微径铣刀的力学特性及磨损机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对微小型产品需求的增加和科学技术水平的发展,利用微细铣削加工技术,制造复杂3D几何形状微小零件变得日益广泛。目前,世界各主要国家已经在微细铣削领域开展了广泛的研究,微小型机床得到了研制,表面质量、切削力、刀具的磨损和寿命、切屑状态以及微小零件的加工能力等领域是研究的重点。
     本文将在已研制的微小型三轴立式铣床基础上,通过有限元和实验分析,研究微径铣刀的力学特性、磨损机理和刀具寿命。以求增加刀具的耐用度,提高铣削效率,保证微细铣削的加工质量,为实现高效加工提供理论指导和试验依据。
     首先,利用有限元方法,对微径铣刀的力学特性进行分析。通过模态分析,研究刀具的固有频率和振型;以及通过静力学分析,研究微径铣刀的应力和变形特点。
     其次,通过大量的刀具磨损实验,利用扫描电子显微镜和能谱仪,研究了TiAlN涂层硬质合金微径铣刀(直径0.5mm),在铣削硬铝LY12、高弹性合金钢3J21和不锈钢时,刀具的磨损机理;以及无涂层硬质合金微径铣刀,铣削硬铝LY12时的刀具磨损机理。发现涂层脱落、刀尖破损、扩散磨损为微径铣刀的主要磨损形式。
     最后,通过实验研究微细铣削的刀具寿命问题。分析了顺铣平面时,主轴转速分别为160000r/min、140000r/min、120000r/min时的刀具磨损特性;逆铣平面时,主轴转速为140000r/min时的刀具磨损特性。在此基础上,绘制了ln -lnT关系曲线,建立了切削速度与刀具寿命T的关系式。发现逆铣时刀具磨损得比顺铣时的快;切削速度越大,刀具磨损得越快,但其影响要比常规铣刀的小。vc vc
With the increasing need for microminiaturization product and the development of the technology, Micro milling technology plays an more and more important role in complicated 3D micro parts manufacture. Currently, more and more research has been carried out on Micro milling technology in developed countries. Micro machine tools which focused on surface quality, cutting force, wear, cutting life, chip, and the processing capacity have been manufactured.
     Based on the micro three-axis vertical milling machine, On purpose of increasing the tool life, improving efficiency, assuring the quality, and providing a theory and experiment basis, method of finite element analyze and experiment has been used. Meanwhile the mechanics identity, wear mechanisms, and cutting life of the micro tool have been studied.
     First of all, the mechanics characteristics of micro milling cutter have been analyzed using FEM. The inherent frequency and mode of vibration have been studied. The stress and distortion characteristics of the micro milling cutter have been discussed.
     Secondly, through substantial tool wear experiments, and the using of SEM and alpha ray spectrometer, the wear mechanisms of micro milling cutter have been researched, using the TiAlN coated carbide alloy microtool (diameter 0.5mm), and duralumin LY12, high flexibility alloy steel 3J21, stainless steel as the workpieces. The wear mechanisms of uncoated carbide alloy micro cutter, with the workpiece of LY12, have been researched, too. The coat shed, tool tip breakage, diffusive wear have been observed as the main form of tool wear.
     Finally, the life of micro milling cutter has been studied. The tool wear characteristics have been analyzed, in the condition of down milling, with the spindle speed of 160000r/min, 140000r/min, 120000r/min, as well as in the condition of up milling with the spindle speed of 140000r/min. With the date of the experiments, the curve of ln ~ lnT has been plotted, the expression of ~ T has been established. It is found that the wear rate of up milling is faster than that of the up milling. The faster of the cutting speed, the faster of the tool wear rate, but the affect of the cutting speed is smaller that of conventional milling cutter. vc vc
引文
1 贾宝贤, 王振龙, 赵万生. 适用于微机械制造的常规加工方法. 机械加工与自动化. 2003, (8): 19~21
    2 赵炳桢译. 微细切削加工的应用前景. 工具展望. 2002, 219(5): 11~13
    3 K. Sawada, S. Odaka, T. Kawai, et al. Manufacture of diffraction grating on tiny parts by means of ultraprecision milling. Microsystem Technologies. 1999, (5): 157~160
    4 T. Kawai, K. Sawada, Y. Takeuchi. Ultra-precision micro structuring by means of mechanical machining. The 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland, Jan. 21-25, 2001: 22~25
    5 P. Dario, M. C. Carrozza, N. Croce, et al. Non-traditional technologies for microfabrication. Journal of Micromechanics and Microengineering. 1995, (5): 64~71
    6 E. Brinksmeier, L. Autschbach. Development of ultra-precision milling techniques for the manufacture of optical quality molds with continuous and microstructured surfaces. Proceed. of the euspen International Topical Conference. Aachen, Germany, May 19-20, 2003: 193~196
    7 王文光译. 刀具与切削加工技术的新发展. 产品与技术. 2004, (12): 80~81
    8 NSF Workshop Report. Workshop on Micro/Meso-Mechanical Manufacturing. Northwestern University, Evanston, Illinois, USA, May 16-17, 2000
    9 C. Friedrich, M. J. Vasile. Development of the Micromilling Process for High-aspect-ratio Microstructures. Journal of Microelectromechanical Systems. 1996, 5: 33~38.
    10 M. J. Vasile, C. R. Friedrich, B. Kikkeri, et al. Micrometer-scale Machining: Tool Fabrication and Initial Results. Precision Engineering. 1996, 19: 180~186.
    11 蒋 放, 王西彬. 微细切削的尺度效应研究. 工具技术. 2004, 38(8): 6~9
    12 魏悦广. 机械微型化所面临的科学难题—尺度效应. 世界科技研究与发展. 1999, 22(2): 57~61
    13 孙俊兰, 姜大志. 超微细切削加工的技术难点及对策. 工具技术. 2001, (35): 18~22
    14 Lu Zinan, Yoneyama Takeshi. Micro Cutting in the Micro Lathe Turning System.International Journal of Machine Tools & Manufacture. 1999, 39(7): 1171-1183
    15 Schaller Th., Bohn L., Mayer J., et al. Microstructure Grooves with a Width of less than 50μm Cut with Ground Hard Metal Micro End Mills. Precision Engineering. 1999, 23: 229~235
    16 W. Wang, S.H. Kweon, S.H. Yang. A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. Journal of Materials Processing Technology. 2005: 702~708
    17 J. Schmidt, H. Tritschler. Micro cutting of steel. 2004, 10: 167~174
    18 K. Lee, D. A. Dornfeld. An Experimental Study on Burr Formation in Micro Milling Aluminum and Copper. Transactions of the NAMRI/SME. 2002: 255~262
    19 W. Y. Bao, I. N. Tansel. Modeling Micro-end-milling Operations. Part II: Tool Run-out. International Journal of Machine Tools & Manufacture. 2000, 40: 2175~2192
    20 W. Y. Bao, I. N. Tansel. Modeling Micro-end-milling Operations. Part III: Influence of Tool Wear. International Journal of Machine Tools & Manufacture. 2000, 40: 2193~2211
    21 M. P. Vogler, R. E. Devor, S. G. Kapoor. Microstructure-level Force Prediction Model for Micro-milling of Multi-phase Materials. Journal of Manufacturing Science and Engineering. 2003, 125: 202~209
    22 M. Rahman, A. Senthil Kumar, J. R. S. Prakash. Micro Milling of pure Copper. Journal of Materials Processing Technology. 2001, 116: 39~43
    23 L. Zhou, C. Y. Wang, Z. Qin, et al. Wear Characteristics of Micro-end Mill in High-speed milling of Graphite Electrode. Key Engineering Materials. 2004, 259-260: 858~863
    24 C. J. Kim, M. Bono, J. Ni. Experimental Anasysis of Chip Formation in Micro-Milling. Transaction of NAMRI/SME. 2002: 247~254
    25 Young-bong Bang, Kyung-min Lee. 5-axis micro milling machine for machining micro parts. International Journal of Advanced Manufacturing Technology. 2005, 25: 888-894
    26 蔺小军. 金属切削刀具的有限元分析. 西北工业大学硕士学位论文. 1999: 6~31
    27 石岚. 高速铣削立铣刀的有限元分析. 广东工业大学硕士学位论文. 2005:5~16
    28 F. Z. Fang, H. Wu, X. D. Liu, et al. Tool Geometry Study in Micromachining. Journal of Micromechanics and Microengineering. 2003, 13: 726~731.
    29 张华伟. 小直径铣刀高速铣削淬硬钢过程动力学仿真与有限元分析. 广西大学硕士学位论文. 2005: 37~55
    30 袁哲俊. 刀具设计手册. 机械工业出版社, 1999: 35~471
    31 赵海波, 周彤. 刀具涂层的分类与应用. 工具技术. 2005, 39(12): 14~17
    32 I. Tansel, M. Trujillo, A. Nedbouyan, et al. Micro-end-milling III. Wear estimation and tool breakage detection using acoustic signals. International Journal of Machine Tools & Manufacture. 1998, 38: 1449~1466
    33 周忆, 梁锡昌. 超高速铣削刀具的磨损机理. 重庆大学学报. 2003, 26(9): 47~49
    34 龙镇海, 王西彬. TiAlN 涂层硬质合金刀具高速铣削 30CrNi4MoV 钢时的磨损机理. 北京理工大学学报. 2004, 24(11): 942~946
    35 贾庆莲, 乔彦峰. 涂层硬质合金刀具磨损机理的研究. 工具技术. 2005, 39(11): 37~40
    36 解丽静, 刘志兵, 王西彬. 硬质合金刀具铣削高强度钢的磨损机理研究. 兵工学报. 2005, 26(4): 519~521
    37 吴善元. 金属切削原理与刀具. 机械工业出版社. 1995: 35~92
    38 吴学奇. 小直径铣刀高速铣削淬硬钢机理及工艺研究. 广西大学硕士学位论文. 2004: 16~65
    39 李雯枫. 脆弱的微型刀具. 数控机床市场. 2005, (1): 74~75
    40 林湧涛. 切削用量优选专家系统的研究. 哈尔滨理工大学硕士学位论文. 2004: 18~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700