全铝结构船长甲板的CO_2激光焊接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以全铝结构高速船长甲板为主要应用背景,以中厚度船用铝合金长焊缝焊接为主要研究对象,针对目前全铝结构船舶长甲板焊接技术存在的诸多问题,在分析船舶工业中CO_2激光加工系统应用特点及对CO_2激光长焊缝焊接光学系统参数进行计算的基础上,利用SlabCO_2激光器的飞行光学加工系统对4.0mm和6.0mm的5083铝合金及6.0mm的6061铝合金进行了激光焊接基础工艺和长焊缝焊接工艺的研究,并对两种船用铝合金的CO_2激光焊接接头性能进行了综合评定,探讨了CO_2激光焊接技术在全铝结构船舶制造工业中应用的可行性问题。采用高速摄像装置和光谱分析技术对铝合金CO_2激光焊接光致等离子体行为进行了研究。
     5083铝合金由于易挥发性元素Mg含量大,实现深熔焊的阈值功率要低于6061铝合金;内径为5.0mm的辅助气体喷嘴既具有良好的层流干伸长度,又能提供足够的辅助气体以稀释等离子体,且对于5083铝合金采用_20l/min氦气和_2l/min氩气的混合气体能够获得良好的焊缝表面,对于6061铝合金应采用30l/min氦气和_2l/min氩气的混合气体作为辅助气体。激光功率、焊接速度、送丝速度的合理匹配对焊缝成形至关重要。对于三种规格材料,采用激光扫描焊接和激光填丝焊接的方法,实现了船用铝合金中厚板长焊缝的CO_2激光焊接,获得了成形美观且无明显外观缺陷的焊缝,得到了八套焊接工艺方案。
     根据全铝结构船舶长甲板焊接光学系统的设计要求,利用高斯光束传输和聚焦的基本理论,分析计算了激光器光束质量、聚焦镜焦距以及材料焊接所要求的聚焦光斑最大值的设定对飞行光束光学参数的影响。对比了扩散冷却板条DC035CO_2激光器和快速轴流RS_200CO_2激光器用于飞行光学加工系统的差别。理论上两种CO_2激光器都可以用于实现大范围激光加工的飞行光学系统,但从实际系统的实现而言,光束质量较好的DC035CO_2激光器比光束质量较差的RS200CO_2激光器更加适用于船用铝合金长焊缝焊接的飞行光学系统。
     船用铝合金厚度越小,实现长焊缝全熔透焊接所允许的聚焦光束束腰半径变化量ωivar和聚焦光束束腰位置变化量范围越大。在实验条件下,对于4mm厚的5083铝合金实现全熔透焊且焊缝表面成形较好,要求sivarωivar小于30μm,小于4.0mm;对于6mm厚的5083铝合金实现全熔透焊且焊缝表面成形较好,要求sivarωivar小于_20μm,小于3.0mm;对于6mm厚的6061铝合金实现全熔透焊且焊缝表面成形较好,要求sivarωivar小于15μm,小于_2.0mm。对于I型坡口,激光扫描焊和填丝焊所允许的最大间隙分别为0.5mm和0.7mm。由于铝合金长甲板激光焊接对试样的坡口准备和装夹精度要求甚高,在实际生产过程中目前的坡口加工方式和工装夹具,无法满足激光焊接的要求,因此成为全铝结构船长甲板激光焊接技术实际应用的最大障碍。
     5083铝合金激光填丝焊接头和双面焊接头拉伸强度可达到母材强度的95%,而屈服强度基本与母材的屈服强度持平,拉伸断口位于熔合线附近;6061铝合金激光填丝焊接头和双面焊接头拉伸强度可达到母材强度的82%,而屈服强度低于母材,拉伸断口沿焊缝45°对角线开裂。5083铝合金激光焊接接头经150°三点弯曲试验而不开裂,6061铝合金激光焊接接头弯曲90°沿熔合线发生开裂。5083铝合金激光焊缝冲击韧性值高于母材,而6061铝合金激光焊缝冲击韧性值低于母材。
     当激光功率超过材料深熔焊接阈值功率后,激光功率对光致等离子体温度的影响不大;激光聚焦光斑位于工件表面附近时,光致等离子体温度较大离焦情况下低;焊接速度对光致等离子体温度的影响表现为倒“U”形曲线规律,即在焊接速度较高和较低情况下,光致等离子体温度均为下降趋势;He气对光致等离子体有良好的冷却效果,对于一定内径的辅助气体喷嘴,等离子体温度随辅助气体流量呈现先增加后减小的趋势;在He气中加入Ar气会导致光致等离子体温度升高,且升高幅度随加入Ar气含量的增加而增加。光致等离子体温度位于6000±200K温度范围内时,焊缝表面成形质量普遍较好;工件表面的等离子体对焊缝的熔深没有贡献,对焊缝熔宽的影响也不明显。
     对全铝结构船长甲板的激光焊接技术研究,具有重大的实际工程应用价值,同时也具有一定的理论研究价值。在工程应用方面,研究成果能够为论证CO2激光焊接技术在全铝结构船舶制造工业中应用的可行性问题提供必要的技术基础,对相关部门制定全铝结构船舶长甲板的工业激光解决方案,具有重大现实意义。在理论研究方面,研究涉及的铝合金大功率激光焊接技术、大功率激光深熔焊接小孔和等离子体行为的分析研究,对车辆、航空航天等行业铝合金的激光焊接技术具有重要指导意义。
The main application backgrounds of this paper are the long deck of full-aluminum structure high speed vessels, and its investigated subjects are long distance laser welding of aluminum alloys in ship building industry. Against the problems existed in the present welding technology for the long deck of full-aluminum structure vessels, basic CO_2 laser welding technologies and long distance CO_2 laser welding technologies of 4.0 mm and 6.0mm thickness 5083 aluminum alloy and 6.0 mm thickness 6061 aluminum alloy have been investigated on the base of analyzing the characteristics of CO_2 laser welding system in ship industry and calculating the optical parameters of long distance welding system. The properties of welded joints are also evaluated. The application feasibility in ship building industries of CO_2 laser welding the long deck of full-aluminum structure vessels has been discussed. The behavior of CO_2 laser induced plasma in laser welding of aluminum alloys is investigated through high speed camera and spectroscopic technology.
     The penetration welding threshold of 5083 aluminum alloy is lower than that of 6061 aluminum alloy, because Magnesium is easily volatilized. When the diameter of shielding gas nozzle is 5 mm, it can not only offer good laminar flow length, but also offer enough shielding gas for diluting the density of plasma. The optimized flow rates of shielding gas for laser welding of 5083 aluminum alloy are 20 l/min Helium gas and 2 l/min Argon gas, and those are 30 l/min Helium gas and 2 l/min Argon gas for laser welding of 6061 aluminum alloy. The match of laser power, welding speed and wire feeding speed plays a great role for the formation of welds. For the three kinds of aluminum plates, long distance CO_2 laser welding of aluminum alloys in ship industry has been completed through laser scanning welding and wire feed laser welding method, and the weld with good appearance and no defects is acquired. At laser, eight programs of welding technology have been obtained.
     Based on the acquires of laser welding optical system of long full-aluminum structure vessels decks, the influence of laser beam quality, focal length and the required maximum radius of focal spots for welded materials on optical parameters of flying optical system is calculated and analyzed based on the theory of Gauss-beam propagation and focus. The differences of the DC035 and RS200 CO_2 lasers used in flying optical processing system are compared. In theory, tow kinds of CO_2 lasers both can use for long distance processing optical system, but in practice, DC035 CO_2 laser with good beam quality would better use for long distance CO_2 laser welding of aluminum alloys in ship industry than RS200 CO_2 laser.
     The thinner the aluminum alloy plate in ship industries is, the more the allowable variation of focal spot radius (ωivar) and positions ( ) for producing full penetration welds in long distance CO_2 laser welding is. Under the condition of experiments, full penetration welds of 4mm thickness 5083 aluminum alloy with good appearance could be obtained when sivarωivar and were smaller than 30μm and 4.0 mm; full penetration welds of 6mm thickness 5083 aluminum alloy with good appearance could be obtained when sivarωivar and were smaller than 20μm and 3.0 mm; full penetration welds of 6mm thickness 6061 aluminum alloy with good appearance could be obtained when sivarωivar and were smaller than 15μm and 2.0 mm. For the groove of I-type, the allowable gaps of laser scanning welding and wire feed laser welding are 0.5mm and 0.7mm. The requirements of grooves preparation and clamps accuracy in laser welding can not be achieved in actual production process and that becomes the biggest barrier in the application of laser welding technologies for the long deck of full-aluminum structure vessels.
     The tensile strength values of 5083 welded joints with filler wire and double-pass welded joints are up to 95 percent of base mental, and the yield strength are equivalent to those of base metal. The tensile fracture of laser beam welded specimens takes place in the area close to the weld bond. The tensile strength values of 6061 welded joints with filler wire and double-pass welded joints are up to 82 percent of base mental, and the yield strength are lower than those of base metal. The tensile fracture of laser beam welded specimens takes place along the 45°diagonal line of welds. Laser welded joints of 5083 aluminum alloy would not crack after 150°three-point bending tests, but laser welded joints of 6061 aluminum alloy would crack along weld bond after 90°three-point bending tests. The impacting toughness of 5083 aluminum welded joints is much higher than that of base mental, and the impacting toughness of 6061 aluminum welded joints is lower than that of base mental.
     Under the experimental conditions, the increment of laser power played little role for laser-induced plasma temperature when the laser power extended the threshold power of penetration welding. The plasma temperature was lower when laser focal spot was near the surface of the plate than far from it. The effect rule of welding speeds on laser-induced plasma temperature likes inverted U curve. Helium provided good cooling effects on the plasma temperature. For a given diameter of nozzle, laser-induced plasma temperature had been increasing before decreasing when the flow rate of shielding gas was increasing. That would also increase when adding Argon in Helium and increasing Argon in Helium. The weld appearance was good when the temperature of laser-induced plasma was in the range of 6000±200K. The plasma above the plates has no influence on the weld depth and weld width.
     Investigations of laser welding technologies for the long deck of full-aluminum structure vessels have great values in the engineering application and also in the theory study. On one hand, the achievement of investigations can offer basic technologies for demonstrating the feasibility of CO_2 laser welding the long deck of full-aluminum structure vessels, and it also plays an important role in determining the industrial laser solution of the long deck of full-aluminum structure vessels. On the other hand, high power laser welding technologies of aluminum alloy, the analysis for behaviors of the keyhole and plasma in high power laser penetration welding have instructive significance for the laser welding technology of aluminum alloys in automobiles, aircrafts and aerospace industries.
引文
1 王家金. 激光加工技术. 中国计量出版社, 1992:1~10
    2 左铁钏. 高强铝合金的激光加工. 国防工业出版社, 2002:2~56
    3 阎毓禾, 钟敏霖. 高功率激光加工及其应用. 天津科学技术出版社, 1994:1~20
    4 何兵. 铝合金高速船的焊接. 焊接. 1996, (8):14~16
    5 王珏. 铝合金在造船中的应用与发展. 轻金属. 1994, (4):49~54
    6 李维博. 铝制高速船的焊接技术. 造船技术. 1998, (8):21~23
    7 何兵. 铝合金高速船的焊接工艺认可. 广东造船. 1996, (3):8~10
    8 李敬勇, 李标峰. 铝合金焊接船及其发展. 材料开发与应用. 1994, 9(3):33~38
    9 李标峰. 铝合金船体建造工艺. 船舶工程. 1997, (5):27~45
    10 兵器编辑. 细品澳大利亚军用高速船. 兵器. 2004, (8):1~4
    11 李标峰. 船用铝合金焊接及其船体建造工艺. 国防工业出版社, 2005: 46~56
    12 海上高速船入级与建造规范. 中国船级社, 2005:55~57
    13 郭泽亮. 激光焊接技术在舰船建造中的应用. 舰船科学技术. 2005, 27(4):81~84
    14 辜磊, 刘建华, 王兴均. 激光-电弧复合焊接技术在船舶建造中的应用研究. 造船技术. 2005, (5):38~40
    15 殷浩澍. 激光焊接在欧洲造船业的应用. 电焊机. 2005, 35(7):1~5
    16 左铁钏, 张冬云, 祁俊峰, 陈虹. 关于大功率CO2激光器在船舶制造中应用的探讨. 焊接. 2007, (5):79~83
    17 王珏. 船舶用铝合金材料. 轻金属. 1994, (6):58~64
    18 李念奎. 船用铝合金的机械性能(1). 轻金属. 1994, (7):50~55
    19 王珏. 船用铝合金的物理性能. 轻金属. 1994, (5):55~57
    20 李念奎. 船用铝合金的机械性能(2). 轻金属. 1994, (9):53~58
    21 Paul Denney. The New Wave in Ship Construction. Welding Journal. 2001, (3):47~50
    22 Jukka S?yn?j?kangas, Tero Taulavuori. A Review in Design and Manufacturing of Stainless Steel Sandwich Panels. Stainless Steel Word Oktober, 2004:21~24
    23 Jani Romanoff. Bending Response of Laser-Welded Web-Core Sandwich Plates. Doctoral Dissertation in Helsinki University of Technology, 2007:17~19
    24 Jeff Defalco. Practical Applications for Hybrid Laser Welding. Welding Journal, 2007,(11):47~50
    25 岳灿甫, 吴始栋. 国外船用激光焊接波纹夹心板的开发与应用. 鱼雷技术. 2007, 15(4):1~5
    26 高治国, 吴毅雄, 黄坚等. 船用大功率激光焊接技术. 电焊机. 2006, 36(5):55~58
    27 Andersen H J, Holm H. Extending Tolerances for Laser Welding in Heavy Industry. Journal of Advanced Materials. 2002, 34(1):42~46
    28 Furio A, Bird J. Laser Welding in Ship Construction. Naval Warfare Center, Carderock Division, USA, British Crown Copyright. 1997:299~306
    29 Graf T, Staufer H. Laser Hybrid Welding Drivers Improvements. Welding Journal. 2004, 83(3):43~49
    30 Ulf Jasnau, Jan Hoffmann, Peter Seyffarth. Nd:YAG-Laser-GMA-Hybrid Welding inShipbuilding and Steel Construction. Robotic Welding, Intelligence and Automation, LNCIS 299. 2004:14~24
    31 Roland Reipa. Forschungsvorhaben ,, Innovativer Leichtbau durch engiereduziertes Fügen mit Lasersystemen neuester Generation. Reilvorhaben Aker Warnow Werft. 2003:23~40
    32 Dipl.-lng. Ulf Jasnau. Abschlussbericht zum Forschungsvorhaben ,,Innovativer Leichtbau durch engiereduziertes Fügen mit Lasersystemen neuester Generation. Reilvorhaben Aker Warnow Werft. 2003:63~70
    33 Customer Focus. Laser Processing in Ship-building. TRUMPF EXPRESS.2002:7~10
    34 Staufer Herbert. Laser-Hybrid Welding of Ships. Welding Journal. 2004, (6):39~43
    35 Beekholt R. The Technical Trends and Future Prospects for European Shipbuilding. Welding in the Word. 2004, (48):157~161
    36 R. Miller, T. Debroy. Energy Absorption by Metal-vapor-dominated Plasma During Carbon Dioxide Laser Welding of Steels. J. Appl. Phys. 1990, 8(5):2045-2050
    37 M.Davis, P.Kapadia, J.Dowden. Modeling the Fluid in Laser Beam Welding. Welding Journal. 1986, 65(7):167s~174s
    38 N.Postacioglu, P.Kapadia, J.Dowden. Capillary Waves on the Weld Pool in Penetration Welding with a Laser. J.Phys.D: Appl.Phys.. 1989, 22(8):1050~1061
    39 N.Postacioglu, P.Kapadia, J.Dowden. Theoretical Model of Thermocapillary Flows in Laser Welding. J. Phys. D: Appl. Phys.. 1991, 24(1):15~20
    40 J Kross, U Gratzke, M Vicanek, et al. Dynamic Behaviour of the Keyhole in Laser Welding. J. Phys. D: Appl. Phys.. 1993, (20):481-486
    41 Helmut Hügel, Matthias G.Müller, Bernd Hohenberger. Laser Beam Welding: Recent Developments on Process Conduction and Quality Assurance. SPIE Vol.3571, 1999:52~60
    42 肖荣诗. CO2激光深熔焊接光致等离子体行为研究. 北京工业大学博士学位论. 1997:4~65
    43 Friedrich Dausinger. Laser Welding of Aluminum Alloys: From Fundamental Investigation to Industrial Application. Proceedings of SPIE, Vol. 3888, 2000:367~379
    44 过增元, 赵文华. 电弧和热等离子体. 科学出版社, 1986:260-307
    45 T. Sibillano, A. Ancona, V. Berardi, etc. Correlation Spectroscopy As a Tool for Detecting Losses of Ligand Elements in Laser Welding of Aluminium Alloys. Optics and Lasers in Engineering. 2006, (44):1324-1335
    46 Teresa Sibillano, Antonio Ancona, Vincenzo Berardi, etal. A study of the Shielding Gas Influence on the Laser Beam Welding of AA5083 Alunimuium Alloys by In-process Spectroscopic Investigation. Optics and Lasers in Engineering. 2006, (44):1039-1051
    47 A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, et al. Experimental Study of Laser-induced Plasma in Welding Conditions with Continuous CO2 Laser. J. Appl. Phys. 1993, 74 (9): 5773-5780
    48 S. Palanco, M. Klassen, J.Skupin. etc. Spectroscopic Diagnostics on CW-laser Welding Plasmas of Aluminum Alloys. Spectrochimica Acta Part B. 2001, (56):651-659
    49 J. Bruncko, F. Uherek, D. Chorvat. Et al. Spectroscopic Investigation of Laser Induced Plasma in Laser Beam Welding. Proceedings of SPIE Vol. 4644, 2002:109-115
    50 Olivier Barthélemy, Jo?lle Margot, Stéphane Laville, et al. Investigation of the State of Local Thermodynamic Equilibrium of Laser-Produced Aluminum Plasma. Applied Spectroscopy. 2005, 59(4): 529-536
    51 J Trappe, J Kroos, C Tix and Simon G. On the Shape and Location of the Keyhole in Deep Penetration Laser Welding. J phys. D: Appl. Phys.. 1994, (27):2152~2254
    52 Z Szymanski, J.Kurzyna, W. Kalita. The Spectroscopy of the Plasma Plume Induced DuringLaser Welding of Stainless Steel and Titanium. J. Phys. D: Appl. Phys.. 1997, (30):3153~3162
    53 Z Szymański, J Kurzyna. Spectroscopic Measurement of Laser Induced Plasma During Welding with CO2 Laser. Journal of Applied Physics. 1994, 76(12):2000~2010
    54 苏 彦 东 . 大 功 率 激 光 焊 接 光 致 等 离 子 体 的 光 谱 分 析 . 中 国 机 械 工 程 . 2000, 11(12):1389~1391
    55 D Lacroix, G. Jeandel. Spectroscopic Characterization of Laser-induced Plasma Created During Welding with a Pulsed Nd:YAG Laser. J. Appl. Phys.. 1997, 81(10):1~15
    56 M. Kutsuna, J. Suzuki, S. Suqiyama, et al. CO2 Laser Welding of A2219, A5083 and A6063 Aluminium Alloys. Welding in the World. 1993, 31(2):126~135
    57 Mark Faerber, Joachim Berkmann. Process Gases for Laser Welding. SPIE Vol.1979, (30):656~661
    58 Sonti Nagesh. Influence of Process Parameters on Laser Weld Characteristics in Aluminum Alloys. The Pennsylvania State University. 1988:86~79
    59 V.V. Semak, A Mastunawa.. The Role of Recoil Pressure in Energy Balance During Laser Materials Processing. J phys. D: Appl. Phys.. 1997, (30):2541~2552
    60 J.Xie,A .Kar,J .A .Rothenflue, et al.Temperature-dependent Absorptivity and Cutting Capability of CO2, Nd:YAG and Chemical Oxygen-iodine Lasers. Journal of Laser Applicationl, 1997, 9(2):77~85
    61 H. C. Peebles, R.L. Williamson. The Role of the Metal Vapor Plum in Pulsed Nd:YAG Laser Welding on Aluminum 1100, Proceedings of LAMP’87, 1987:19~24
    62 J Dowden, P Kapadia, N Postacioglu. An Analysis of the Laser-plasma Interaction in Laser Keyhole Welding. J. Phys. D: Appl. Phys.. 1989, 22(4):741~749
    63 J.Dowden, M.Davis, P.Kapadia. Moleten Region Temprature Distribution in Laser Welding. J. Phys. D: Appl. Phys.. 1985, 18(10):1987~1994
    64 J.Dowden, N.Postacioglu, M.Davis, et al. Keyhole Model in Penetration Welding with a Laser. J.Phys.D: Appl.Phys.. 1987, 20(1):36~44
    65 J.Dowden, M.Davis, P.Kapadia. Some Aspects of the Fluid Dynamics of Laser Welding. Journal of Fluid Mechanics. 1983, 126(1):123~146
    66 K.W.Carison. The Role of Heat Input in Deep Penetration Welding. ICALEO, 1985:745~752
    67 R.A.Willgoss. Laser Welding of Steels for Power Plants. Optics and Laser Technology. 1999, (4):25~30
    68 A.Ancona, T.Sibillano, L.Tricarico. Comparison of Two Different Nozzles for Laser Beam Welding of AA5083 Aluminium Alloy. Journal of Materials Processing Technology. 2005:164~165
    69 Hong Lei, Cheng Wuzhu, Wu Gang. Influence of Shielded Gas Flow in CO2 Laser Welding of A5083 Aluminium Alloy. Lasers in Material Processing and Manufacturing Ⅱ,Proceeding of SPIE, Vol.5629, 2005:179~186
    70 唐霞辉, 周金鑫, 周毅. 同轴双层喷嘴辅助气体对激光深熔焊接光致等离子体的控制. 中国机械工程. 2003, 14(14):1179~1181
    71 V.S. Golubev. Laser Welding and Cutting: Recent Insights into Fluid-dynamics Mechanism. Proceeding of SPIE, Vol. 5121, 2003:1~14
    72 A.Ancona, G.Daurelio, L.A.C.De Filippis, A.D.Ludovico, A.M.Spera. CO2 Laser Welding of Aluminium Shipbuilding Industry Alloys: AA5083, AA5383, AA5059, and AA6082. Proceedings of SPIE Vol. 5120 XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. 2003:577~587
    73 K. Chen, R.S. Xiao, T.C. Zuo. Laser Welding of Al-Mg Alloy with the Thin Plate. Lasers in Material Processing and Manufacturing Ⅱ , SPIE, Bellingham, WA, 2005:155~160
    74 梅汉华, 肖荣诗, 左铁钏. 采用填充焊丝激光焊接工艺的研究. 北京工业大学学报. 1996, 22(3):38~42
    75 肖荣诗, 梅汉华, 左铁钏. 辅助气体对CO2激光焊接光致等离子体屏蔽的影响. 中国激光. 1998, 25(11):1045~1050
    76 史俊峰, 肖荣诗, 左铁钏. 激光深熔焊光致等离子体行为与控制. 激光杂志. 2000, 21(5):40~42
    77 肖荣诗, 左铁钏. CO2激光深熔焊接光致等离子体控制的研究. 中国激光. 1997, 24(5):461~466
    78 陈铠, 王智勇, 肖荣诗. 铝合金的大功率扩散型CO2激光粉末焊接技术. 激光杂志. 2000, 第21卷, 第5期:45~48
    79 Tommi Jokinen, Veli Kujanp??. High Power Nd:YAG Laser Welding in Manufacturing of Vacuum Vessel of Fusion Rector. Fusion Engineering and Design. 2003, (69):349-353
    80 郑启光, 辜建辉, 王涛. 激光深熔焊接的熔池行为与焊接缺陷的研究. 激光技术. 2000, 24(2):90~94
    81 Peter MUELLER-HUMMEL, Stefan FERSTL, Marcus SENGOTTA. Laser Beam Welding of High Stressed, Complex Aircraft Structural Parts. Proceedings of SPIE, Vol. 4831, 2003:438~441
    82 唐霞辉. 粉末冶金材料激光焊接光致等离子体行为及其控制. 华中理工大学博士毕业论文, 1999:5~44
    83 Edvard Govekar, Janez Gradi?ek, Igor Grabec. Analysis of the Dynamics of Transition from Deep to Shallow Penetration CO2 Laser Welding. American Institute of Physics. 2002:211~216
    84 洪雷, 陈武柱. CO2激光焊接铝合金的试验研究. 应用激光. 2003, 23(1):16~18
    85 M. Kern, M. Beck, P. Berger, H. Hügel. Process Stabilising Potential of Shielding Gas Mixture in Laser Welding with CO2 Lasers. SPIE Vol. 3092, 2001:526~529
    86 Z. Sun, M. Kuo. Bridging the joint gap with feed laser welding. Journal of Material Processing Technology. 1999, (87),:213~222
    87 Sindo Kou. Welding Metallurgy. A John Wiley & Sons, Inc., Publication. 2002:102~146
    88 J. C. Ion. Laser Beam Welding of Wrought Aluminium Alloys. Science and Technology of Welding and Joining. 2000, 5(5):265~276
    89 Ulf Jasnau, Jan Hoffmann, Peter Seyffarth. Nd:YAG-Laser-GMA-Hybrid Welding in Shipbuilding and Steel Construction. Robotic Welding, Intelligence and Automation, LNCIS 299, 2004:14~24
    90 Richard P. Martukanitz. A Critical Review of Laser Beam Welding. Proceedings of SPIE, Vol. 5706, 2005:11~24
    91 A. K. Nath, P. Choudhary, M. Kumar. Development of High Power CO2 Lasers and Laser Material Processing. Proceedings of SPIE, Vol. 3888, 2000:577~586
    92 Akio HIROSE, Kojiro F. KOBAYASHI. Characteristics of Laser Beam Welds of Age-Hardenable 6061-T6 Aluminum Alloy. First International Symposium on High-Power Laser Macroprocessing, Proceedings of SPIE Vol. 4831, 2003:313~318
    93 Sivakumar Ramasamy. CO2 and Nd:YAG Laser Beam Welding of 6000-T4 and 5754-O Aluminum Alloys for Automotive Applications. The Ohio State University, 1997:24~101
    94 许国良. 铝、钛合金薄板的高功率CO2激光焊接工艺研究. 中科院上海光机所博士毕业论文. 2001:7~68
    95 杨武雄. 高强铝合金的激光填粉焊接. 北京工业大学硕士学位论文. 2004:5~21
    96 Uwe Habich, Uwe-Klaus Jarosch, Heiko Maly. Fast Axial Flow 25 kW CO2-laser with Unstable Resonator for Industrial Applications. SPIE Vol. 3092, 2002:174~177
    97 M.Davis, J.Dowden, P.Kapadia, et al. Method for Calculating the Fused Zone Profile of Laser Keyhole Welds. J. Phys. D: Appl. Phys.. 1989, 22(1):23~28
    98 Antti Salminen. The Effects of Filler Wire Feed on the Efficiency of Laser Welding. First International Symposium on High-Power Laser Macroprocessing, Proceedings of SPIE Vol. 4831, 2003:263~268
    99 陈彦宾. 现代激光焊接技术. 科学出版社, 2005:56~92
    100 郑启光. 激光先进制造技术. 华中科技大学出版社, 2002:24~84
    101 B.R.Finke, P.D.Kapadia, J.M. Dowden. A Fundamental Plasma Based Model for Energy Transfer in Laser Material Proceesing. J. Phys. D. Appl.Phys.. 1990, (23):643~654
    102 张盛海, 陈铠, 肖荣诗等. 高强铝合金T型接头激光焊接的研究现状. 激光杂志. 2005, 26(4):77~78
    103 祁俊峰, 田胜, 陈虹等. 板条CO2激光焊接7075-T6高强铝合金. 中国激光. 2006, (33):439~444
    104 王智勇, 陈铠, 左铁钏. 光束横截面能量分布的变化对激光焊接的影响. 焊接学报. 2000, 21(3):17~19
    105 陈虹. 激光光束质量对光束传输聚焦和加工质量的影响. 北京工业大学博士学位论文. 2006:39~50
    106 P.A.P. Nascente, C. Bolfarini, C.L. Benassi. Surface and Microstructural Characterization of Laser Beam Welds in an Aluminum Alloy. American Vacuum Society, J. Vac. Sci. Technol. A. 2002, 20(4):1416~1419
    107 Gene Mathers. The Welding of Aluminium and Its Alloys. Woodhead Publishing Limited, Cambridge England, 2002:45~110
    108 F Tu, Takashi Inoue,Isamu Miyamoto. Quantitative Characterization of Keyhole Absorption Mechanisms in 20Kw Class CO2 Laser Welding Processes. J. of Phys D: Appl. Phys.. 2003, (36):192~193
    109 K R Kim, D F Farson. CO2 Laser-plume Interaction in Materials Processing. ICALEO SectionE, 2000:133~142
    110 X. Chen, H.X. Wang. Prediction of the Laser-induced Plasma Characteristics in Laser Welding: a New Modeling Approach Including a Simplified Keyhole Model. J. Phys. D .Appl. Phys.. 2003, (36):1634~1643
    111 José Greses, P. A. Hilton, C.Y. Barlow, and William M. Steen. Laser-vapor Interaction in High-power Cw Nd: YAG Laser Welding, Proceedings of ICALEO, 2003:1607~1611
    112 M Beck, P Berger, H Hugel. The Effect of Plasma Formation on Beam Focusing in Deep Penetration Welding CO2 Lasers. J. Phys. D: Appl. Phys.. 1995, 28(2):2430~2442
    113 刘金合, 朱石刚. CO2激光焊接等离子体高速摄影照片图像处理. 应用激光. 2002, 22(3):342~344
    114 Sokolowski W, Herzinger G, Beyer. Spectral Pplasma Diagnostics in Welding with CO2 Laser. SPIE, V0l. 1020, 1988:96~102
    115 Valery Bialatov, Liang Xu, Israel Sechechter. Spectroscopic Imaging of Laser-induced Plasma. Anal.Chem., 1996, 68(1):2966~2973
    116 J Thomas Knudtson William, B Green David, G Sutton. The UV-visible Spectroscopy ofLaser-produced Aluminum Plasma. J.Appl.Phys.. 2001, 61(10):4771~4780
    117 G. Casalino, F. Curcio, A. D. Ludovico, et al. FEM Simulation of Metal Sheets Laser Welding with Wire Filler Material. Proceedings of SPIE Vol. 5958, 2005:59581V-1~59581V-11
    118 Martin Klassen, Jochen Skupin, Gerd Sepold. Process Instabilities by Laser Beam Welding of Aluminium Alloys Generated by Laser Modulations. SPIE Vol. 3097, 1997:137~146
    119 H.C. Tse, H.C. Man, T.M. Yue. Effect of Magnetic Field on Plasma Control During CO2 Laser Welding. Optics & Technology. 1999, (31):363-368
    120 W. Bartel, D. P?the, R. Roatzsch, J.-M. Weick. Influence of Beam Quality when With Nd:YAG and CO2 Lasers. SPIE Vol.1476, 1997, (30):147~156
    121 H. Zhao, T. DebRoy. Macroporosity Free Aluminium Alloy Weldments through Numerical Simulation of Keyhole Mode Laser Welding. Journal of Applied Physics. 2003, 93(12):10089~10096
    122 Kimihiro Shibata, Takakuni Iwase, Hiroki Sakamoto. Process Stabilization by Dual Focus Laser Welding of Aluminum Alloys for Car Body. Proceedings of SPIE, Vol. 5121, 2003:376~384
    123 R.Fabbro, K.chouf. Keyhole Modeling during Laser Welding. Journal of Applied Physics. 2000, 81(9):4075~4083
    124 V.V. Semak, W. D. Bragg, B. Damkroger et al. Transient Model for the Keyhole During Laser Welding. J phys. D: Appl. Phys.. 1999, (32):L61~L64
    125 C. Lampa, A. F. H. Kaplan, J. Powell, et al. An Analytical Thermodanamics Model of Laser Welding. J. Phys. D. Appl. Phys.. 1997, (30):1293~1299
    126 N.Postacioglu, P.Kapadia, J.Dowden. Distortion Generated by a Moving Weld Pool of Elliptical Cross Section in the Welding of Thin Metal Sheets. J. Phys. D: Appl. Phys.. 2000, 33(14):1739~1746
    127 N.Postacioglu, P.Kapadia, J.Dowden. Theory of the Oscillations of an Ellipsoidal Weld Pool in Laser Welding. J. Phys. D: Appl. Phys.. 1991, 24(8):1288~1292
    128 J Kroos, U Gratake, G Simon. Towards a Self-consistent Model of the Keyhole in Penetration Laser Beam Welding. J.Phys.D: Appl.Phys.. 1993, (20):474~480
    129 E.H. Amara, R. Fabbro, A. Bendib. Modeling of the Compressible Vapor Flow Induced in a Keyhole during Laser Welding. Journal of Applied Physics. 2003, 93(7):4289~4296
    130 A Wieschemann, H Kelle, D Dilthey. Hibrid-welding and the HyDRA MAG + LASER Processes in Shipbuilding. Welding International. 2003, 17(10):761~766
    131 Liming Liu, Gang Song, Guoli Liang. Pore Formation during Hybrid Laser-tungsten Inert Gas Arc Welding of Magnesium Alloy AZ31B-mechanism and Remedy. Materials Science and Engineering A390. 2005:76~80
    132 Tueyama, H Tong, I Yazawa. Aluminium Alloy Sheet Welding by the Laser AC Pulsed MIG Hybrid Process. Welding International. 2004, 18(5):345~350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700