骨架蛋白质SEPT7在有丝分裂期的功能解析与生化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物细胞通过一系列复杂而有序的生化调控途径精确均等地把遗传信息以染色体的形式传递给子代细胞。有丝分裂期染色体的运动是由纺锤体微管和位于染色体着丝粒区域的一个特化的结构—动点之间程序化且动态的相互作用而协调完成的。我们以往的研究证实了有丝分裂驱动蛋白质CENP-E为纺锤体微管和动点连接的一个桥梁并且可以参与调节纺锤体检验点的级联反应。CENP-E是一个定位于动点的纤维冠状层并依赖于微管行走的马达蛋白质,它可以驱使动点与微管的正极端相结合引导染色体向赤道板排列,因此参与了由前中期向后期转换过程中的染色体的运动。为了进一步研究CENP-E调节有丝分裂进程的详尽分子机制,我们着手从CENP-E在有丝分裂期的作用网络出发,通过研究蛋白质作用的分子机制及动力学特征,从而阐明CENP-E功能可塑性及调节机制。本文聚焦在一个新发现的CENP-E作用分子septin 7(简称SEPT7),通过一系列生物化学及细胞生物学实验,我们的研究首次阐述了CENP-E与SEPT7的作用及其调控机制。
     Septin(SEPT)属于一类保守的细胞骨架蛋白质家族,它们具有类似的结构特征,septin在多种生物体内均可以形成异源多聚体的纤维状结构。SEPT纤维在有丝分裂期可以定位到纺锤体上。在我们研究SEPT7与CENP-E作用机制的同时,有研究报导表明SEPT2的敲除会导致染色体的错误排列以及影响CENP-E在动点上的定位。然而,CENP-E是否与SEPT有相互作用以及它们是如何协调染色体的排列与分离的机制目前仍不为所知。我们的研究结果发现了SEPT7对于稳定CENP-E的动点定位是需要的,SEPT7可以通过直接结合CENP-E的羧基端而将其稳定在动点上。我通过酵母共转以及体外结合试验证明了SEPT7是通过其羧基端与CENP-E相互作用的。免疫荧光的结果表明SEPT7沿着有丝分裂纺锤体分布并且可以终止于以CENP-E为标识的动点结构。当我用siRNA抑制SEPT7的表达会发现CENP-E不能够上动点而且会导致染色体排列的异常,这些表型都可以通过进一步外源转染SEPT7的rescue质粒而得到恢复。同时我还发现SEPT的敲除会导致双极定向的染色体之间的张力减弱以及纺锤体检验点的激活,SEPT7可能将CENP-E的动点定位与纺锤体检验点信号的级联反应相联系起来。这些发现揭示了SEPT7-CENP-E之间的相互作用对于稳定CENP-E的动点定位以及协调动点一微管之间的连接都是至关重要的。
     为了进一步去研究SEPT7的生物学特性以及它在SEPT2-SEPT6-SEPT7复合物组装过程中的作用,我对人的SEPT7进行了生化以及细胞生物学特性的分析。我发现SEPT7在体内和体外均可以组装形成纤维状的结构,其中包含GTPase的结构域以及氨基端的一小段富含碱性氨基酸序列的缺失突变体—SEPT7 N,对于维持SEPT7的纤维状定位,自身的结合以及与SEPT2和SEPT6的相互作用都是必需的。尽管GTPase的活性对于SEPT7的纤维组装是必不可少的,但它并不影响SEPT2/6/7复合物之间的相互作用。此外,SEPT7在体内还可以征募SEPT2和SEPT6从而形成纤维状结构的复合物。这些发现有助于我们进一步认识SEPT7的结构与功能的关系。
     综上所述,我们的研究揭示并阐述了SEPT7-CENP-E之间的相互作用对于稳定CENP-E的动点定位以及协调纺锤体微管与动点之间的连接是至关重要的。此外,我们对于SEPT7生化特性的初步分析有助于进一步地研究SEPT纤维的组装及功能。
     鉴于SEPT7及CENP-E在有丝分裂进程中的动态性,我们相信利用生物光子学技术与生化分析手段相结合,我们将会阐明septin动力学与可塑性在有丝分裂进程中的详尽功能及其纺锤体动力学的相互关联。由于septin功能的变异在肿瘤发生与发展中的潜在作用,对septin分子可塑性及动力学的解析将为校正细胞分裂的异常提供一个潜在的靶点。
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore,a multiprotein complex assembled onto centromeric DNA of the chromosome.CENP-E is a microtubule-based kinesin motor protein located on the outer kinetochore and is responsible for a stable microtubule-kinetochore attachment.Earlier studies from our laboratory demonstrate that CENP-E forms a link between chromosome attachment and spindle checkpoint. To delineate the molecular mechanisms underlying CENP-E function and regulation during mitosis,we conducted a systemic identification of proteins interacting with CENP-E using yeast genetic screen,in which more than a dozen of candidates were identified.One of such candidates is SEPT7,a GTPase composing a novel filamentous structure essential for cytokinesis.The first part of my research work focused on the characterization of CENP-E-septin interaction and functional relevance in mitosis.
     Septin(SEPT)belongs to a family of conserved cytoskeletal proteins,which share common structural domains and form heteropolymeric filaments in several organisms.SEPT filaments localized to the metaphase spindle during mitosis. Previous studies indicated that SEPT2 depletion results in chromosome misalignment correlated with loss of CENP-E from the kinetochores of congressing chromosomes. However,it has remained elusive as to whether CENP-E physically interacts with SEPT and how this interaction orchestrates chromosome segregation in mitosis.Here we show SEPT7 is required for a stable kinetochore localization of CENP-E.SEPT7 stabilizes the kinetochore association of CENP-E by directly interacting with its C-terminal domain.The region of SEPT7 associating with CENP-E was mapped to its C-terminal domain by GST pull-down and yeast two-hybrid assays. Immunoflourescence study shows that SEPT7 filaments distribute along the mitotic spindle and terminate at the kinetochore marked by CENP-E.Remarkably, suppression of synthesis of SEPT7 by siRNA abrogated the localization of CENP-E to the kinetochore and caused aberrant chromosome congression.These mitotic defects and kinetochore localization of CENP-E can be successfully rescued by introducing exogenous GFP-SEPT7 into the SEPT7-depleted cells.These SEPT7-suppressed cells display reduced tension at kinetochores of bi-orientated chromosomes and activate mitotic spindle checkpoint marked by Mad2 and BubR1 labelings on these misaligned chromosomes.We propose that SEPT7 forms a link between kinetochore localization of CENP-E and the mitotic spindle checkpoint.These findings reveal a key role for the SEPT7-CENP-E interaction in distribution of CENP-E to the kinetochore and mainteinance the kinetochore-microtubule attachment.
     To delineate the structure-functional relationship of SEPT7 molecule related to SEPT2-SEPT6-SEPT7 complex assembly,I carried out biochemical characterization of human SEPT7.My study shows that human SEPT7 can assemble into filaments in vitro and in vivo.The N-terminal SEPT7,including GTPase domain and a short region at the amino terminus,is required for its filaments localization,self-association and interaction with SEPT2 and SEPT6.Although GTPase activity is indispensable for SEPT7 filaments assembly,it barely affects the formation of hetero-polymeric septin complex and filaments.Furthermore,SEPT7 can bundle SEPT2 and SEPT6 to form an integral filaments structure in vivo.Thus,these observations provide insight into a better understanding of structure-functional relationship of SEPT7.Currently,I am carrying our biophotonic study to illustrate the molecular dynamics of SEPT7 molecule and its relation to chromosome segregation in mitosis.
     Taken together,my finding of SEPT7-CENP-E interaction provides novel insight into a better understanding of CENP-E molecular dynamics in mitosis.In addition,the molecular delineation of SEPT7 structure-functional relationship established here provides framework by which we illustrate the function and regulation of septin filaments during mitosis.
     Given the fact that aberrant spindle plasticity and dynamics are involved in pathogenesis of chromosome instability phenotype,better understandings of the molecular mechanisms of CENP-E-SEPT7 interaction will help to correct aberrant chromosome segregation and perhaps provide potential therapeutic strategies.
引文
Abrieu, A., J.A. Kahana, K.W. Wood, and D.W. Cleveland. 2000. CENP-E as an essential component of the mitotic checkpoint in vitro. Cell. 102:817-26.
    
    Abrieu, A., L. Magnaghi-Jaulin, J.A. Kahana, M. Peter, A. Castro, S. Vigneron, T. Lorca, D.W. Cleveland, and J.C. Labbe. 2001. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell. 106:83-93.
    
    Adams, A.E., and J.R. Pringle. 1984. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol. 98:934-45.
    
    Amin, N.D., Y.L. Zheng, S. Kesavapany, J. Kanungo, T. Guszczynski, R.K. Sihag, P. Rudrabhatla, W. Albers, P. Grant, and H.C. Pant. 2008. Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J Neurosci. 28:3631-43.
    
    Ando, S., H. Yang, N. Nozaki, T. Okazaki, and K. Yoda. 2002. CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol. 22:2229-41.
    
    Ashar, H.R., L. James, K. Gray, D. Carr, S. Black, L. Armstrong, W.R. Bishop, and P. Kirschmeier. 2000. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem. 275:30451-7.
    
    Barral, Y., M. Parra, S. Bidlingmaier, and M. Snyder. 1999. Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev. 13:176-87.
    
    Beites, C.L., H. Xie, R. Bowser, and W.S. Trimble. 1999. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci. 2:434-9.
    
    Brinkley, B.R., and E. Stubblefield. 1966. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma. 19:28-43.
    Brown, K.D., R.M. Coulson, T.J. Yen, and D.W. Cleveland. 1994. Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J Cell Biol. 125:1303-12.
    
    Brown, K.D., K.W. Wood, and D.W. Cleveland. 1996. The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J Cell Sci. 109 (Pt 5):961-9.
    
    Brunet, S., and I. Vernos. 2001. Chromosome motors on the move. From motion to spindle checkpoint activity. EMBO Rep. 2:669-73.
    
    Buchwitz, B.J., K. Ahmad, L.L. Moore, M.B. Roth, and S. Henikoff. 1999. A histone-H3-like protein in C. elegans. Nature. 401:547-8.
    
    Byers, B., and L. Goetsch. 1976. A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol. 69:717-21.
    
    Cahill, D.P., C. Lengauer, J. Yu, G.J. Riggins, J.K. Willson, S.D. Markowitz, K.W. Kinzler, and B. Vogelstein. 1998. Mutations of mitotic checkpoint genes in human cancers. Nature. 392:300-3.
    
    Cau, J., and A. Hall. 2005. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci. 118:2579-87.
    
    Chan, G.K., S.A. Jablonski, V. Sudakin, J.C. Hittle, and T.J. Yen. 1999. Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol. 146:941-54.
    
    Chan, G.K., B.T. Schaar, and T.J. Yen. 1998. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBRl. J Cell Biol. 143:49-63.
    
    Cheeseman, I.M., J.S. Chappie, E.M. Wilson-Kubalek, and A. Desai. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell. 127:983-97.
    
    Cheeseman, I.M., and A. Desai. 2008. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol. 9:33-46.
    
    Cheeseman, I.M., I. MacLeod, J.R. Yates, 3rd, K. Oegema, and A. Desai. 2005. The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation. Curr Biol 15:771-7.
    
    Cheeseman, I.M., S. Niessen, S. Anderson, F. Hyndman, J.R. Yates, 3rd, K. Oegema, and A. Desai. 2004. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18:2255-68.
    
    Chen, R.H. 2002. BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol. 158:487-96.
    
    Chung, E., and R.H. Chen. 2003. Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol. 5:748-53.
    
    Ciferri, C, J. De Luca, S. Monzani, K.J. Ferrari, D. Ristic, C. Wyman, H. Stark, J. Kilmartin, E.D. Salmon, and A. Musacchio. 2005. Architecture of the human ndc80-hecl complex, a critical constituent of the outer kinetochore. J Biol Chem. 280:29088-95.
    
    Collins, K.A., A.R. Castillo, S.Y. Tatsutani, and S. Biggins. 2005. De novo kinetochore assembly requires the centromeric histone H3 variant. Mol Biol Cell. 16:5649-60.
    
    Cooke, C.A., B. Schaar, T.J. Yen, and W.C. Earnshaw. 1997. Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma. 106:446-55.
    
    Coquelle, KM., M. Caspi, F.P. Cordelieres, J.R Dompierre, D.L. Dujardin, C. Koifrnan, P. Martin, C.C. Hoogenraad, A. Akhmanova, N. Galjart, J.R. De Mey, and O. Reiner. 2002. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol Cell Biol. 22:3089-102.
    D'Angiolella, V., C. Mari, D. Nocera, L. Rametti, and D. Grieco. 2003. The spindle checkpoint requires cyclin-dependent kinase activity. Genes Dev. 17:2520-5.
    
    DeLuca, J.G., Y. Dong, P. Hergert, J. Strauss, J.M. Hickey, E.D. Salmon, and B.F. McEwen. 2005. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell. 16:519-31.
    
    DeLuca, J.G., B. Moree, J.M. Hickey, J.V. Kilmartin, and E.D. Salmon. 2002. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol. 159:549-55.
    
    Dent, J., K. Kato, X.R. Peng, C. Martinez, M. Cattaneo, C. Poujol, P. Nurden, A. Nurden, W.S. Trimble, and J. Ware. 2002. A prototypic platelet septin and its participation in secretion. Proc Natl Acad Sci U S A. 99:3064-9.
    
    Desai, A., S. Rybina, T. Muller-Reichert, A. Shevchenko, A. Shevchenko, A. Hyman, and K. Oegema. 2003. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 17:2421-35.
    
    Dong, Y., K.J. Vanden Beldt, X. Meng, A. Khodjakov, and B.F. McEwen. 2007. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol. 9:516-22.
    
    Douglas, L.M., F.J. Alvarez, C. McCreary, and J.B. Konopka. 2005. Septin function in yeast model systems and pathogenic fungi. Eukaryot Cell. 4:1503-12.
    
    Echeverri, C.J., B.M. Paschal, K.T. Vaughan, and R.B. Vallee. 1996. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol. 132:617-33.
    
    Emanuele, M.J., and P.T. Stukenberg. 2007. Xenopus Cep57 is a novel kinetochore component involved in microtubule attachment. Cell. 130:893-905.
    
    Espeut, J., A. Gaussen, P. Bieling, V. Morin, S. Prieto, D. Fesquet, T. Surrey, and A. Abrieu. 2008. Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell. 29:637-43.
    
    Felix, C.A., M.R. Hosier, N.J. Winick, M. Masterson, A.E. Wilson, and B.J. Lange. 1995. ALL-1 gene rearrangements in DNA topoisomerase II inhibitor-related leukemia in children. Blood. 85:3250-6.
    
    Feng, J., H. Huang, and T.J. Yen. 2006. CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma. 115:320-9.
    
    Field, C.M., O. al-Awar, J. Rosenblatt, M.L. Wong, B. Alberts, and T.J. Mitchison. 1996. A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J Cell Biol. 133:605-16.
    
    Foltz, D.R., L.E. Jansen, B.E. Black, A.O. Bailey, J.R. Yates, 3rd, and D.W. Cleveland. 2006. The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol. 8:458-69.
    
    Ford, S.K., and J.R. Pringle. 1991. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Dev Genet. 12:281-92.
    
    Fu, G., X. Ding, K. Yuan, F. Aikhionbare, J. Yao, X. Cai, K. Jiang, and X. Yao. 2007. Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis. Cell Res. 17:608-18.
    
    Fujita, Y., T. Hayashi, T. Kiyomitsu, Y. Toyoda, A. Kokubu, C. Obuse, and M. Yanagida. 2007. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell. 12:17-30.
    
    Fukagawa, T. 2004. Assembly of kinetochores in vertebrate cells. Exp Cell Res. 296:21-7.
    
    Garcia-Saez, I., T. Yen, R.H. Wade, and F. Kozielski. 2004. Crystal structure of the motor domain of the human kinetochore protein CENP-E. J Mol Biol. 340:1107-16.
    Gard, D.L., B.E. Becker, and S. Josh Romney. 2004. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int Rev Cytol. 239:179-272.
    
    Gladfelter, A.S., J.R. Pringle, and D.J. Lew. 2001. The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol. 4:681-9.
    
    Gomes, E.R., S. Jani, and G.G. Gundersen. 2005. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell. 121:451-63.
    
    Goshima, G., T. Kiyomitsu, K. Yoda, and M. Yanagida. 2003. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol. 160:25-39.
    
    Grancell, A., and P.K. Sorger. 1998. Chromosome movement: kinetochores motor along. Curr Biol. 8:R382-5.
    
    Haarer, B.K., and J.R. Pringle. 1987. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol Cell Biol. 7:3678-87.
    
    Habu, T., S.H. Kim, J. Weinstein, and T. Matsumoto. 2002. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. Embo J. 21:6419-28.
    
    Hagert, M., and Jkob. 1975. [Pictures of the fascicular block inacute myocardial infarct with special reference to left anterior hemiblock and the bifascicular block of the anterior type]. Z Gesamte Inn Med. 30:382-7.
    
    Hanisch, A., H.H. Sillje, and E.A. Nigg. 2006. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. Embo J. 25:5504-15.
    
    Hartwell, L.H. 1971. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res. 69:265-76.
    Hauf, S., R.W. Cole, S. LaTerra, C. Zimmer, G. Schnapp, R. Walter, A. Heckel, J. van Meel, C.L. Rieder, and J.M. Peters. 2003. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol. 161:281-94.
    
    Hayashi, T., Y. Fujita, 0. Iwasaki, Y. Adachi, K. Takahashi, and M. Yanagida. 2004. Misl6 and Mis 18 are required for CENP-A loading and histone deacetylation at centromeres. Cell. 118:715-29.
    
    Hayden, J.H., S.S. Bowser, and C.L. Rieder. 1990. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol. 111:1039-45.
    
    Holleran, E.A., S. Karki, and E.L. Holzbaur. 1998. The role of the dynactin complex in intracellular motility. Int Rev Cytol. 182:69-109.
    
    Hori, T., T. Haraguchi, Y. Hiraoka, H. Kimura, and T. Fukagawa. 2003. Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J Cell Sci. 116:3347-62.
    
    Howard, J., and A.A. Hyman. 2007. Microtubule polymerases and depolymerases. Curr Opin Cell Biol. 19:31-5.
    
    Howell, B.J., B.F. McEwen, J.C. Canman, D.B. Hoffman, E.M. Farrar, C.L. Rieder, and E.D. Salmon. 2001. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol. 155:1159-72.
    
    Howell, B.J., B. Moree, E.M. Farrar, S. Stewart, G. Fang, and E.D. Salmon. 2004. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr Biol. 14:953-64.
    
    Hsu, S.C., CD. Hazuka, D.L. Foletti, and R.H. Scheller. 1999. Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Trends Cell Biol. 9:150-3.
    Hsu, S.C., C.D. Hazuka, R. Roth, D.L. Foletti, J. Heuser, and R.H. Scheller. 1998. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron. 20:1111-22.
    Iwase, M., S. Okada, T. Oguchi, and A. Toh-e. 2004. Forchlorfenuron, a phenylurea cytokinin, disturbs septin organization in Saccharomyces cerevisiae. Genes Genet Syst. 79:199-206.
    Izuta, H., M. Ikeno, N. Suzuki, T. Tomonaga, N. Nozaki, C. Obuse, Y. Kisu, N. Goshima, F. Nomura, N. Nomura, and K. Yoda. 2006. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells. 11:673-84.
    Joberty, G, R.R. Perlungher, P.J. Sheffield, M. Kinoshita, M. Noda, T. Haystead, and I.G. Macara. 2001. Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol. 3:861-6.
    Joglekar, A.P., D.C. Bouck, J.N. Molk, K.S. Bloom, and E.D. Salmon. 2006. Molecular architecture of a kinetochore-microtubule attachment site. Nat Cell Biol. 8:581-5.
    Joo, E., M.C. Surka, and W.S. Trimble. 2007. Mammalian SEPT2 is required for scaffolding nonmuscle myosin II and its kinases. Dev Cell. 13:677-90.
    Kamitani, T., K. Kito, H.P. Nguyen, T. Fukuda-Kamitani, and E.T. Yeh. 1998. Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem. 273:11349-53.
    Kaplan, K.B., A.A. Burds, J.R. Swedlow, S.S. Bekir, P.K. Sorger, and I.S. Nathke. 2001. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol. 3:429-32.
    
    Kapoor, T.M., M.A. Lampson, P. Hergert, L. Cameron, D. Cimini, E.D. Salmon, B.F. McEwen, and A. Khodjakov. 2006. Chromosomes can congress to the metaphase plate before biorientation. Science. 311:388-91.
    
    Karess, R. 2005. Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol. 15:386-92.
    Kartmann, B., and D. Roth. 2001. Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J Cell Sci. 114:839-44.
    Kerres, A., V. Jakopec, and U. Fleig. 2007. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol Biol Cell. 18:2441-54.
    Kinoshita, M., CM. Field, M.L. Coughlin, A.F. Straight, and T.J. Mitchison. 2002. Self- and actin-templated assembly of Mammalian septins. Dev Cell. 3:791-802.
    Kline, S.L., I.M. Cheeseman, T. Hori, T. Fukagawa, and A. Desai. 2006. The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J Cell Biol. 173:9-17.
    Kops, G.J., Y. Kim, B.A. Weaver, Y. Mao, I. McLeod, J.R. Yates, 3rd, M. Tagaya, and D.W. Cleveland. 2005. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol. 169:49-60.
    Kremer, B.E., T. Haystead, and I.G. Macara. 2005. Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell. 16:4648-59.
    Kuhlenbaumer, G., M.C. Hannibal, E. Nelis, A. Schirmacher, N. Verpoorten, J. Meuleman, G.D. Watts, E. De Vriendt, P. Young, F. Stogbauer, H. Halfter, J. Irobi, D. Goossens, J. Del-Favero, B.G. Betz, H. Hor, G. Kurlemann, T.D. Bird, E. Airaksinen, T. Mononen, A.P. Serradell, J.M. Prats, C. Van Broeckhoven, P. De Jonghe, V. Timmerman, E.B. Ringelstein, and P.F. Chance. 2005. Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat Genet. 37:1044-6.
    Kwon, M.S., T. Hori, M. Okada, and T. Fukagawa. 2007. CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell. 18:2155-68.
    Lallemand-Breitenbach, V., J. Zhu, F. Puvion, M. Koken, N. Honore, A. Doubeikovsky, E. Duprez, P.P. Pandolfi, E. Puvion, P. Freemont, and H. de The. 2001. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, US proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med. 193:1361-71.
    Liao, H., G Li, and T.J. Yen. 1994. Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science. 265:394-8.
    Liu, ST., J.C. Hittle, S.A. Jablonski, M.S. Campbell, K. Yoda, and T.J. Yen. 2003. Human CENP-I specifies localization of CENP-F, MADl and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol. 5:341-5.
    Liu, ST., J.B. Rattner, S.A. Jablonski, and T.J. Yen. 2006. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol. 175:41-53.
    Longtine, M.S., D.J. DeMarini, M.L. Valencik, O.S. Al-Awar, H. Fares, C. De Virgilio, and J.R. Pringle. 1996. The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol. 8:106-19.
    Luo, X., Z. Tang, J. Rizo, and H. Yu. 2002. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Madl or Cdc20. Mol Cell. 9:59-71.
    Lye, R.J., M.E. Porter, J.M. Scholey, and J.R. McIntosh. 1987. Identification of a microtubule-based cytoplasmic motor in the nematode C. elegans. Cell. 51:309-18.
    Maddox, P.S., F. Hyndman, J. Monen, K. Oegema, and A. Desai. 2007. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol. 176:757-63.
    Maddox, P.S., K. Oegema, A. Desai, and I.M. Cheeseman. 2004. "Holo"er than thou: chromosome segregation and kinetochore function in C. elegans. Chromosome Res. 12:641-53.
    Maiato, H., J. DeLuca, E.D. Salmon, and W.C. Earnshaw. 2004. The dynamic kinetochore-microtubule interface. J Cell Sci. 117:5461-77.
    Maiato, H., E.A. Fairley, C.L. Rieder, J.R. Swedlow, C.E. Sunkel, and W.C. Earnshaw. 2003. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell. 113:891-904.
    
    Maiato, H., A. Khodjakov, and C.L. Rieder. 2005. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nat Cell Biol. 7:42-7.
    
    Mao, Y., A. Abrieu, and D.W. Cleveland. 2003. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell. 114:87-98.
    
    Mao, Y., A. Desai, and D.W. Cleveland. 2005. Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J Cell Biol. 170:873-80.
    
    Masumoto, H., H. Masukata, Y. Muro, N. Nozaki, and T. Okazaki. 1989. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 109:1963-73.
    
    McCleland, M.L., R.D. Gardner, M.J. Kallio, J.R. Daum, G.J. Gorbsky, D.J. Burke, and P.T. Stukenberg. 2003. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev. 17:101-14.
    
    McEwen, B.F, G.K. Chan, B. Zubrowski, M.S. Savoian, M.T. Sauer, and T.J. Yen. 2001. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell. 12:2776-89.
    
    Measday, V, and P. Hieter. 2004. Kinetochore sub-structure comes to MIND. Nat Cell Biol. 6:94-5.
    
    Mikami, Y., T. Hori, H. Kimura, and T. Fukagawa. 2005. The functional region of CENP-H interacts with the Nuf2 complex that localizes to centromere during mitosis. Mol Cell Biol. 25:1958-70.
    
    Minshull, J., H. Sun, N.K. Tonks, and A.W. Murray. 1994. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell. 79:475-86.
    
    Morrow, C.J., A. Tighe, V.L. Johnson, M.I. Scott, C. Ditchfield, and S.S. Taylor. 2005. Bubl and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J Cell Sci. 118:3639-52.
    
    Musacchio, A., and K.G. Hardwick. 2002. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol. 3:731-41.
    
    Musacchio, A., and E.D. Salmon. 2007. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 8:379-93.
    
    Nagata, K., T. Asano, Y. Nozawa, and M. Inagaki. 2004. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem. 279:55895-904.
    
    Nagata, K., A. Kawajiri, S. Matsui, M. Takagishi, T. Shiromizu, N. Saitoh, I. Izawa, T. Kiyono, T.J. Itoh, H. Hotani, and M. Inagaki. 2003. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem. 278:18538-43.
    
    Nekrasov, VS., M.A. Smith, S. Peak-Chew, and J.V. Kilmartin. 2003. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol Biol Cell. 14:4931-46.
    
    Nicklas, R.B., S.C. Ward, and G.J. Gorbsky. 1995. Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J Cell Biol. 130:929-39.
    
    Obuse, C., O. Iwasaki, T. Kiyomitsu, G. Goshima, Y. Toyoda, and M. Yanagida. 2004a. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol. 6:1135-41.
    
    Obuse, C., H. Yang, N. Nozaki, S. Goto, T. Okazaki, and K. Yoda. 2004b. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells. 9:105-20.
    
    Oegema, K., A. Desai, S. Rybina, M. Kirkham, and A.A. Hyman. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol. 153:1209-26.
    
    Okada, M., I.M. Cheeseman, T. Hori, K. Okawa, I.X. McLeod, J.R. Yates, 3rd, A. Desai, and T. Fukagawa. 2006. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol. 8:446-57.
    
    Osaka, M., J.D. Rowley, and N.J. Zeleznik-Le. 1999. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci U S A. 96:6428-33.
    
    Palmer, D.K., and R.L. Margolis. 1985. Kinetochore components recognized by human autoantibodies are present on mononucleosomes. Mol Cell Biol. 5:173-86.
    
    Paschal, B.M., and R.B. Vallee. 1987. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 330:181-3.
    
    Pellman, D. 2001. Cancer. A CINtillating new job for the APC tumor suppressor. Science. 291:2555-6.
    
    Pinsky, B.A., and S. Biggins. 2005. The spindle checkpoint: tension versus attachment. Trends Cell Biol. 15:486-93.
    
    Potapova, T.A., J.R. Daum, B.D. Pittman, J.R. Hudson, T.N. Jones, D.L. Satinover, P.T. Stukenberg, and G.J. Gorbsky. 2006. The reversibility of mitotic exit in vertebrate cells. Nature. 440:954-8.
    
    Qi, M., W. Yu, S. Liu, H. Jia, L. Tang, M. Shen, X. Yan, H. Saiyin, Q. Lang, B. Wan, S. Zhao, and L. Yu. 2005. Septinl, a new interaction partner for human serine/threonine kinase aurora-B. Biochem Biophys Res Commun. 336:994-1000.
    Regnier, V., P. Vagnarelli, T. Fukagawa, T. Zerjal, E. Burns, D. Trouche, W. Earnshaw, and W. Brown. 2005. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol. 25:3967-81.
    
    Salic, A., J.C. Waters, and T.J. Mitchison. 2004. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell. 118:567-78.
    
    Saunders, W.S., D. Koshland, D. Eshel, I.R. Gibbons, and M.A. Hoyt. 1995. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J Cell Biol. 128:617-24.
    
    Scholey, J.M., I. Brust-Mascher, and A. Mogilner. 2003. Cell division. Nature. 422:746-52.
    
    Schroer, T.A., J.B. Bingham, and S.R. Gill. 1996. Actin-related protein 1 and cytoplasmic dynein-based motility - what's the connection? Trends Cell Biol. 6:212-5.
    
    Shaw, S.L., E. Yeh, P. Maddox, E.D. Salmon, and K. Bloom. 1997. Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol. 139:985-94.
    
    She, Y.M., Y.W. Huang, L. Zhang, and W.S. Trimble. 2004. Septin 2 phosphorylation: theoretical and mass spectrometric evidence for the existence of a single phosphorylation site in vivo. Rapid Commun Mass Spectrom. 18:1123-30.
    
    Sirajuddin, M., M. Farkasovsky, F. Hauer, D. Kuhlmann, I.G. Macara, M. Weyand, H. Stark, and A. Wittinghofer. 2007. Structural insight into filament formation by mammalian septins. Nature. 449:311-5.
    
    Sisson, J.C., C. Field, R. Ventura, A. Royou, and W. Sullivan. 2000. Lava lamp, a novel peripheral golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol. 151:905-18.
    
    Snyder, C.A., J.P. Selegue, E. Dosunmu, N.C. Tice, and S. Parkin. 2003. C,O-dialkylation of Meldrum's acid: synthesis and reactivity of 1,3,7,7-tetramethyl-4H,10H-6,8,9-trioxa-2-thiabenz[f]azulen-5-one. J Org Chem. 68:7455-9.
    
    Sollner, T., S.W. Whiteheart, M. Brunner, H. Erdjument-Bromage, S. Geromanos, P. Tempst, and J.E. Rothman. 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature. 362:318-24.
    
    Spiliotis, E.T., S.J. Hunt, Q. Hu, M. Kinoshita, and W.J. Nelson. 2008. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J Cell Biol. 180:295-303.
    
    Spiliotis, E.T., M. Kinoshita, and W.J. Nelson. 2005. A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science. 307:1781-5.
    
    Spiliotis, E.T., and W.J. Nelson. 2006. Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci. 119:4-10.
    
    Starr, D.A., R. Saffery, Z. Li, A.E. Simpson, K.H. Choo, T.J. Yen, and M.L. Goldberg. 2000. HZwint-1, a novel human kinetochore component that interacts with HZW10. J Cell Sci. 113 (Pt 11):1939-50.
    
    Sullivan, K.F., M. Hechenberger, and K. Masri. 1994. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol. 127:581-92.
    
    Surka, M.C., C.W. Tsang, and W.S. Trimble. 2002. The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell. 13:3532-45.
    
    Tai, C.Y., D.L. Dujardin, N.E. Faulkner, and R.B. Vallee. 2002. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol. 156:959-68.
    
    Tanudji, M., J. Shoemaker, L. L'Italien, L. Russell, G. Chin, and X.M. Schebye. 2004. Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol Biol Cell. 15:3771-81.
    Taylor, S.S., D. Hussein, Y. Wang, S. Elderkin, and C.J. Morrow. 2001. Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. J Cell Sci. 114:4385-95.
    
    ten Hoopen, R., T. Schleker, R. Manteuffel, and I. Schubert. 2002. Transient CENP-E-like kinetochore proteins in plants. Chromosome Res. 10:561-70.
    
    Tirnauer, J.S., J.C. Canman, E.D. Salmon, and T.J. Mitchison. 2002. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol Biol Cell. 13:4308-16.
    
    Vaisberg, E.A., M.R Koonce, and J.R. McIntosh. 1993. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J Cell Biol. 123:849-58.
    
    VandenBeldt, K.J., R.M. Barnard, P.J. Hergert, X. Meng, H. Maiato, and B.F. McEwen. 2006. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr Biol. 16:1217-23.
    
    Vergnolle, M.A., and S.S. Taylor. 2007. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol. 17:1173-9.
    
    Vigneron, S., S. Prieto, C. Bernis, J.C. Labbe, A. Castro, and T. Lorca. 2004. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell. 15:4584-96.
    
    Weaver, B.A., Z.Q. Bonday, F.R. Putkey, G.J. Kops, A.D. Silk, and D.W. Cleveland. 2003. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol. 162:551-63.
    
    Wei, R.R., J. Al-Bassam, and S.C. Harrison. 2007. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol. 14:54-9.
    
    Wei, R.R., P.K. Sorger, and S.C. Harrison. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A. 102:5363-7.
    Wigge, P.A., and J.V. Kilmartin. 2001. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol. 152:349-60.
    Wojcik, E., R. Basto, M. Serr, F. Scaerou, R. Karess, and T. Hays. 2001. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat Cell Biol. 3:1001-7.
    Wood, K.W., R. Sakowicz, L.S. Goldstein, and D.W. Cleveland. 1997. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell. 91:357-66.
    Xia, G, X. Luo, T. Habu, J. Rizo, T. Matsumoto, and H. Yu. 2004. Conformation-specific binding of p31 (comet) antagonizes the function of Mad2 in the spindle checkpoint. Embo J. 23:3133-43.
    Xue, J., P.J. Milburn, B.T. Hanna, M.E. Graham, J.A. Rostas, and P.J. Robinson. 2004a. Phosphorylation of septin 3 on Ser-91 by cGMP-dependent protein kinase-I in nerve terminals. BiochemJ. 381:753-60.
    Xue, J., C.W. Tsang, W.P. Gai, C.S. Malladi, W.S. Trimble, J.A. Rostas, and P.J. Robinson. 2004b. Septin 3 (G-septin) is a developmentally regulated phosphoprotein enriched in presynaptic nerve terminals. J Neurochem. 91:579-90.
    Xue, J., X. Wang, C.S. Malladi, M. Kinoshita, P.J. Milburn, I. Lengyel, J.A. Rostas, and P.J. Robinson. 2000. Phosphorylation of a new brain-specific septin, G-septin, by cGMP-dependent protein kinase. J Biol Chem. 275:10047-56.
    Yang, Z., U.S. Tulu, P. Wadsworth, and C.L. Rieder. 2007. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol. 17:973-80.
    Yao, X., A. Abrieu, Y. Zheng, K.F. Sullivan, and D.W. Cleveland. 2000. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol. 2:484-91.
    Yao, X., K.L. Anderson, and D.W. Cleveland. 1997. The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J Cell Biol. 139:435-47.
    Yen T.J., D.A. Compton, D. Wise, R.P. Zinkowski, B.R. Brinkley, W.C. Earnshaw, D.W. Cleveland. 1991. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 10:1245-54.
    Yucel, J.K., J.D. Marszalek, J.R. McIntosh, L.S. Goldstein, D.W. Cleveland, and A.V. Philp. 2000. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J Cell Biol. 150:1-11.
    Yudkovsky, Y., M. Shteinberg, T. Listovsky, M. Brandeis, and A. Hershko. 2000. Phosphorylation of Cdc20/fizzy negatively regulates the mammalian cyclosome/APC in the mitotic checkpoint. Biochem Biophys Res Commun. 271:299-304.
    Zhang, X.D., J. Goeres, H. Zhang, T.J. Yen, A.C. Porter, and M.J. Matunis. 2008. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell. 29:729-41.
    Brown,K.D.,K.W.Wood,and D.W.Cleveland.1996.The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A.J Cell Sci.109(Pt 5):961-9.
    Cheeseman,I.M.,J.S.Chappie,E.M.Wilson-Kubalek,and A.Desai.2006.The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.Cell.127:983-97.
    Espeut,J.,A.Gaussen,P.Bieling,V.Morin,S.Prieto,D.Fesquet,T.Surrey,and A.Abrieu.2008.Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E.Mol Cell.29:637-43.
    Feng,J.,H.Huang,and T.J.Yen.2006.CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay.Chromosoma.115:320-9.
    Liu,D.,X.Ding,J.Du,X.Cai,Y.Huang,T.Ward,A.Shaw,Y.Yang,R.Hu,C.Jin,and X.Yao.2007.Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment.J Biol Chem.282:21415-24.
    Mao,Y.,A.Abrieu,and D.W.Cleveland.2003.Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1.Cell.114:87-98.
    Mao,Y.,A.Desai,and D.W.Cleveland.2005.Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling.J Cell Biol.170:873-80.
    Spiliotis,E.T.,M.Kinoshita,and W.J.Nelson.2005.A mitotic septin scaffold required for Mammalian chromosome congression and segregation.Science.307:1781-5.
    Thrower,D.A.,M.A.Jordan,B.T.Schaar,T.J.Yen,and L.Wilson.1995.Mitotic HeLa cells contain a CENP-E-associated minus end-directed microtubule motor.Embo J.14:918-26.
    Wood,K.W.,R.Sakowicz,L.S.Goldstein,and D.W.Cleveland.1997.CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment.Cell.91:357-66.
    Yao,X.,A.Abrieu,Y.Zheng,K.F.Sullivan,and D.W.Cleveland.2000.CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint.Nat Cell Biol.2:484-91.
    Yao,X.,K.L.Anderson,and D.W.Cleveland.1997.The microtubule-dependent motor centromere-associated protein E(CENP-E)is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules.J Cell Biol.139:435-47.
    Yu,H.,and X.Yao.2008.Cyclin B1:conductor of mitotic symphony orchestra.Cell Res.18:218-20.
    Barral, Y., V. Mermall, M.S. Mooseker, and M. Snyder. 2000. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell. 5:841-51.
    Byers, B., and L. Goetsch. 1976. A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol. 69:717-21.
    Casamayor, A., and M. Snyder. 2003. Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol Cell Biol. 23:2762-77.
    Field, C.M., and D. Kellogg. 1999. Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol.9:387-94.
    Frazier, J.A., M.L. Wong, M.S. Longtine, J.R. Pringle, M. Mann, T.J. Mitchison, and C. Field. 1998. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J Cell Biol. 143:737-49.
    Gladfelter, A.S., and C. Montagna. 2007. Seeking truth on Monte Verita. Workshop on the molecular biology and biochemistry of septins and septin function. EMBO Rep. 8:1120-6.
    Hall, P.A., K. Jung, K.J. Hillan, and S.E. Russell. 2005. Expression profiling the human septin gene family. J Pathol. 206:269-78.
    Hanai, N., K. Nagata, A. Kawajiri, T. Shiromizu, N. Saitoh, Y. Hasegawa, S. Murakami, and M. Inagaki. 2004. Biochemical and cell biological characterization of a mammalian septin, Sept11.FEBS Lett. 568:83-8.
    Hartwell, L.H. 1971. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res. 69:265-76.
    Huang, Y.W., M.C. Surka, D. Reynaud, C. Pace-Asciak, and W.S. Trimble. 2006. GTP binding and hydrolysis kinetics of human septin 2. Febs J. 273:3248-60.
    Kartmann, B., and D. Roth. 2001. Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J Cell Sci. 114:839-44.
    Kinoshita, M., C.M. Field, M.L. Coughlin, A.F. Straight, and T.J. Mitchison. 2002. Self- and actin-templated assembly of Mammalian septins. Dev Cell. 3:791-802.
    Komatsu, K., W.J. Driscoll, Y.C. Koh, and C.A. Strott. 1994. A P-loop related motif (GxxGxxK) highly conserved in sulfotransferases is required for binding the activated sulfate donor. Biochem Biophys Res Commun. 204:1178-85.
    Longtine, M.S., D.J. DeMarini, M.L. Valencik, O.S. Al-Awar, H. Fares, C. De Virgilio, and J.R. Pringle. 1996. The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol. 8:106-19.
    Low, C, and I.G. Macara. 2006. Structural analysis of septin 2, 6, and 7 complexes. J Biol Chem. 281:30697-706.
    Nagata, K., A. Kawajiri, S. Matsui, M. Takagishi, T. Shiromizu, N. Saitoh, I. Izawa, T. Kiyono, T.J. Itoh, H. Hotani, and M. Inagaki. 2003. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem. 278:18538-43.
    Peterson, E.A., L.M. Kalikin, J.D. Steels, M.P. Estey, W.S. Trimble, and E.M. Petty. 2007. Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin. Mamm Genome. 18:796-807.
    Saraste, M., P.R. Sibbald, and A. Wittinghofer. 1990. The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 15:430-4.
    Sirajuddin, M., M. Farkasovsky, F. Hauer, D. Kuhlmann, I.G. Macara, M. Weyand, H. Stark, and A. Wittinghofer. 2007. Structural insight into filament formation by mammalian septins. Nature. 449:311-5.
    Spiliotis, E.T., M. Kinoshita, and W.J. Nelson. 2005. A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science. 307:1781-5.
    Spiliotis, E.T., and W.J. Nelson. 2006. Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci. 119:4-10.
    Tada, T., A. Simonetta, M. Batterton, M. Kinoshita, D. Edbauer, and M. Sheng. 2007. Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol. 17:1752-8.
    Thrower, D.A., M.A. Jordan, B.T. Schaar, T.J. Yen, and L. Wilson. 1995. Mitotic HeLa cells contain a CENP-E-associated minus end-directed microtubule motor. Embo J. 14:918-26.
    Versele, M., and J. Thorner. 2004. Septin collar formation in budding yeast requires GTP binding and direct phosphorylation by the PAK, Cla4. J Cell Biol. 164:701-15.
    Xie, Y., J.P. Vessey, A. Konecna, R. Dahm, P. Macchi, and M.A. Kiebler. 2007. The GTP-binding protein Septin 7 is critical for dendrite branching and dendritic-spine morphology. Curr Biol. 17:1746-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700