Clap式冰刀弯道蹬冰动作技术原理的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Clap式冰刀的使用开创了速滑运动一个新的纪元。自第18届冬奥会(1998)至今所有世界记录均被刷新就是最好的验证。尽管高海拔(盐湖城1227m)及室内冰场提供了创造优异比赛成绩的外部条件,但是,Clap式冰刀的益处不容质疑。可以说新式冰刀的问世对传统蹬冰动作技术原理及其训练方法提出了新的挑战,引起了人们的高度重视。虽然从1997年开始Clap式冰刀被引入我国并且公认为:Clap式冰刀与传统冰刀相比具有延长蹬冰作用时间;提高踝关节的灵活性;增大下肢关节蹬伸幅度;保持冰刀全刃与冰面接触和原有的滑行方向以及蹬冰方向,使之在踝关节充分跖屈的情况下结束蹬冰动作等作用;但也存在着新技术是:向侧后蹬冰还是向后蹬冰;蹬冰最后阶段的伸膝、踝动作是自然动作还是主动动作的结果;蹬冰过程中的重心位移方向仅是横向(法向)移动还是纵(切向)横(法向)兼有等重要技术环节上的认识分歧。为了有效阐述Clap式冰刀的蹬冰机制,本研究采用运动生物力学方法,通过对影响速度滑冰滑行速度的技术要素分析,确立正确的弯道蹬冰技术概念,阐明动作技术的关键环节,明确速滑蹬冰动作加速理论的内涵,建立优秀运动员的弯道技术参数体系,进而揭示Clap式冰刀弯道蹬冰动作技术的生物力学原理。
     本研究结论如下:
     1 Clap式冰刀弯道蹬冰动作技术原理
     Clap式冰刀弯道蹬冰动作技术原理主要体现在两个方面:一是通过提高踝关节的灵活性来改变下肢各关节的发力性质;二是通过冰刀结构的改变来揭示速滑蹬冰技术动作加速理论的适用条件。核心是提高踝关节的灵活性。具体表现为:
     (1)Clap式冰刀通过“铰链”连接结构,提高了踝关节的自由度,改变了传统冰刀在蹬冰过程中主要发挥髋、膝关节的力量,而难以利用踝关节力量的弊端,在增加做功环节的同时又加大了膝关节的工作范围。
     (2)通过提高踝关节的灵活性来改变原有下肢各关节发力特征,最终提高身体滑行速度。
     (3)踝关节运动幅度的提高改变了原有蹬冰过程中重心主要做横向(法向)移动而难以纵向(切向)前移的弊端,使重心沿切线方向的主动性前移成为可能。
     2速滑蹬冰加速理论的适用条件
     本次研究认为:以往提出的加速理论,在反映高水平运动员加速能力时是有条件的;而且,单纯从获得速度改变量大小的角度来推断蹬冰加速的机制,并不应是使重心加速的唯一条件;重心前移程度(切向)与合理的侧蹬冰时机相结合是获得最佳加速度的前提,它反映了支点与重心间力的相互作用关系和蹬冰动作的加速条件。正是Clap式冰刀的这种特有结构为重心前移提供了可能,体现出现代速滑蹬冰加速理念在实践中的合理运用。
     3动态支撑方式中频幅组合的模式特征
     本研究首次在周期性竞速项目的步幅、步频与步速关系研究中提出区分定点支撑方式与动态支撑方式的概念。通过对不同滑行速度中频幅组合与步速之间的关系分析,比较了动态支撑方式与定点支撑方式中的差异在频幅组合上所表现出的异同性。结果发现:从低速向高速滑行过程中频幅组合在步频与步速关系中,动态支撑方式遵循定点支撑方式的变化规律,满足步频对步速的曲线凹面向上的函数关系,两者具有一致性;但在步幅与步速关系中,动态支撑方式却与定点支撑方式相反。定点支撑方式表现为随着速度的提高步幅也增大(在极限速度条件下或保持不变或略有减小);动态支撑方式表现为随着速度的提高步幅减小的变化规律。这一结果揭示出:支撑方式(动态支撑和定点支撑)不同时,在步幅与步速之间的制约关系中,随着速度的提高步幅也增大的规律是有条件的,应根据动、定点支撑方式的性质加以区别对待。
In the international world of speed skating, the use of Clap skates has ushered a new era. The fact that all of the world records before 18th Olympic Winter Games were beaked is the best evidence. Although high altitude (the Salt Lake city--1 227m) and the indoor ice rink provide the external conditions for the excellent result of the competition, the benefit of Clap skates should not be doubted. The appearance of the new type of skates has challenged the traditional skill theory of push--off on the ice and the traditional training method, which has attracted people’s attention. Since the new type of skates has been introduced into China and is thought to be: compared to the traditional skates, the Clap ice-skates has prolonged the time of push--off on the ice; it has elevated the flexibility of the ankles; it has increased the width of push--off and extending of the lower limbs; it keep the blade of the skates in touch with the ice surface and the original skating direction parallel with the direction of push--off on the ice, thus it finishes the action of jigging on the ice under the conditions that the ankle is fully bent; however, there still exists the new technique: push--off towards the rear of flank or directly backwards; the bent of the knees and the movement of the ankle in the last phase is the natural action or active action; the translocation of the center of gravity is only the crosswise movement or combined with the longitudinal movement. The recognition of many important skills is still under dispute. In order to explain the mechanism of push--off on the ice of the Clap ice-skates clearly, this research applies the method of Applied Mechanics in Biomechanics. Through the technical element analysis that influences the speed of skating, this article tries to establish the right technical concept of push--off on the ice on the curve, explain the key link of the movement skills, make clear the content of the accelerating theory of the action of push--off on the ice and establish excellent athlete’s parameter system of the skills of skating on the curve. Furthermore, it tries to uncover the biomechanical principle of push--off on the curve of the Clap ice-skates.
     The result of this research is as follows:
     I. The technical principle of push--off on the ice curve of the Clap ice skates.
     The connotation of the technical principle of push--off on the ice curve of the Clap ice skates embodies in two aspects: First, elevate the flexibility of the ankle to change the nature of the strength-exerting of the joints of the lower limbs; Second, reveal the applicable conditions of the accelerating theory of push--off on the ice of speed skating through the change of the structure of the skates. The core is to elevate the flexibility of the ankle. Concrete details are:
     (1) The Clap skates elevate the flexibility through the link structure of the“hinge”, thus change the malpractice of traditional push--off process which mainly depends on the power of the hipbone and the knee, and thus obstruct the use of the power of ankle. The Clap skates add the exerting strength and extend the working scope of the ankle.
     (2) Through elevating the flexibility of the ankle, change the strength-exerting character of the joints of the lower limbs in order to accelerate the body skate speed.
     (3) The elevation of the flexibility of the ankle avoids the malpractice that the gravity center during the process of push--off on the ice mainly goes crosswise and is difficult to shift longitudinally and makes it possible that the gravity center actively moves forward along the direction of the tangent.
     II. The applicable conditions of the accelerating theory of push--off of speed skating.
     The research shows that the former accelerating theory is conditional when reflecting the accelerating ability of the high-level athletes. Besides, the amount of accelerating the speed to infer the accelerating mechanism of push--off should not be the only condition to accelerate the gravity center. The scope of the gravity center moving forward combined with the suitable opportunity to push--off on the ice side wards is the premise of acquiring the optimum speed. It reflects the interactive relationship between the fulcrum and the gravity center and the accelerating condition of the push--off. It is the Clap ice-skates’unique structure that makes the gravity center moving forwards possible. It embodies the reasonable application of the accelerating theory of ice-jigging of modern speed skating in the practice.
     III. The model characteristics of the frequency and width combination of motional supporting pattern
     This research, for the first time, put forwards the concept distinction between the fixed point supporting pattern and the motional supporting pattern in the study of the pace width, pace frequency, pace speed of the cyclical speed competition. Through the analysis of the relationship between the combination of frequency and width and the pace speed in the different skating speed, we find out the similarities and differences in the aspect of frequency and width combination by comparing the motional supporting pattern with the fixed point supporting pattern. The result shows: frequency combines with width in the relationship between pace frequency and pace speed in the process of speed skating from low-speed to high-speed; the motional supporting pattern observe the changing rules of the fixed point supporting pattern, fit in with the function relation of pace frequency’s the concavity upward curve to pace speed, and the two entail unity; but in the relationship between the pace frequency and the pace speed, the motional supporting pattern and the fixed point supporting pattern contradict. The fixed point supporting pattern shows that the pace width increases alongside with the acceleration of the speed. (Under the condition of the maximum speed, it remains unchanged or a little reduced); the motional supporting speed shows that the pace width reduces alongside with the acceleration of the speed. The result reveals: when the supporting pattern is different (the motional supporting and fixed point supporting), in the interactive relations between pace width and pace speed, the pace width increasing with the acceleration of the speed is conditional. So we should distinct the motional supporting pattern with the fixed point supporting pattern.
引文
[1]全国体育院校通用教材. 《冰雪运动》[M]. 北京:人民体育出版社,2002:5
    [2]刘敏庆 编著. 《速度滑冰》[M]. 北京:人民体育出版社,1993:1
    [3](美)迪安妮·霍拉姆,赵荫桐等译.《速度滑冰全书》[M].哈尔滨:黑龙江省体育科学研究所,1985:1
    [4]邱淼 主编. 《滑冰》[M]. 北京:高等教育出版社,1987:4
    [5]寄金義紀. スケ—トの總論Ⅰ[M]. 東京:新体育,1979,49(2):72~73
    [6]寄金義紀. スケ—ト競技の概要Ⅰ[M].現代体育スポ—ツ大系 16,講談社,1986:182~186
    [7]Gemser,H. Handboek wedstrijdschaatsen, Ingen Schenau(Eds),Uitgeverij eisma leeuwarden,1987:1~6
    [8]韦迪 主编. 《速度滑冰》[M].沈阳:辽宁教育出版社,1995:2
    [9](苏)顿斯柯依,扎齐奥尔斯基著,吴忠贯译. 《生物力学》[M].北京:人民体育出版社,1982:5
    [10]苗敏,李梅,李淑清等. 从我国速滑技术的不断完善看成绩的提高[J]. 冰雪运动,1997(1):7~9
    [11]中国体育教练员岗位培训教材. 《速滑运动》[M]. 北京:人民体育出版社,1998:328~333
    [12]王连辉,王月英. 速度滑冰优秀选手蹬冰技术浅析[J]. 冰雪运动,1997(4):4~7
    [13]张铁峰,汤永春. 论提高速滑 1000 米成绩的主要途径[J]. 冰雪运动,1994(3):18~19
    [14]于海燕. 从第 18 届冬奥委会看我国速滑项目的发展[J]. 冰雪运动,1998(2)1~6,8
    [15]南相华. 我国速度滑冰运动技术水平下降的原因[J]. 冰雪运动,2002(2):12~13
    [16]张立军. 从第 19 届奥运会看中国速度滑冰现状[J]. 冰雪运动,2002(2):14
    [17]谢天恩,王宇鹏. 十九届冬奥委会速滑比赛赛事分析[J]. 冰雪运动,2002(3):1~3
    [18]吉岡 伸彥. スケ—トの研究史——スケ—トの研究に┌歷史┘はあるのか[J]. 体育の科学,1988,38(1):14~21
    [19]Di Prampero,P.E,et al. Energy cost of speed skating and efficiency of work against air resistanci[J].Appl. Physiol,1976,40(4):584~591
    [20]Kuhlow,A. Analysis of competitors in world speed skating championship. In Nelson and Morehouse(Eds.) BiomechanⅣ.University Park Press,Baltimore,1974:258~263
    [21]Kuhlow,A. Running economy in long-distance speed skating . In Komi(Ed.) Biomechanics V-B. University Park Press,Baltimore,1976:291~298
    [22]de Boer,R.W,et al. Characteristic stroke mechanics of elite and trained male speed skaters[J]. Sport Biomechanics,1986(2):175~185
    [23]de Boer,R.W,et al. Biomechanical aspects of push-off techniques in speed skating the curves[J]. Sport Biomechanics,1987a(3):69~79
    [24]Koning,J.J, et al. Push-off force in speed skating[J].Sport Biomechanics,1987(3):103~109
    [25]Van Ingen Schenau,G.J, Bakker,K. A biomechanical model of speed skating[J].Human Movement Studies,1980(6):1~18
    [26]Van Ingen Schenau,G.J, Bakker,K. A mathematical model of speed skating. In Morecki,et al.(Eds.) Biomechanics VⅡ-B, Baltimore, University Park Press,1981:492~497
    [27]Van Ingen Schenau,G.J,et al. Some technical, physiological and anthropometrical aspects of speed skating[J].Appl . Physiol, 1983,50:343~354
    [28]Van Ingen Schenau,G.J, Groot,G. Differences in oxygen consumption and external power between male and female speed skaters during supermaximal cycling[J]. Appl. Physiol, 1983,51:337~345
    [29]Van Ingen Schenau,G.J, Groot,G, de Boer,R.W. The control of speed in elite female speed skaters[J].Biomechanics,1985,18(2):91~96
    [30]Van Ingen Schenau,G,J. A power balance applied to speed skating. Amsterdam,Rodopi,1981
    [31]de Boer,R.W. Training and technique in speed skating. Amsterdam,Free Universty Press,1986
    [32]Koning, J.J.de, de Groot,G, Van Ingen Schenau, G.J. Mechanical aspects of the sprint start in Olympic speed skating.[J]. Sport Biomechanics.1989a(5):151~168.
    [33]Koning, J.J.de, de Groot,G, Van Ingen Schenau G.J. Muscle coordination in speed skating.[J].Biomechanics XI-B,1989b:878~882.
    [34]Koning, J.J.de, de Groot,G, Van Ingen Schenau,G.J: Coordination of leg muscles during speed skating.[J]. Biomechanics,1991(25):565~571.
    [35]Foster,C, et al. Training responses of speed skaters during a competitive season. Research Quarterly for Exercise and Sport, 1982,53(3):243~246
    [36]Maksud,M.G, et al. Maximal VO2,ventilation and heart rate of Olympic speed skating candidates[J]. Sports Med and Physical Fitness, 1982,22(2):217~223
    [37]Pollock,M.L, et al. Body composition of Olympic speed skating candidates. Research Quarterly for Exercise and Sport, 1983,54(2):150~155
    [38]Gagnon,M, et al. Development and validation of a method for determining tridimensional angular displacements with special applications to ice hockey motions. Research Quarterly for Exercise and Sport, 1983,54(2):136~143
    [39]Lamontagne,M, et al. Development validation et application de systemes depatins dynamometriques. Canadian[J].Sport sci,1983,8(3):169~179
    [40]根本 勇. トレ--ニングが筋出力とその持续力とへおよぼす影响[J].体育の科学,1984,(3):210~219
    [41]根本 勇,吉冈伸彦. 速く滑る--スピ—ドスケ—ト[J].Sports Sci,1983(2):921~934
    [42]吉冈伸彦. 身体重心の位置变化からみたスピ—ドスケ—トのストレ—ト滑走[J]. 体育の科学,1984,(6):913~917
    [43]结城匡启,阿江通良,浅见高明. スピ—ドスケ—ト 500m レ—スの竞技成绩に影响を及ぼす技术的要因[J].トレ—ニング科学, 1991(1):21~30.
    [44]结程匡启,阿江通良,藤井范久. スピ—ドスケ—ト滑走中のブレ—ド反力[M]. 东京大学出版会,1996:41~51.
    [45]结城匡启,阿江通良,浅见高明. スピ—ドスケ—トにおける加速理论の再检讨[M]. 东京大学出版会,1992:111~121.
    [46]杨树人,高延军. 克莱普(Clap Skate)新式冰刀的结构与性能[J]. 哈尔滨体育学院学报, 2002,20(3):39~40,42
    [47]蒙猛,颜彤丹,宋琳等. 速滑冰刀革新后对速滑成绩的影响[J]. 哈尔滨体育学院学报,1999,17(3):26~31
    [48]李贵阳,王铁军,贾贵芹等. 速滑直道滑行蹬冰技术分析[J]. 中国体育科技,1999,35:20~21
    [49]冯维斗,董世平,曾 伟. 我国优秀速滑运动员直道滑行技术的生物力学分析[J]. 冰雪运动,2001(1):13~15
    [50]陈民盛,冯维斗,曾 伟. 从蹬冰腿关节角度的变化看两种蹬冰技术的差异性[J]. 冰雪运动,2001(2):1~2
    [51]严 力,刘文娟,刘贵宝等. Wotherspoon 与薛瑞红直道支撑腿技术特点的比较研究[J]. 冰雪运动,2000(2):10~12
    [52]杨树人,宋琳,陈文红等. 新式速滑冰刀性能及其新技术特征[J]. 哈尔滨体育学院学报,1999,17(3):21~25
    [53]李 寅,孙建华. 由蹬冰技术浅谈克莱普新式冰刀的优点[J]. 冰雪运动,1998(2):56~58
    [54]孙建华,李 寅,孟 蕾等. 普通冰刀与新式冰刀直道滑行时间的比较[J]. 中国体育科技,1999,35:22~25
    [55]周殿学,陈民盛,曾 伟. 直道滑行技术的时间特征[J]. 冰雪运动,2001(1):11~12
    [56]贾桂芹,李晓红,刘波等. 新式冰鞋对蹬冰力量的影响[J]. 中国体育科技,1999,35:24~25
    [57]赵荫桐,刘贵保,孙若渔. 国内外优秀女子速滑短距离技战术分析[J].冰雪运动,1999(4):3~10
    [58]对馬勝年. 冰の摩擦融解. 低温科学[J]. 物理篇,1969(27):17~30.
    [59]对馬勝年. 冰の摩擦机构にっぃて[J]. 润滑,1975(5):287~294.
    [60]对馬勝年. 冰盘の上をスケ—トはなぜ滑るか[J].,科学と实验.1980(12):45~49.
    [61]对馬勝年. 冰质?雪质と滑走[J]. 冷冻,1986(61):1239~1247.
    [62]对馬勝年. 雪冰のトライボロジ— [J]. 润滑,1988(33):274~279.
    [63]对馬勝年,松浦顺一. スケ—トの摩擦特性[J]. 富山县地学地理学研究论集,1989a(9):55~60.
    [64]对馬勝年. 冰表面の滑り[J]. 表面科学,1989b(10):941~943.
    [65]小林祯作,北原武道. スケ—トリンクの冰质调查. 低温科学[J] 物理篇.,1968(26):298~313.
    [66]小林祯作,北原武道,河村俊行. スケ—トリンクの冰质调查Ⅱ. 低温科学[J] .物理篇,1969(27): 267~287.
    [67]小林祯作,北原武道. テストスケ—トによるリンク冰の动摩擦系数の测定. 低温科学[J] .物理篇,1970(28): 243~259.
    [68]小林祯作. スケ—トリンクの冰质调查Ⅳ. 低温科学[J]. 物理篇,1971(29): 267~269.
    [69]Jobse Hanse, Ruud schuurhof, Ferenc cserep, A.W.S.,et al. Measurement of push-off force and ice frictionduring speed skating[J].Sport Biomechanics.1990(6):92~100.
    [70]Koning, J.J.de, de Groot, G, Van Ingen Schenau G.J. Ice friction during speed skating[J]. Biomechanics.1992(25):565~571.
    [71]Thoman. described in Astrand, P.O.,and K.Rodahl,Textbook of Work Physiology,McGraw Hill,New York, 1970
    [72]Astrand, Per-Olof.(浅野胜已译) 运动生理学.[M]. 大修馆书店.,东京.1976:415~417.
    [73]di-Prampero,P.E, Cortilli,G, Mognoni,P., et al. Energy cost of speed skating and efficiency of work against air resistance[J]. Applied Physiotogy,1976,40:584~591
    [74]Van Ingen Schenau,G.J. The influence of air friction in speed skating.[J].Biomechanics.1982.15:449~458.
    [75]柳 燕. 速度滑冰空气阻力的实验研究[J]. 哈尔滨体育学院学报,2000,18(2):108~112
    [76]Marino,G.W. Multiple regression models of the mechanics of the acceleration phase of ice skating. Doctoral thesis, University of Illinois.(1975).
    [77]Marino,G.W, Ronald G.Weese. A kinematic analysis of tie ice skating stride. In: Science in skiing, skating and hockey. Terauds J.and Gros H.J.(Ed.). Academic Publishers Inc. Del Mar.1979a:65~74.
    [78]Marino, G.W. Acceleration-time relationships in an ice skating start.[J].Research Quarterly.1979b(3):55~59.
    [79]Marino,G.W. Selected mechanical factors associated with acceleration in ice skating.[J].1983(3):234~238.
    [80]Van Ingen Schenau,G.J, de Groot,G: On the origin of differences in performance level between elite male and female speed skaters.[J].Human Movement Sci.1983(2):151~159.
    [81]de Boer,R.W., Paul Schermerhorn, de Groot,G,et al. Characteristic stroke mechanics of elite and trained male speed sksyrtd. [J]. Sport Biomechanics.1986(2):175~185.
    [82]de Boer,R.W.,. Ettema,G.J.C,Gorkum, H.van,et al. A geometrical of speed skating the curves.[J]. Biomechanics.1987b(21):445~450.
    [83]Groot,G.de, de Boer,R.W.,Van Ingen Schenau G.J. Power output during cycling and speed skating.[J]. Biomechanics IX—B. Human Kinetics, Champaign, IL.1985:555~559.
    [84]de Boer,R.W., Cabri,J, Vaes,W,et al. Moments of force, power, and muscle coordination in speed skating.[J]. Sports Med.1987c(8):371~378.
    [85]Van Ingen Schenau,G,J. A power balance applied to speed skating. Academisch proefschrift, Doctoral thesis, Vrije Universiteit te Amsterdam.1981
    [86]de Boer, R.W., Kim L. Nilsen. The gliding and push-off technique of male and female speed skaters[J]. Sport Biomechanics.1989(5):119~134.
    [87]朝比奈一男,浅野胜己,草野胜彦等. スク--ル滑走时の足压变化[J].札幌オリンピツクスポ--ツ科学研究报告,日本体育协会,1972:226~227
    [88]真岛英信. 滑走技术の分析[J].札幌オリンピツクスポ--ツ科学研究报告,日本体育协会,1972:201~208
    [89]玉井いずみ. スケ--ト滑走中の足压测定の试み[J].体育の科学,1983,33(12):904~908
    [90]王小虹,陈民盛,程国庆. 跟踪测力系统的研制[J]. 速度滑冰运动生物力学.国家体委科教司,1990:77~79
    [91]王小虹,程国庆. 速度滑冰 F—t 曲线分析[J]. 速度滑冰运动生物力学.国家体委科教司,1990:58~66
    [92]张术学,孙建华,曲霞等. 速度滑冰实效性动力特点分析[J].冰雪运动,1995(2):19~21
    [93]袁庆成,佟永典. 速滑模拟直道蹬冰动作动力特点的实验研究[J].冰雪运动,1990(2):7~13,24
    [94]张云,陈民盛,覃晓红等. 速滑蹬冰动作动态力的测试研究[J]. 中国体育科技,2003,39(10):23~25
    [95]陈民盛,覃晓红.从对蹬冰加速理论的质疑点看克莱普冰刀的设计构想[J]. 天津体育学院学报,2003,18(2):30~32
    [96]陈民盛,李贵阳,程湘南.对速滑蹬冰加速理论的质疑与思考[J].北京体育大学学报,2004,27(2)276~278
    [97]陈民盛,覃晓红,刘波.关于速滑蹬冰中伸膝压踝技术的研究[J]. 体育科学,2002,22(6):124~126,139
    [98]Van Ingen Schenau,G.J, de Boer R.W, de Groot,G. On the technique of speed skating[J].Sport Biomechanics.1987(3):419~431.
    [99]杨树人,南相华 编著. 速度滑冰技术与训练[M].哈尔滨:黑龙江科学技术出版社,2002:4
    [100]陈民盛,张少伟,覃晓红. 关于速滑直道蹬冰中重心位置的动态分析[J]. 冰雪运动,2002,(2):6~7
    [101]結城匡啓. 長野ォリピツクのメダル獲得に向けたバイオメカニクス的サポ--ト活動:日本スピ--ドケ--トチ--ムのスラツプスケ--ト對策[J]. 体育学研究,1999,44:33~41.
    [102]刘贵宝. Clap 冰刀铰链点定位和冰鞋跖屈对能量输出影响的研究[J]. 冰雪运动,2002,(2):1~4
    [103]Allinger ,T L, Motl R W. Experimental vertical jump model uses to eveluate the pivot location in Klap speed skates. Joumal of Applied Biomechanics,2000,(16)142~156.
    [104]Houdijk H, de Koning J J, de Groot G, et al. Push off mechanics in speed skating with conventional skates and Klap skates. Medicine and Science in Spots and Ecercise,2000,(32):635~641.
    [105]严力,刘贵宝,赵荫桐. 荷兰速滑运动的现状与特点----荷兰速滑专家艾迪?沃黑因讲学连载之一[J]. 冰雪运动,1999,(3):14~16.
    [106]Hawkins,D, Hull,M.L. A method for determining lower extremity muscle-tendon lengths during flexion movements[J]. Biomechanics,1990,(23):487~494.
    [107]陈民盛,张云,覃晓红. Clap 冰刀蹬冰技术动作原理的探讨[J]. 中国体育科技,2003,39(10):26~28
    [108]Mueller,M. Kinematics of ice skating at different velocities[J].Research Quarterly .1977,(1):93~97.
    [109]Doctorevic,A.M. Zur Bestimmung von kriterien einer rationellen bewegungstechnik im eisschnellauf[J].Leistungssport, Information zur Training.1975,(5):42~46.
    [110]Marino,G.W, Ronald G. Weese. A kinematic analysis of tie ice skating stride. In: Science in skiing, skatingand hockey. Terauds J.and Gros H.J.(Ed.). Academic Publishers Inc. Del Mar.1979a:65~74.
    [111]Marino, G.W. Acceleration-time relationships in an ice skating start[J].Research Quarterly.1979b,(3):55~59.
    [112]Delnoij,R, de Groot, G, de Boer, R.W. Refinements on the determination of power output during speed skating[J].Biomechanics X-B,1986:691~694.
    [113]陈民盛,程国庆. 速度滑冰直道滑行技术----滑跑速度的生物力学[J]. 速度滑冰运动生物力学.国家体委科教司,1990:20~28.
    [114]McCaw, S.T., Hoshizaki, Y.B. A kinematic comparison of novice, intermediate, and elite ice skaters[J]. Biomechanics X-B. 1987:637~642.
    [115]陈民盛,程国庆. 速滑直道滑行技术-----滑跑时间的生物力学[J]. 速度滑冰运动生物力学.国家体委科教司,1990:15~19.
    [116]Joly,J. The phenomena of skating and professor[J]. Thomson’s thermodynamic relation. Sci. Proc. Roy. Dublin Soc.1887(5):453~454.
    [117]Bowden,(曾田胜己译). 固体の摩擦と润滑[M]. 丸善.东京,1980:58~65.
    [118]Evans,D.C.B, Nye, J.F, Cheeseman, K.J. The kinetic friction of ice. Proc.Roy. Soc. Lond, A,1976,347:493~512.
    [119]北原武道,河村俊行, 小林祯作. 冰の硬度の测定. 低温科学[J]. 物理篇,1969(28):289~293.
    [120]北原武道,河村俊行, 小林祯作. 冰の硬度の测定.温科学[J]. 物理篇,1970(28):81~95.
    [121]ソコロフ,M. P.(河村泰男譯). アイススケ—ト[M]. 東京.理論社,1957.
    [122]ペトロフ,ニコライ Ⅰ.(岡本正已、小泉健司譯). 最新スケ—ト技術[M].ベ—スボ—ルマガジン社,1962.
    [123]佟永典,李秋萍,许晓娜等. 速滑运动员个体蹬冰爆发力发展与训练关系的实验研究[J]. 冰雪运动,1997(3):14~18.
    [124]佟永典,李秋萍,许晓娜等. 关于速滑运动员伸膝肌群动力特性的实验研究[J]. 冰雪运动, 1997(4):1~4.
    [125]袁庆成. 速滑运动生物力学选讲[C]. 沈阳体育学院,1990.
    [126]杨树人. 速滑运动史上新的里程碑[J]. 哈尔滨体育学院学报,2003,21(1):1~3
    [127]van Ingen schenau,G.J, de Groot,G, Scheurs,A.W.,et al. A new skate allowing powerful plantar flexions improves.performance[J].Sports.Exerc.1996,28:531~535.
    [128]严波涛. 一种程序化运动技术诊断和评定指标确定方法的探讨[J]. 体育科学,2001,21(6)82~87
    [129]Best,R.K, Bartkett,R.M, Morriss,C.J. A three-dimensional analysis of javelin throwing technique [J]. Journal of Sports Sciences, 1993,11:315~328
    [130]James G, H. Cycle Rate,Length,and Speed of Progression in Human Locomotion.Journal of Applied Biomechanics ,2002,18,257-270.
    [131]刘 卉.上肢鞭打动作技术原理的生物力学研究[C].北京体育大学博士学位论文.2002.
    [132]时学黄,郑秀瑗,冯莲丽等编译. 运动生物力学译文集Ⅰ[C]. 北京:清华大学出版社,1985,2:40~42
    [133]时学黄,郑秀瑗,冯莲丽等编译. 运动生物力学译文集Ⅰ[C]. 北京:清华大学出版社,1985,2:84~87
    [134]虞玉华,郭俊人,卢伟华等. 九运会男子百米途中跑技术分析[J].天津体育学院学报,2003,18(2):35~37
    [135]Ito,A, Komi,P.v, Sjodin,B.,et al. Mechanical efficiency of positive work in running at different speeds[J]. Medicine and Science in Sports and Exercise. 1983,15:299~308
    [136](美)扎齐奥尔斯基 主编. 运动生物力学----运动成绩的提高与运动损伤的预防[M].北京:人民体育出版社,2004,7:165~189
    [137] Van Ingen schenau,G.J. The influence of air friction in speed skating[J].Biomech.1982,15:449—458
    [138]Houdijk H, Koning JJ, Van Ingen schenau GJ. Klapskates versus conventional skates: kinematical differences. Med. Sci. Sports Exerc. 1998,30:s29
    [139]陈民盛,张 云,邹晓峰. 优秀速滑运动员弯道蹬冰技术动作结构的模式特征研究[J].中国体育科技,2004,40(4):31~35,41
    [140]陈民盛,张强,覃晓红. Clap 式冰刀蹬冰动作特点对速滑专项力量训练理念的启示[J]. 天津体育学院学报,2004,19(2):15~17
    [141]Van Ingen schenau,G.J, Koning JJ, Houdijk H. World records on klapskates wereldrecords op klapschaatsen[J]. Natuur & Techniek. 1998,66:10—21
    [142]Houdijk H, ,De Koning, J.J, de Groot G, et al. The effect of klapskate hinge position on the kinematics of speed skating[J]. Medicine and Science in Sports and Exercise. 1999,31:s147
    [143]Houdijk H, de Koning JJ, Bobbert MF, et al. How klapskate hinge position affects push off mechanics in speed skating[J]. Journal of Applied Biomechanics. 2002,18:292—305
    [144]陈民盛,邹晓峰,覃晓红. Clap 式冰刀技术下肢关节蹬伸机制的探讨[J]. 体育科学(七科大论文集),2004:136~138
    [145]杨锡让 主编. 《实用运动生理学》[M]. 北京:北京体育大学出版社,1998:16
    [146]杨锡让,傅浩坚 主编. 《运动生理学进展》[M]. 北京:北京体育大学出版社,2000:292—293
    [147](美)乔治·迪特曼等著. 《提高速度的秘诀》[M]. 长沙:湖南文艺出版社,2002:102—106
    [148]王保成,周志雄. 短跑技术专门练习的创新与教学训练效果的实验比较研究[J]. 体育科学,2001,21(4)46—49
    [149]Ardigao,L.P., Lafortuna,C., Minetti,A.E.,et al. Metabolic and mechanical aspecrs of foot Ianding type, forefoot and rearfoot strike,in human running.Acta Physiologica Scandinavica ,1995,155,17-22.
    [150]闫松华,闫虹,金季春. 两种速度训练方法新探——弹簧式反弹练习和超速训练[J]. 北京体育大学学报,2004,27(12):1639~1641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700