CoFeB基垂直磁化膜的反常霍尔效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有垂直磁各向异性的磁纳米结构近年来开始成为国内外相关研究小组的研究热点之一,而反常霍尔效应是研究磁性材料,尤其是垂直磁化膜的强大工具。但目前,反常霍尔效应还没有建立完整的理论体系来对有关实验结果做出合理的、定量的解释。争论的焦点是该效应是内禀机制还是外在机制,以及如何处理杂质、缺陷和声子等散射问题。近年来又有人提出了基于电导区间的反常霍尔标度关系,但该标度关系在无序化材料中往往会受到量子效应,如弱局域化影响,而使得关系不再成立。本文以CoFeB材料为研究对象,通过反常霍尔效应测试系统测试发现,当CoFeB厚度分别在1.04nm和1.2rnm时,Ta/CoFeB/MgO及MgO/CoFeB/Ta薄膜具有强的垂直各向异性。同时发现CoFeB/Pt多层膜在适当的厚度亦具有明显的垂直各向异性。通过深入研究CoFeB/Pt垂直磁化多层膜、Ta/CoFeB/MgO及MgO/CoFeB/Ta垂直磁化膜以及非晶态CoFeB单层膜的磁性及输运特性详细讨论了其垂直各向异性及其反常霍尔效应物理机理。
     首先,通过磁控溅射制备了[CoFeB/Pt]N垂直磁化膜,当CoFeB的厚度在0.35nm~0.65nm之间时,可以在[CoFeB/Pt]N多层膜中观察到清晰的垂直磁各向异性,其垂直磁各向异性强烈依赖于CoFeB和Pt层厚度、以及CoFeB/Pt的周期数。随CoFeB/Pt周期数的增加,垂直磁各向异性减弱。当N≥5时,霍尔回线呈现蜂腰型,这时[CoFeB/Pt]N多层膜在零场时出现零剩磁。此外还成功的制备了Ta/CoFeB/MgO及MgO/CoFeB/Ta系列的垂直磁化膜,当CoFeB厚度分别在1.04nm和1.2nm时,经过300℃左右的退火,上述两种系列薄膜均具有强的垂直各向异性。该系列样品的垂直各向异性源自CoFeB/MgO界面,并与Ta、CoFeB、MgO的厚度均具有依赖关系。
     其次,通过实验发现垂直磁化的CoFeB/Pt多层膜的反常霍尔效应满足标度关系:Rs=apxx+bp2xx。与垂直磁化的Co/Pt多层膜所不同的是,CoFeB/Pt多层膜的是由强的斜散射机制与弱的边界跳跃机制共同构成。同时,随着CoFeB-Pt双层周期的增加,斜散射机制得到增强。通过XRR分析了其粗糙度,认为粗糙度的增加是导致斜散射机制增强的原因。另外,根据样品的电导分布区间和现有的结果,通过计算发现,Ta/CoFeB/MgO系列垂直磁化膜的反常霍尔效应中的边界跳跃机制大约为斜散射机制的三倍,也就是说边界跳跃机制是Ta/CoFeB/MgO薄膜中的反常霍尔效应的主导机制。结合目前己知的内禀机制和斜散射机制与饱和磁化强度的线性关系,可以推断出边界跳跃机制引起的反常霍尔电导与饱和磁化强度也具有正比关系。同时还发现Ta/CoFeB/MgO系列垂直磁化膜电阻在低温下具有1nT关系,这说明CoFeB薄膜中存在电子的弱局域化现象。
     为更清楚的分析CoFeB体系的反常霍尔效应,本文对单层非晶态CoFeB薄膜做了研究。对于无序的(disordered)非晶态CoFeB薄膜,在较大的厚度范围内,其低温下(<60K)的反常霍尔电阻及纵向电阻与温度均具有对数依赖关系,即:RAH、Rxx∝lnT。该现象是由二维(2D)薄膜电子的弱局域化引起。基于电子局域化的非弹性散射机理,发现在该厚度范围内,弱局域化从2D过渡至3D,同时发现弱无序度((kFl)-1<<1)的非晶态CoFeB薄膜的非弹性散射长度为13rnm。实验也证实了弱局域化对反常霍尔电导的贡献与薄膜的无序度有关。在强无序度情况下,弱局域化对反常霍尔电导贡献不为零。当无序度减小时,弱局域化对反常霍尔电导的贡献逐步减小。另外,本文发现弱局域化对反常霍尔效应统一理论的标度关系σAH=σxxγ具有一定的调制作用。在"dirty regime"区间,未经修正的电导关系呈现γ≥2,而经过对弱局域化修正,即将其1nT关系扣除后,其标度关系指数γ=1.57。
It is widely recognized that the magnetic tunnel junction with a perpendicular magnetic anisotropy (PMA) is a candidate for current-induced spin transfer torque devices because the PMA enables a small critical current density for current induced magnetization switching. For example, perpendicular tunnel junctions have been prepared due to the observation of PMA in a CoFeB layer sandwiched by the MgO and Ta layers. As a powerful tool, anomalous Hall effect (AHE) has been intensively used to study the magnetic materials, in particular the thin films with PMA. The mechanisms of AHE is still elusive. Most recently, we have found that the Ta/CoFeB/MgO and MgO/CoFeB/Ta films show a strong PMA when the CoFeB thickness is1.04nm and1.2nm, respectively. Compared with the conventional perpendicular Pt/Co/Al2O3, the perpendicular Ta/CoFeB/MgO films can well meet the requirements of perpendicular magnetic tunnel junction. Meanwhile, we have found that the [CoFeB/Pt]N multilayers have a clear PMA within CoFeB thickness from0.3nm to0.65nm, which is quite similar to the case of CoFeB/Pd. Compared with the conventional perpendicular Co/Pt multilayers, the CoFeB/Pt multilayers have much small coercivity and weak perpendicular anisotropy, which can meet the requirements of low operation field and high sensitivity for the applications of magnetic sensors. By investigating the transport properties and the magnetic properties, we analyze the PMA and mechanisms of the anomalous Hall effect in Ta/CoFeB/MgO films,[CoFeB/Pt]N multilayers and amorphous CoFeB films and get following conclusions.
     Firstly, the PMA in as-deposited [CoFeB/Pt]N multilayers has been studied by anomalous Hall effect. A clear PMA has been observed in the ultrathin (0.3~0.6nm) amorphous CoFeB layer sandwiched by Pt. Moreover, the PMA in as-deposited [CoFeB/Pt]n multilayers is strongly dependent on the thickness of CoFeB,Pt,and the number of CoFeB/Pt bilayers. With the increasing the number of CoFeB/Pt bilayers, the hysteresis loops change from rectangle to bow-tie shaped, and then the net moment approaches zero at the remnant state.Moreover, we also found that the annealed Ta/CoFeB/MgO and MgO/CoFeB/Ta films show a strong PMA when the CoFeB thickness is1.04nm and1.2nm, respectively. The PMA arises from the CoFeB/MgO interface and has a strong dependence on the CoFeB, Ta and MgO layer thickness.
     The anomalous Hall effect in the perpendicular CoFeB/Pt multilayers obey the common scaling relation of Rs=apxx+bp2xx. Different from the conventional perpendicular Co/Pt multilayers, it is found that a small side jump contribution combines with a large skew scattering component to generate AHE in CoFeB/Pt multilayers. The experiments also show that the skew scattering component is enhanced by the number of the CoFeB/Pt bilayer. Using the sensitivity of X-Ray to the interface, We found that the interface roughness increased with the increasing repetition number of CoFeB-Pt bilayers. Therefore, we strongly suggest that the enhancement of the AHE in CoFeB/Pt multilayers is due to the increasing interface scattering caused by the CoFeB-Pt interface roughness. The anomalous Hall effect in the perpendicular Ta/CoFeB/MgO has been investigated. The contribution of side jump is near3times larger than that of skew scattering, indicating that the side jump mechanism dominates the AHE in perpendicular Ta/CoFeB/MgO films. Furthermore, the anomalous Hall conductivity exhibits a linear dependence of the magnetization, σA∝M(T). We assume that the anomalous Hall conductivity from the SJ contribution also shows a linear dependence on magnetization, although the reason is not clearly now.
     The anomalous Hall effect (AHE) in the amorphous CoFeB films as a function of temperature has been investigated. It is found that both the anomalous Hall resistance RAH and longitudinal resistance Rxx shows a logarithmic temperature dependence in low temperature in a wide range of CoFeB thickness, which is due to a weak-localization correction in two-dimensional (2D). Based on the inelastic cutoff scaling of the localization effect, we present a dimensional crossover from2D to3D, which indicates that the inelastic scattering length is about13nm in weak disorder amorphous CoFeB films. The experiments also show that the weak-localization correction to the anomalous Hall conductance is observable in strong disorder, but is completely quenched in the weak disordered ((kFl)-1<<1) ferromagnetic systems. Moreover, the weak localization will modulate the scaling exponent of the anomalous Hall effect. We have found an unconventional low temperature AHE scaling (σAH=σxxγ,γ≥2) in amorphous CoFeB films in the dirty regime, which is accompanied by a quantum correction to σAH in weak disordered region. The scaling relation shows that the γ=.57after subtracting the contribution of the weak-localization.
引文
[1]Wolf S. A., Awschalom D. D., Buhiman R. A., Spintronics:A spin-based electronics vision for the future. Science,2001,294:1488-1491.
    [2]Bamas J., Fuss S., Camley R. E., et al, Novel magnetoresistance effect in layered magnetic structures: Theory and experiment. Phys. Rev. B,1990,42:8110-8113.
    [3]Prinz G. A., Magnetoelectronics. Science,1998,282:1660-1665.
    [4]Parkin S. S., Mauri D., Spin engineering:Direct determination of the Ruderman-Kittel Kasuya-Yosida far-field range function in ruthenium. Phys. Rev. B,1991,44:7131-7134.
    [5]Moodera J. S., Kinder L. R., Wong T. M., et al, Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys Rev Lett,1994,74:3273-3276.
    [6]高俊,蒋晓龙,等.FexSn100-x合金颗粒薄膜的反常霍耳效应,物理学报,2004,53:226-229.
    [7]Lu Y. M., Cai J. W., Pan H. Y, et al., Ultrasensitive anomalous Hall effect in SiO2/Fe-Pt/SiO2 sandwich structure films.2012, Appl. Phys. Lett.,2011,100,022404-022407.
    [8]Onoda S., Sugimoto N.,, Nagaosa N., Intrinsic versus extrinsic anomalous Hall effect in Ferromagnets. Phys. Rev. Lett.,2006,97:126602-126605.
    [9]Chen M., Shi Z., Xu W. J., Zhang X. X., et al., Tuning anomalous Hall conductivity in L10 FePt films by long range chemical ordering. Appl. Phys. Lett.,2011,98:082503-082503.
    [10]Qin Z., Liu X. D., Li Z. Q., Anomalous Hall effects in Co2FeSi Heusler compound films and Co2FeSi-A12O3 granular films. J. Appl. Phys.,2012,111:083919-083922.
    [11]He P., Ma L., Shi Z., et al., Chemical Composition Tuning of the Anomalous Hall Effect in Isoelectronic L10FePdl-xPtx Alloy FilmsPhys. Rev. Lett.,2012,109:066402-066405.
    [12]Inoue J. and Ohno H., Taking the Hall Effect for a Spin. Science,2005,309:2004-2007.
    [13]Moty S, Reiner J. W., Klein L., The extraordinary Hall effect of SrRuO3 in the ultrathin limit. J. Appl. Phys.,2009,105:07E906-07E909.
    [14]Ryzhanova N., Vedyayev A., Pertsova A., et al., Quasi-two-dimensional extraordinary Hall effect. Phys. Rev. B,2009,80:024410-024410.
    [15]Zhao B. C., Xia B., Zhang M., Structural growth sequences and electronic properties of gold clusters:Highly symmetric tubelike cages. Physica B:Condensed Matter,2009,16:2117-2120.
    [16]Chien C. L., Westgate C. R.1980 The Hall Effect and Its ApplicatioOn (1st Ed.) (New York:Plenum) p55
    [17]R. Karplus and J. M. Luttinger, Hall effect in ferromagnetic. Phys. Rev.1954,95:1154-1157.
    [18]Hurd C. M., The Hall effect in Metals and Alloys (New York:Plenum),1972 167.
    [19]Smit J., The spontaneous Hall effect in ferromagnetic. Physica,1955,21:877-880.
    [20]Berger L., Side-jump mechanism for the Hall effect of ferromagets. Phys. Rev. B,1970, 2:4559-4562.
    [21]Smit J., The spontaneous Hall effect in ferromagnetics II. Physica,1958,24:39-43
    [22]Berger L., Application of the Side-Jump Model to the Hall Effect and Nernst Effect in FerromagnetsPhys. Rev. B.1972,5:1862-1865
    [23]Ye J., Kim Y. B., Millis A.J., et al. Berry Phase Theory of the Anomalous Hall Effect:Application to Colossal Magnetoresistance Manganites. Phys. Rev. Lett,1999,83:3737-3740.
    [24]Fang Z., Nagaosa N., Takahashi K.S. etal., The anomalous Hall effect and magnetic monopoles in momentum space. Sciencee.,2003,302:92-95.
    [25]Guo G. Y., Murakami S., Chen T.W., et al., Intrinsic Spin Hall Effect in Platinum:First-Principles CalculationsPhys. Rev. Lett,2008,100:096401-096404.
    [26]Taguchi Y, Ohara Y, Yoshizawa H., et al., Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet. science,2001,291:2573-2577.
    [27]Lyanda G. Y, Chun S. H., Salamon M. B., et al., Charge transport in manganites:Hopping conduction, the anomalous Hall effect, and universal scaling. Phys. Rev. B,2001,63: 184426-184429.
    [28]J ungw irt h T, L i u Q, M ac Donald. Phys. Rev. Lett.,2002,88:207208-207211.
    [29]Inoue J.Ⅰ., Kato T., Ishikawa Y, et al., Anomalous Hall Effect in Ferromagnetic Semiconductors. Phys. Rev. Let t.,2006,97:046604-046607.
    [30]Mathiu R., Asamitsu A., Yamada H., et al., Scaling of the Anomalous Hall Effect in Srl-xCaxRuO3. Phys. Rev. Lett.,2004,93:016602-016605.
    [31]Fang Z., Nagaosa N., Takahashi K. S., et al., The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space. Science,2003,302:92-95.
    [32]Fang Z., Nagaosa N., Terakura K., Orbital-dependent phase control in Ca2-xSrxRuO4 (0<~x<~0.5). Phys. Rev. B.,2004,69:045116-045119.
    [33]Thouless D. J., KohmotoM, Nightingale M. P., et al., Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev.Lett.,1982,49:405-408.
    [34]Chang M. C., Niu Q., Berry phase, hyperorbits, and the Hofstadter spectrum:Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B,1996,53:7010-7013.
    [35]Sundaram G., Niu Q., Wave-packet dynamics in slowly perturbed crystals:Gradient corrections and Berry-phase effects. Phys. Rev. B,1999,59:14915-14918.
    [36]Yao Y. G., Kleinman L., MacDonld A. H., et al., First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe Phys. Rev.L ett.,2004,92:037204-037207.
    [37]Berger L., Influence of spin-orbit interaction on the transport process in ferromagnetic nickel alloys, in the presence of a degeneracy of the 3d band. Physica (Amsterdam).,30:1141-1144.
    [38]Sinitsyn N.A., MacDonald A.H., Jungwirth T., et al., Anomalous Hall effect in a two dimensional Dirac band:The link between the Kubo-Streda formula and the semiclassical Boltzmann equation approach. Phys. Rev. B.,2007,75:045315-045318.
    [39]Sinitsyn N.A., Niu Q., MacDonald A.H., etal., Coordinate shift in the semiclassical Boltzman equation and the anomalous Hall effect. Phys. Rev. B.,2006,73:075318-075321.
    [40]Sinitsyn N.A., Niu Q., Sinova J., etal., Disorder effects in the anomalous Hall effect induced by Berry curvature. Phys. Rev. B.,2005,72:045346-045349.
    [41]Nozieres P., and Lewiner C., A simple theory of the anomalous Hall effect in semiconductors. J. Phys. (Paris),1973,34:901-904.
    [42]Tian Y., Ye L., Jin X.F., Proper scaling of the anomalous Hall effect. Phys. Rev. Lett.,2009,103: 087206-087209.
    [43]Zhang F., Wen F.S., Lu. Y.F., et al., Tian Y, Ye L., Jin X.F., Proper scaling of the anomalous Hall effect in the Co/Pt multilayers. J. Appl. Phys.110:033921-033924.
    [44]Onoda S., Sugimoto N., Nagaosa N., Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Phys. Rev. B.2008,77:165103-165107.
    [45]Miyasato T., Abe N., Fujii T., et al., Crossover behavior of the anomalous Hall effect and anomalous nernst effect in itinerant ferromagnets. Phys.Rev.Lett.,2007,99:086602-086605.
    [46]Fern' andez-Pacheco A., DeTeresa J.M., Orna J., et al., Universal scaling of the anomalous Hall effect in Fe3O4 epitaxial thin films. Phys.Rev.B.,2008,77:100403-100407.
    [47]Venkateshvaran D., Kaiser W., Boger A., et al., Anomalous Hall effect in magnetite:Universal scaling relation between Hall and longitudinal conductivity in low-conductivity ferromagnets. Phys.Rev.B.,2008,78:092405-092405.
    [48]Sangiao S., Morellon L., Simon G., et al., Anomalous Hall effect in Fe (001) epitaxial thin films over a wide range in conductivity. Phys. Rev. B.,2009,79:014431-014431.
    [49]Maat S., Takano K., Parkin S.S.P., et al., Perpendicular Exchange Bias of Co/Pt Multilayers. Phys.Rev.Lett.,2001,87:087202-087206.
    [50]Canedy C.L., Li X.W., and Xiao G., Large magnetic moment enhancement and extraordinary Hall effect in Co/Pt superlattices. Phys. Rev. B.,2000,62:508-513.
    [51]Canedy C.L., Li X.W,, and Xiao G., Extraordinary Hall effect in (111) and (100)-orientated Co/Pt superlattices. J. Appl. Phys.,1997,81:5367-5370.
    [52]Zhao J., Wang Y.J., Han X.F., et al. Large extraordinary Hall effect in [Pt/Co]5/Ru/[Co/Pt]5 multilayers. Phys. Rev. B.,2010,81:172404-172407.
    [53]Meng H., Wang J.P., Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl. Phys. Lett.,2006,99:172506-172509.
    [54]Liu H.L., He W., Du H.F., et al, Direct observation of dendritic domain growth in perpendicular magnetic anisotropy CoFe/Pt multilayers. J. Magn. Magn. Mater.,201117:2238-2241.
    [55]Wu S.B., Yang X.F., Chen S.,et al., Scaling of the anomalous Hall effect in perpendicular CoFeB/Pt multilayers. J. Appl. Phys.,2013,113:17C119-17C122.
    [56]吴少兵,陈实,杨晓非,等.CoFeB/Pt反常霍尔效应标度关系的研究.中国科学:物理学力学天文学,2012,42(7):705-710.
    [57]Xiao Y.L., Chen S.H., Zhang Z.Z., et al. Magnetization reversal in antiferromagnetically coupled [Pt/CoFeB]Nl/Ru/[CoFeB/Pt]N2 structures with perpendicular anisotropy. J. Appl. Phys.,2013, 113:17A325-17A328.
    [58]Nistor L.E., Rodmacq B., Auffret A., et al., Pt/Co/oxide and oxide/Co/Pt electrodes for perpendicular magnetic tunnel junctions Appl. Phys. Lett.2009,94:012512-012515.
    [59]Rodmacq B., Manchon A., Ducruet C., et al., Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers. Phys. Rev. B.,2009,79:024423-024427.
    [60]Garad H., Ortega L., Ramos A. Y., et al., The contribution of x-ray specular reflectometry to the oxygen-induced magnetic properties in Pt/Co/AlOx. J. Appl. Phys.,2011,109:07C117-07C120.
    [61]Endo M., Kanai S., Ikeda S.,et al., Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett.2010,96:212503-212507.
    [62]Wu S.B., Zhu T., Yang X.F., et al., The anomalous Hall effect in the perpendicular Ta/CoFeB/MgO thin films. J. Appl. Phys.,2013,113:17C717-17C720.
    [63]Zhu T., Yang Y., Yu R.C. et al., The study of perpendicular magnetic anisotropy in CoFeB sandwiched by MgO and tantalum layers using polarized neutron reflectometry. Appl. Phys. Lett. 2012,100:202406-202409.
    [64]Diez L.H., Bernand A., Michele O., et al., Electric-field effect on coercivity distributions in FePt magneto-electric devices. Appl. Phys. Lett.,2013,102:012409-012413.
    [65]Song S.N., Sellers C., Ketterson J.B., Anomalous Hall effect in (110)Fe/(110)Cr multilayers. Appl. Phys. Lett.,1991,59:479-482.
    [66]Xiong P., Xiao G., Wang J.Q., Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system. Phys. Rev. Lett.,1992,69:3220-3223.
    [67]Rosenblatt D., Karpovski M., Gerber A., Reversal of the extraordinary Hall effect polarity in thin Co/Pd multilayers. Appl. Phys. Lett.,2010,96,022512-022515.
    [68]Lu Y. M., Cai J. W., Guo Z., et al., Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime. Phys. Rev. B,2013,87: 094405-094405.
    [69]Nagaosa N., Sinova J., Onoda S., et al., Anomalous Hall effect. Rev. Mod. Phys.,2010,82: 1539-1542.
    [70]Lee P. A., Ramakrishnan T. V., Disordered electronic systems. Rev.Mod. Phys.,1985,57:287-290.
    [71]Anderson P. W., Absence of Diffusion in Certain Random Lattices. Phys. Rev.1958,109: 1492-1505.
    [72]Bergmann G., Weak localization in thin films:a time-of-flight experiment with conduction electrons. Phys. Rep.1984,107:1-4.
    [73]Bergmann G., Ye F., Absence of a low-temperature anomaly of the anomalous Hall conductivity in thin amorphous ferromagnetic Fe films. Phys. Rev. Lett.,1991,67:735-739.
    [74]Langenfeld A., Wolfle P., Absence of quantum corrections to the anomalous Hall conductivity. Phys. Rev. Lett.,1991,67:739-742.
    [75]Lin Y. K., Novet T. R., Johnson D. C., Magnetotransport studies of strongly disordered annealed amorphous Fe/Si multilayers. Phys. Rev. B,1996,53:4796-4799.
    [76]Mitra P., Misra R., Hebard A. F., Weak-Localization Correction to the Anomalous Hall Effect in Polycrystalline Fe Films. Phys. Rev. Lett.,2007 99:046804-046807.
    [77]Muttalib K. A., Wollfle P., Disorder and temperature dependence of the anomalous Hall effect in thin ferromagnetic films:Microscopic model. Phys. Rev. B,2007,76:214415-214418.
    [78]Misra R., Hebard A. F., Muttalib K. A., Spin-wave-mediated quantum corrections to the conductivity of thin ferromagnetic films of gadolinium. Phys. Rev. B,2009,79:140408-140411.
    [79]Wang W. G., Hageman S., Li M., Rapid thermal annealing study of magnetoresistence and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB. Appl. Phys. Lett., 2011,99:102502-102505.
    [80]Ikeda S., Miura K., Yamamoto H., et al. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater.,2010,9:721-724.
    [81]唐伟忠.薄膜材料制备原理技术及应用.北京:冶金工业出版社,1988.43-5.
    [82]D. Dijikksmp, T. Venkatesan, and X. D. Wu, Appl. Phys. Lett.1987,51:619-622.
    [83]吴自勤.王兵.薄膜生长.北京:科学出版社,2006.100-103.
    [84]陈光华.邓金祥.新型电子薄膜材料.北京:化学工业出版社,2002.98-99.
    [85]浦树德.薄膜溅射技术手册.成都:西南技术物理研究所,1993.67-72.
    [86]Baibich M. N., Broto J. M., Fert A., et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett.,1988,61:2472-2475.
    [87]Binasch G., Grunberg P., Saurenbach F., et al., Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange., Phys. Rev. B,1989,39:4828-4831.
    [88]Daughton J., Brown J., Chen E., et al., IEEE Trans. Magn.1994,30,4608-4609.
    [89]Moodera J. S., Kinder L. R., Wong T. M., et al., Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys. Rev. Lett.,1995,74:3273-3277.
    [90]Miyazaki T. and Tezuka N., Giant magnetic tunneling effect in Fe/A12O3/Fe junction. J. Magn. Magn. Mater.1995,139:L231-L234.
    [91]Slonczewski J. C., Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater.,1996 159:L1-L4.
    [92]Berger L., Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 1996,54:9353-9356.
    [93]Wang W. G., Li M., Hageman S., et al., Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater.2012,11:64-67.
    [94]Evgeny Y. Tsymbal, Spintronics:Electric toggling of magnets. Nat. Mater.,2012,11:12-15.
    [95]Jung J. H., Lim S. H., Lee S. R., Strong perpendicular magnetic anisotropy in thick CoFeB films sandwiched by Pd and MgO layers. Appl. Phys. Lett.,2010,96:042503-042507.
    [96]Mizunuma K., Yamanouchi M., Ikeda S., et al, Pd Layer Thickness Dependence of Tunnel Magnetoresistance Properties in CoFeB/MgO-Based Magnetic Tunnel Junctions with Perpendicular Anisotropy CoFe/Pd Multilayers. Appl. Phys. Express,2011,4:023002-023005.
    [97]Wang W. G., Hageman S., Li M. Rapid thermal annealing study of magnetoresistence and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB. Appl Phys Lett, 2011,99(102502):1-3.
    [98]Zhang S. F. Extraodinary Hall effect in magnetic multilayers. Phys Rev B,1995,51(6):3632-3636
    [99]莫小静,向晖,李国庆,等.垂直取向L10FePt纳米粒子的磁性.科学通报,2010,55:534-540.
    [100]薄鸟,赵国平,叶淋宁,等.界面交换耦合强度对垂直取向FePt/a-/Fe/FePt磁性三层膜磁化反转过程的影响.中国科学:物理学力学天文学,2010,40(9):1085-1091
    [101]Jung J. H., Jeong B., Lim S. H., et al., Strong Perpendicular Magnetic Anisotropy in CoFeB/Pd Multilayers. Appl. Phys. Express,2010,3:023001-023004.
    [102]Worledge D. C., Hu G., Abraham D. W.,et al., Spin torque switching of perpendicular Ta | CoFeB | MgO-based magnetic tunnel junctions. Appl. Phys. Lett.,2011,98:022501-022504.
    [103]Bergmann G. and Marquardt P., Temperature dependence of the resistivity in amorphous ferromagnetic alloys:Spin-wave contribution and resistivity minimum. Phys. Rev. B,1978,17: 1355-1358.
    [104]Otto M. J., Woerden R. A. M., Van P. J., Half-metallic ferromagnets. Ⅱ. Transport properties of NiMnSb and related inter-metallic compounds. J. Phys.:Cond. Matter,1989,1:2351-2354.
    [105]Ming W. Z., Spin injection in GaAs and giant Hall effect. Acta Phys Sin,2011,60: 077203-077207.
    [106]Huang S. X., Chen T. Y, Chien C. L., Spin polarization of amorphous CoFeB determined by point-contant andreev reflection. Appl Phys Lett.,2008,92:242509-242512.
    [107]Xu W.J., Zhang B., Wang Z., et al., Scaling law of anomalous Hall effect in Fe/Cu bilayers. Eur. Phys. J. B.,2008,65:233-237.
    [108]Zeng C., Yao Y. G., Niu Q., Linear magnetization dependence of the intrinsic anomalous Hall effect. Phys. Rev. Lett.,2006,96:037204-037207.
    [109]Sinitsyn N. A., Semiclassical theories of the anomalous Hall effect. J. Phys.:Condens. Matter, 2008,20:023201-023204.
    [110]Manyala N., Sidis Y., Ditusa J., et al., Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nat. Mater,2004,3:1103-1107.
    [111]Niimi Y., Wei D., Idzuchi H., et al., Experimental Verification of Comparability between Spin-Orbit and Spin-Diffusion Lengths. Phys. Rev. Lett.,2013,110:016805-016808.
    [112]Ferrier M., Angers L., Rowe A.C.H., et al., Direct Measurement of the Phase-Coherence Length in a GaAs=GaAlAs Square Network. Phys. Rev. Lett.,2004,93:246804-246807.
    [113]Lee P.A., Stone A.D., Fukuyama H., Universal conductance fluctuations in metals:Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B,1987,35:1039-1042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700