超/特高压线路自适应距离保护的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超/特高压输电线路是我国坚强智能电网的重要组成部分;距离保护由于具备受电网结构和系统运行方式影响较小等优点,在高压输电线路继电保护中得到了广泛应用。本文通过分析超/特高压线路故障信号特征,研究了距离保护稳态超越、暂态超越现象的产生机理,提出了新的故障信号分析方法和新的自适应距离保护判据。
     首先,对超/特高压输电线路距离保护中故障信号处理的常用算法进行分析和比较,针对超/特高压输电线路故障信号直流分量衰减缓慢、高频分量丰富的特点,应用prony算法拟合故障信号。为了减少噪声对prony算法的影响,采用奇异值分解(SVD)的方法确定prony算法的模型阶数,构造了SVD-prony算法。
     其次,鉴于超/特高压线路的稳态物理特征,通过分析超/特高压输电线路容易发生稳态超越的原因,探讨了工频变化量距离继电器在解决稳态超越方面的优势;通过对几种工频变化量距离继电器判据的分析,构造了工频变化量距离继电器的统一表达式;研究了负荷变化和保护范围的关系,建立自适应判据来改变工频变化量统一表达式的中间参数,以调整保护范围,达到更好地防止线路末端区外发生稳态超越的目的。
     再次,鉴于超/特高压线路的暂态物理特征,在分析超/特高压输电线路中容易发生暂态超越的原因的基础上,通过实时计算SVD-prony算法拟合误差,并根据拟合误差和电抗计算误差之间的关系,建立整定阻抗的修正曲线;依据修正曲线,构造一个基于SVD-prony算法的拟合误差的自适应判据,利用该判据自适应地调整动作门槛,避免线路末端区外发生暂态超越,提高区内故障时保护的速动性。
     运用ATP软件对超/特高压线路短路故障进行建模和仿真,得到各种故障情形下的电压、电流信号;基于MatLab平台应用SVD-prony算法对故障信号进行参数估计,并对自适应保护判据进行验证。仿真结果表明,本文所提出的SVD-prony算法及为解决暂态超越和稳态超越而建立的自适应判据能够更好地适应系统运行方式和故障状态的变化,使得超/特高压输电线路距离保护的性能更优。
EHV/UHV transmission line plays an important role in strong smart grid; distance protection has got widespread application in high voltage transmission line relay protection due to its characteristics of being less affected by the system operation mode and grid structure. By analyzing fault signal characteristics in EHV/ UHV transmission line and studying on the mechanism of the emergence of steady-state overreach and transient overreach, this paper provides a new fault signal analysis algorithm and a new adaptive distance protection criterion.
     First, several distance protection algorithms are analyzed and compared. Considering the fault signal with slow decayed DC component and rich high frequency components in EHV/UHV transmission line distance protection, prony algorithm is adopted to fit fault signal. In order to reduce the impact of noise on prony algorithm, the order of prony algorithm is determined by Singular Value Decomposition(SVD) method, and SVD-prony algorithm is constructed.
     Second, in view of the steady-state physical characteristic in EHV and UHV transmission line, the reason why steady-state overreach occur is introduced exactly and the advantage of employing power frequency distance relays in solving steady-state overreach is penetrated. Based on analyzing several power frequency distance relays criterion, unified expression of power frequency distance relays is established. By studying on the relationship of the load change and protection area, an adaptive strategy is established to adjust protection area by changing the parameters, thus, it can avoid steady-state overreach at the end of transmission line.
     Third, considering the transient physical characteristics in EHV and UHV transmission line, the reason why transient overreach occur is introduced. By calculating the fitting error of SVD-prony, and according to the relationship between fitting error and the calculation reactance error, amending curve is constructed. According to the amending curves, the distance protection settings have been amended adaptively to avoid transient overreach, so it can make protection more quickly.
     An EHV and UHV power system are built using simulation tool ATP, from which we can get voltage and current signal in various fault conditions. Based on MatLab platform, the parameters of fault signals are estimated using SVD-prony algorithm, then, the adaptive criteria is validated. The simulation results show that SVD-prony algorithm and adaptive criterion used to solving steady-state overreach and transient overreach can adapt to the changes of the operational mode and fault state, therefore, it makes the performance of the distance protection in EHV and UHV transmission line better.
引文
[1]沈冰.超/特高压输电线路保护原理与技术的研究:[浙江大学博士学位论文].浙江:浙江大学电气工程学院,2007,1-3
    [2]刘振亚.特高压电网.北京:中国经济出版社,2005,2-4
    [3]李杨,李永丽.750kV及特高压输电线路的暂态电流研究.电力系统及其自动化学报,2006,18(3):18-23
    [4]Sidhu T S, Sachdev D M S. An Adaptive Distance Relay and its Performance Comparison with a Fixed Data Window Distance Relay. IEEE Transactions on Power Delivery,2002,17(3):691-697
    [5]卢青松.自适应输电线路距离保护研究:[四川大学硕士学位论文].四川:四川大学电气信息学院,2001,1
    [6]Jong A G. Adaptive Distance Protection of Double-Circuit Lines Using Artificial Neural Networks. IEEE Transactions on Power Delivery,1997,12(1): 97-103
    [7]张之哲,陈德树.自适应式微机距离保护理论基础的研究.中国电机工程学报,1986,2(7):5-9
    [8]Mechraoui A, Thomas D W P. A New Blocking Principle with Phase and Earth Fault Detection During Fast Power Swings for Distance Protection. In:Proc of IEE. Gener,1994,3-27
    [9]周俊宇.地区电网实现自适应继电保护的研究.低压电器,2009,(17):36-40
    [10]沈冰,何奔腾.基于阻抗轨迹估计的自适应相间距离继电器.中国电机工程学报,2007,27(31):72-78
    [11]刘卓辉,张艳霞,沈勇环.自适应接地距离继电器的研究.电力系统自动化,2005,29(10):21-27
    [12]鲁文军,林湘宁,黄小波,等.一种采用浮动门槛的自适应突变量距离保护方案.电工技术学报,2009,24(6):160-165
    [13]张保会,尹项根.电力系统继电保护.北京:中国电力出版社,2005,122-125
    [14]葛耀中.新型继电保护和故障测距的原理与技术.西安:西安交通大学出版社,2007,373-379
    [15]于涛.自适应距离保护装置的研究:[山东大学硕士学位论文].山东:山东大学电气工程学院,2007,3-4
    [16]朱声石.高压电网继电保护原理与技术.北京:中国电力出版社,2005, 128-130,210-214
    [17]李一泉,何奔腾,黄瀛.基于CVT暂态误差估计的自适应距离保护.中国电机工程学报,2004,24(10):72-76
    [18]Izykowski J, Kaszteny B, Rosolowski E, et al. Dynamic Compensation of Capacitive Voltage Transformers. IEEE Transactions on Power Delivery,1998, 13(1):116-122
    [19]Hou D Q, Roberts J. Capacitive Voltage Transformer:Transient Overreach Concerns and Solutions for Distance Relaying. In:Proc of Int Conference on Electrical and Computer Engineering. Canadian,1996,119-125
    [20]索南加乐,刘文涛,陈勇.基于R-L模型误差的自适应距离保护.电力系统自动化,2006,30(22):66-72
    [21]谢静,索南加乐,马自伟.利用二次函数修正微分方程不平衡量的距离保护算法.电力系统自动化,2008,32(19):45-49
    [22]李一泉,何奔腾.基于PRONY算法的电容式电压互感器暂态基波辨识.中国电机工程学报,2005,25(14):30-34
    [23]施静辉,索南加乐,许庆强,等.电容式电压互感器暂态特性对距离保护影响的研究.西安交通大学学报,2003,37(4):415-419
    [24]索南加乐,刘文涛,张健康,等.基于波形系数的自适应距离保护.电力系统自动化,2005,19(5):8-44
    [25]张延鹏,李一泉,何奔腾.一种消除cvt暂态超越的新方法.继电器,2005,33(13):1-5
    [26]He B T, Li Y Q, Zhi Q Q. An adaptive Distance Relay Based on Transient Error Estimation of CVT. IEEE Transactions on Power Delivery,2006,21(4): 1856-1861
    [27]黄赢,何奔腾,王文雄.基于噪声估计的自适应快速距离保护.电力系统自动化,2004,28(14):6-8,62
    [28]Shokkumar B S A, Ganesan K, Edgar F R. Envelope Compensation for High Speed Digital Protection. IEEE Transactions on Power Delivery,1992,7(3): 1139-1145
    [29]康小宁,张新,索南加乐,等.电压互感器和电流互感器暂态特性对距离保护算法的影响.西安交通大学学报,2006,40(8):955-959
    [30]张廷,李晓明.工频突变量距离继电器稳态超越的研究.继电器,2004,32(17):23-27
    [31]刘世明,林湘宁,杨春明,等.工频变化量距离继电器的统一表达方式.电网技术,2002,26(5):23-27
    [32]黄少锋,刘千宽,刘焕章,等.基于补偿电压复合极化量的自适应距离继电器.电力系统自动化,2007,31(19):38-43
    [33]魏佩瑜,于桂音,张铭新,等.一种新的比相式电抗型距离继电器算法.继电器,2006,34(8):13-19
    [34]鲁文军,林湘宁,黄小波,等.一种新的自适应突变量距离保护方案.电力系统自动化,2007,31(14):85-88,97
    [35]杨奇逊,黄少锋.微型机继电保护基础(第三版).北京:中国电力出版社,2007,87-99
    [36]陈皓.微机保护原理及算法仿真.北京:中国电力出版社,2007,81-83
    [37]Chen C S, Liu C W, Jiang J A. Application of Combined Adaptive Fourier Filtering Technique and Fault Detector to Fast Distance protection. IEEE Transactions on Power Delivery,2006,21(2):619-626
    [38]苏文辉,李钢.一种能滤去衰减直流分量的改进全波傅氏算法.电力系统自动化,2002,26(23):42-44
    [39]常晓颖.基于prony算法的电力系统故障信号快速拟合:[山东大学硕士学位论文].山东:山东大学电气工程学院,2007,3-4,21
    [40]张贤达.现代信号处理.北京:清华大学出版社,2007,90-931,19-125
    [41]陈树恒,李兴源.基于WAMS的交直流并联输电系统模型辨识算法.中国电机工程学报,2008,28(4):48-53
    [42]Hauer J F. Application of Prony Analysis to the Determination of Model Content and Equivalent Models Measured Power System Response. IEEE Transactions on Power Systems,1991,6(3):1062-1068
    [43]Grund C E, Paserba J J, Hauer J F, et al. Comparison of Prony and Eigen Analysis for Power System Control Design.IEEE Transactions on Power Systems,1993,8(3):964-971
    [44]胡广书.数字信号处理.北京:清华大学出版社,2003,441-442
    [45]曹维,翁斌伟,陈超.电力系统暂态变量的prony分析.电工技术学报,2000,15(6):56-60
    [46]胡明慧,王永山,邵惠鹤.基于改进的莱文森算法对电机转速特性的研究.中国电机工程学报,2007,27(30):77-81
    [47]Kumaresan R. A Prony Mothod for Noisy Data:Choosing the Signal Compone-nts Selecting the Order Inexponential Signal Models. In:Proc of IEEE. London, 1984,23-26
    [48]Kumaresan R. Estimating the Parameters of Exponentially Damped Sinusoids and Pole-zero Modeling in Noise. IEEE Transactions on Acoustics, Speech and Signal Processing,1982,30(1):12-17
    [49]Trudnowski D J. Making Prony Analysis More Accurate Using Multiple Sign-als. IEEE Transactions on Power System,1900,14(1):32-35
    [50]赵成勇,刘娟.prony算法在电力系统暂态信号分析中的应用.电力系统及其自动化学报,2008,20(2):60-64
    [51]Huang S F, Wang X G. A Fault Location Scheme Based on Spectrum Chara-cteristic of Fault-generated High-frequency Transient Signals. IEEE Transact-ions on Power Delivery,2009,14(2):1-5
    [52]邰能灵,林韩,陈金祥,等.改进的比幅式工频变化量距离继电器方案.电力系统自动化,2006,30(9):56-58
    [53]戴学安.综论工频变化量距离继电器.电力系统自动化,1995,19(5):41-47
    [54]索南加乐,谢静,刘东,等.克服距离保护暂态超越的新方法.电力系统自动化,2006,30(10):52-56
    [55]毛鹏,白日昶,杨威,等.反时限距离保护原理的改进.电力系统自动化,2008,32(6):71-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700