylindrical road containers[J]. Proceedings of the Institution ofMechanical Engineers, Part C: Journal of Mechanical Engineering Science1993,207(6),399-406.
    [100] Cordonnier, J. P. V., Numerical simulation of sloshing in tanks[J]. Marine,Offshore and Ice Technology1994,197-204.
    [101] Armenio, V., An improved MAC method(SIMAC) for unsteady high-reynoldsfree surface flows[J]. International Journal for Numerical Methods in Fluids1997,24(2),185-214.
    [102] Armenio, V., La Rocca, M., On the analysis of sloshing of water in rectangularcontainers: numerical study and experimental validation[J]. Ocean Engineering1996,23(8),705-739.
    [103] Terashima, K., Yano, K., Sloshing analysis and suppression control oftilting-type automatic pouring machine[J]. Control Engineering Practice2001,9(6),607-620.
    [104] Celebi, M. S., Akyildiz, H., Nonlinear modeling of liquid sloshing in a movingrectangular tank[J]. Ocean Engineering2002,29(12),1527-1554.
    [105] DeBar, R. Fundamentals of the KRAKEN code; UCIR-760[R]; LawrenceLivermore Laboratory:1974.
    [106] Hirt, C. W., Nichols, B. D., Volume of fluid (VOF) method for the dynamics offree boundaries[J]. Journal of Computational Physics1981,39(1),201-225.
    [107] Nichols, B., Hirt, C., Hotchkiss, R. SOLA-VOF: A solution algorithm fortransient fluid flow with multiple free boundaries; LA-8355[R]; Los AlamosScientific Lab., NM (USA):1980.
    [108] Torrey, M., Mjolsness, R. C., Stein, L. R., NASA-VOF3D: Athree-dimensional computer program for incompressible flows with free surfaces[J].NASA STI/Recon Technical Report N1987,881,10288.
    [109] Partom, I., Application of the VOF method to the sloshing of a fluid in apartially filled cylindrical container[J]. International Journal for Numerical Methodsin Fluids1987,7(6),535-550.
    [110] Yong-xue, W., Su, T., Numerical simulation of liquid sloshing in cylindricalcontainers[J]. Acta Aerodyn Sinica1991,9(1),112-119.
    [111] Park, J. J., Kim, M. S., Ha, M. K. Three-dimensional sloshing analysis ofLNG carriers in irregular waves, Proceedings of The Fifteenth(2005) InternationalOffshore and Polar Engineering Conference[C], Korea,2005; pp209-213.
    [112] Soo Kim, M., Sun Park, J., Lee, W. I., A new VOF-based numerical scheme forthe simulation of fluid flow with free surface. Part II: application to the cavity fillingand sloshing problems[J]. International Journal for Numerical Methods in Fluids2003,42(7),791-812.
    [113] Zhu, R. Q., Wang, Z., Fang, Z., Prediction of pressure induced by largeamplitude sloshing in a tank[J]. Journal of Ship Mechanics2004,8(6),71-78.
    [114] Andrillon, Y., Alessandrini, B., A2D+T VOF fully coupled formulation for thecalculation of breaking free-surface flow[J]. Journal of Marine Science andTechnology2004,8(4),159-168.
    [115] Loots, E., Buchner, B., Pastoor, W., et al. The numerical simulation of LNGsloshing with an improved Volume-of-Fluid method, Proceedings of the InternationalConference on Offshore Mechanics and Arctic Engineering[C], Vancouver,2004; pp113-121.
    [116] Park, T. H., Lee, Y. W., Lee, H. H., et al. Qualitative sloshing computationsfor the assessment of membrane LNG cargo containment system design, Proceedingsof25TH International Conference on Offshore Mechanics and Arctic Engineering[C],Hamburg,2006; pp725-729.
    [117] Javareshkian, M. H., Simulation of sloshing with the volume of fluidmethod[J]. Fluid Dynamics and Materiald Processing2006,2(4),299-307.
    [118] Rezaei, H., Ketabdari, M. J. Numerical Modelling of Sloshing with VOFMethod, The12th International Conference on Fluidization-New Horizons inFluidization Engineering[C], Vancouver,2007; pp289-296.
    [119] Cho, S., Hong, S., Kim, J., et al. Studies on the coupled dynamics of shipmotion and sloshing including multi-body interactions, Proceedings of theSeventeenth International Offshore and Polar Engineering Conference[C], Portugal,2007.
    [120] Wemmenhove, R., Luppes, R., Veldman, A. E. P., et al. Application of a VOFmethod to model compressible two-phase flow in sloshing tanks, Proceedings of the27th International Conference on Offshore Mechanics and Arctic Engineering[C],Estoril, Portugal,2008; pp603-612.
    [121]祁江涛,顾民,吴乘胜,液舱晃荡的数值模拟[J].船舶力学2008,4,574-581.
    [122] Pan, X., Zhang, H., Lu, Y., Numerical simulation of viscous liquid sloshing bymoving-particle semi-implicit method[J]. Journal of Marine Science and Application2008,7(3),184-189.
    [123]沈猛,王刚,唐文勇,基于改进VOF法的棱形液舱液体晃荡分析[J].中国造船2009,50(1),1-9.
    [124] Liu, D., Lin, P., Three-dimensional liquid sloshing in a tank with baffles[J].Ocean Engineering2009,36(2),202-212.
    [125] Ming, P. J., Duan, W. Y., Numerical simulation of sloshing in rectangular tankwith VOF based on unstructured grids[J]. Journal of Hydrodynamics, Ser. B2010,22(6),856-864.
    [126] Yamamoto, S., Kataoka, F., Shioda, S., et al., Study on impact pressure due tosloshing in midsized LNG carrier[J]. International Journal of Offshore and PolarEngineering1995,1(5),10-16.
    [127] Valsgard, S., Tveitnes, T., LNG technological developments andinnovations-challenges with sloshing model testing[J]. Det Norske Veritas AS PaperSeries No2003, P005.
    [128] Shin, Y., Kim, J. W., Lee, H., et al. Sloshing impact of LNG cargoes inmembrane containment systems in the partially filled condition, Proceedings of TheThirteenth(2003) International Offshore and Polar Engineering Conference[C],Hawaii,2003; pp509-515.
    [129] Huijsmans, R., Tritschler, G., Gaillarde, G., et al. Sloshing of Partially FilledLNG carriers, Proceedings of The fourteenth(2004) International Offshore and PolarEngineering Conference[C], Toulon,2004; pp424-432.
    [130] Pastoor, W., Tveitnes, T., Valsgard, S., et al. Sloshing in partially filled LNGtanks-an experimental survey, Offshore Technology Conference[C], Houston,2004.
    [131] Pastoor, W., stvold, T., Byklum, E., et al. Sloshing load and response in LNGcarriers for new designs, new operations and new trades; Det Norske Veritas:2005.
    [132] McCue, L. S., Troesch, A. W. Identification of nonlinear and chaoticbehavior in model-scale liquefied natural gas (LNG) carrier experimental data,Proceedings of the ASME International Design Engineering Technical Conferencesand Computers and Information in Engineering Conference[C], United states,2005;pp1091-1101.
    [133] Wemmenhove, R., Loots, E., Luppes, R., et al. Modeling two-phase flowwith offshore applications, Proceedings of the24th International Conference onOffshore Mechanics and Arctic Engineering[C], Halkidiki,2005; pp993-1001.
    [134] Wemmenhove, R., Luppes, R., Veldman, A., et al. Numerical simulation andmodel experiments of sloshing in LNG tanks, Proceedings of the26th InternationalConference on Offshore Mechanics and Arctic Engineering[C], San Diego,California, USA,2007; pp871-879.
    [135] Lee, Y., Sim, I., Kim, Y., et al. Experimental study on sloshing for largeLNGC design, Proceedings of The Fifteenth(2005) International Offshore and PolarEngineering Conference[C], Korea,2005; pp233-240.
    [136] Kim, J., Sim, I., Lee, J., et al. A Finite-Element computation forthree-dimensional problems of sloshing In LNG tank, Proceedings of25thInternational Conference on Offshore Mechanics and Arctic Engineering [C],Hamburg,2006.
    [137] Kim, J., Kim, K. Response-based evaluation of design sloshing loads formembrane-type LNG carriers, Proceedings of26th International Conference onOffshore Mechanics and Arctic Engineering[C], California,2007.
    [138] Kim, S. Y., Kim, K. H., Kim, Y., Comparative study on model-scale sloshingtests[J]. Journal of Marine Science and Technology2011,17(1),47-58.
    [139] Graczyk, M. Experimental investigation of sloshing loading and load effects inmembrane LNG tanks subjected to random excitation[D]. Ph. D. Thesis, NorwegianUniversity of Science and Technology, Trondheim, Norway,2008.
    [140]祁恩荣,庞建华,徐春, et al.,薄膜型LNG液舱晃荡压力与结构响应试验[J].舰船科学技术2011,33(4),17-24.
    [141] Akyildiz, H., ünal, E., Experimental investigation of pressure distribution on arectangular tank due to the liquid sloshing[J]. Ocean Engineering2005,32(11-12),1503-1516.
    [142] Akyildiz, H., Erdem Unal, N., Sloshing in a three-dimensional rectangular tank:Numerical simulation and experimental validation[J]. Ocean Engineering2006,33(16),2135-2149.
    [143] Craig, K., Kingsley, T., Design optimization of containers for sloshing andimpact[J]. Structural and Multidisciplinary Optimization2007,33(1),71-87.
    [144] Versteeg, H. K., Malalasekera, W., An introduction to computational fluiddynamics: the finite volume method[M]. Prentice Hall:2007.
    [145] Launder, B. E., Spalding, D. B., Lectures in mathematical models ofturbulence[J].1972.
    [146]王福军,计算流体动力学分析: CFD软件原理与应用[M].清华大学出版社:2004.
    [147] Chow, P., Cross, M., Pericleous, K., A natural extension of the conventionalfinite volume method into polygonal unstructured meshes for CFD application[J].Applied Mathematical Modelling1996,20(2),170-183.
    [148] Demird i, I., Peri, M., Finite volume method for prediction of fluid flow inarbitrarily shaped domains with moving boundaries[J]. International Journal forNumerical Methods in Fluids1990,10(7),771-790.
    [149] Abramson, H., Bass, R., Faltinsen, O., et al. Liquid slosh in LNG carriers,10th Symposium on Naval Hydrodynamics[C], Cambridge,1974; pp371-388.
    [150] Faltinsen, O. M., Hydrodynamics of high-speed marine vehicles[M].Cambridge Univ Pr:2005.
    [151] Delorme, L., Iglesias, A. S., Perez, S. A. Sloshing loads simulation in LNGtankers with SPH, International Conference on Computational Methods in MarineEngineering[C], Barcelona,2005.
    [152] Lee, D., Kim, M., Kwon, S., et al., A parametric sensitivity study on LNG tanksloshing loads by numerical simulations[J]. Ocean Engineering2007,34(1),3-9.
    [153]沈猛.基于改进VOF法的棱形液舱液体晃荡分析及应用[D].上海:上海交通大学,2008.
    [154] ABS guidance notes on sloshing and structural analysis of LNG pump tower,2006.
    [155]马飞翔.基于晃荡动载荷的薄膜型LNG船泵塔结构分析[D].大连:大连理工大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700