大腿假肢穿戴者在滑倒过程中的平衡策略研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体平衡策略研究是人体运动分析的重要分支,在康复工程、功能损伤诊断、仿人机械以及体育科学等领域都有重要的实用价值。本文通过试验与理论分析相结合的方法,利用人体表面肌电信号作为研究手段,研究了在行走过程中脚跟触地时刻发生意外滑动时健康受试者和单侧大腿假肢穿戴者所采取的应急反应平衡策略及其在假肢设计中的应用。论文工作主要包括以下几个方面:
     1.利用所需最大摩擦系数等步态参数,对健康受试者和假肢穿戴者在正常路面上行走时所面临的滑动危险性进行了对比分析,结果表明:1)后者比前者面临更大的滑动危险性;2)步态对称性差以及身体侧摆幅度增大是假肢穿戴者面临更大滑动危险的主要原因;3)假肢穿戴者的健康侧和假肢侧的滑动方向截然不同,这是他们滑倒步态的一个主要特征。
     2.利用主元分析方法,对下肢及腰腹部位主要肌肉的肌电信号进行了特征提取。利用第一主元——“肌肉功率”,分别对健康受试者和假肢穿戴者在滑倒过程中采取的平衡策略进行了分析,提出了基于“防滑策略”和“防倒策略”的人体两阶段平衡策略的原理,指出滑倒过程中健康受试者将连续采用两个阶段的平衡策略,而假肢穿戴者通常只采用其中一种策略。此外,当滑动分别发生在健康侧或假肢侧时,假肢穿戴者采取的平衡策略是完全不同的。
     3.基于两阶段平衡策略的原理,建立了反映滑倒特征的二维多刚体人体动力学模型,结合从步态试验中得到的运动学参数和肌电信号,计算分析了健康受试者滑倒过程中的关节力矩,得到了力矩幅值增大、波动明显以及关节阻尼增大的结论。
     4.从两阶段平衡策略原理的角度出发,探讨了提高单侧大腿假肢穿戴者在湿滑路面上的行走安全性问题,并将平衡策略应用于具有力矩控制功能的新型多杆机构膝关节的设计之中,开发了大腿假肢样机,基本实现了改善步态、降低滑动危险性的预定设计目标。
     本文的研究工作得到了国家自然科学基金(NO. 30170242)和高技术研究发展计划(“863”)基金(NO. 2001AA320601)的资助。
The study on human balance strategy is a major branch of human motion analysis. It is practically important in many fields, such as rehabilitation engineering, functional impairment diagnose, humanoid machine, sport science and so on. Using surface electromyography (sEMG) signals and via the method of combining experiment and theory analysis, the reaction strategy of human balance employed by both healthy persons and unilateral trans-femoral prosthesis (UTFP) users when they encounter an unexpected slip incident at the heel-contact moment during walking is investigated in this dissertation. The work was also extended to the application of the strategies to prosthesis design. The research work finished in this dissertation is divided into the following four aspects:
     1. Based on the analysis of gait parameters, e.g. the peak value of required coefficient of friction, the slip potential faced by UTFP users when walking on the normal surface, was compared with that of the healthy persons. It is found that 1) the UTFP users face greater slip potential than healthy persons; 2) the main reason for UTFP users to face greater slip potential is that both the unsymmetry of their gait and the body swing in the frontal plane are more serious than that of the control group; 3) the slip direction is entirely different when the slip occurred on the intact side and the prosthetic side, which is a main character in the slip gait of UTFP users.
     2. Via principal component analysis, feature extraction was performed on the sEMG signals which had been recorded from the muscles on legs and around waist of both healthy persons and UTFP users during slip events. Using the first principal component—“muscle power”, the balance strategies which both healthy persons and UTFP users employed in slips were investigated in details. It is found that there are two steps of balance strategies in the slip events including“anti-slip”and“anti-fall”, which is defined as two-step balance strategy. And the healthy persons can adopt both strategies in time during slips, while usually only one strategy can be performed for UTFP users. Besides, when slips occurr on the prosthetic side or the intact siderespectively, UTFP users would adopt entirely different strategies.
     3. Based on the principle of two-step balance strategy, the 2-D multi-rigid dynamical mathematical model of human body for slip gait was developed. With the assist of kinematical data and sEMG signals from gait experiments, the joint moments of healthy people were calculated and analyzed. The results indicate that the amplitudes of joint moments, the fluctuation of joint moments and the friction moments on joints increase significantly in slips.
     4. From the point of view that the amputee and the prosthesis constitute a man-machine system, the ways to improve the safety of UTFP users during walking on slippery condition are discussed preliminarily. Moreover, the principle of two-step balance strategy is applied to the design of new artificial knee joint with moment control function. The specimen prosthesis has achieved the original goal of improving gait performance and reducing the slip potential during the UTFP users walking on normal path.
     This work was financially supported by the National Natural Science Fund (NO. 30170242) and National Hi-Tech Research and Development (863) Program (NO. 2001AA320601).
引文
[1] 文诗广, 陈伟群. 重心平衡测定仪检测人体平衡功能. 现代康复. 2000, 4 (5): 672-673
    [2] Sardain P, Rostami M, Thomas E, et al. Biped robot: correlation between technological design and dynamic behavior. Control Engineering Practice, 1999, 7: 401-411
    [3] 乔新生, 许晓鸣, 姬文平, 侯平, 金德闻. 低成本下肢假肢的开发与为残疾人服务的实践. 中国康复理论与实践, 2004, 10(9): 566-567
    [4] Smeester C. Fall biomechanics and hip fracture risk. [Ph.D. Dissertation]. U.S.A.: The Division of Engineering and Applied Science of Harvard University, 1999
    [5] Wojcik, LA. A biomechanical analysis of the mechanisms of fall recovery in young and elderly adults: [Ph.D. Dissertation]. U.S.A.: Department of Mechanical Engineering of University of Michigan, 1997
    [6] Sardain P, Rostami M, Bessonnet G. An anthropomorphic biped robot: dynamic control and technological design. IEEE Transaction on systems, man and cybernetics-part A: systems and humans, 1998, 28(6): 823-838
    [7] Lum HK, Zribi M, Soh YC. Planning and control of a biped robot. International Journal of Engineering Science, 1999, 37: 1319-1349
    [8] Mccown-Mcclintick BE, Moskowitz GD. The behavior of a biped walking gait on irregular terrain. The International Journal of Robotics Research, 1998, 17(1): 43-55
    [9] Winter DA, Patla AE, Frank JS. Assessment of balance control in humans. Medical Progress through Technology, 1990, 16: 31-51
    [10] Winter DA, Patla AE, Prancois F, et at. Stiffness control of balance in quiet standing. Journal of Neurophysiology, 1998, 80: 1211-1221
    [11] Gonzalez LJ, Sreenivasan SV, Jense JL. A procedure to determine equilibrium postural configuration for arbitrary locations of the feet. Journal of Biomechanical Engineering, 1999, 121: 644-649
    [12] Karlsson A, Frykberg G. Correlation between force plate measures for assessment of balance. Clinical biomechanics, 2000, 15: 365-369
    [13] 蔡海鸥. 颈椎病患者站立平衡功能的观察. 中国康复理论与实践, 1998, 4(1): 19-22
    [14] 付桂敏, 张宝慧, 段京平, 等. 偏瘫患者站立位平衡能力定量研究. 中华理疗杂志, 1998, 21(6): 325-327
    [15] Pidcoe PE, Rogers MW. A closed-loop stepper motor waist-pull system for inducing protective stepping in humans. Journal of Biomechanics, 1998, 31: 377-381
    [16] Nashner L, McCollum G. The organization of human postural movements: a formal basis and experimental synthesis. Behave Brain Science, 1985, 8: 135-172
    [17] Romick AR, Schultz AB. Biomechanics of reactions to impending falls. Journal of biomechanics, 1988, 21(7): 591-600
    [18] Pai YC, Patton J. Center of mass velocity-position predictions for balance control. Journal of Biomechanics, 1997, 30: 347-354
    [19] Tony S, Bjorg F. Effects of varying acceleration of platform translation and toes-up rotations on the pattern and magnitude of balance reactions in humans. Journal of Vestibular Research, 1998, 8(5): 381-397
    [20] Rungem CF, Shupert CL, Horak FB, et al. Ankle and hip postural strategies defined by joint torques. Gait and Posture, 1999, 10: 161-170
    [21] Rietdyk S, Patla AE, Winter DA, et al. Balance recovery from medio-lateral perturbations of the upper body during standing. Journal of Biomechanics, 1999, 32: 1149-1158
    [22] Wu G. Head movement during sudden base translations as a measure of risks for falls in the elderly. Clinical Biomechanics, 2001, 16: 199-206
    [23] 武明. 人体运动平衡策略的研究: [博士学位论文]. 北京: 清华大学精密仪器与机械学系. 2002
    [24] Do MC, Breniere Y, Brenguier P. A biomechanical study of balance recovery during the fall forward. Journal of Biomechanics, 1982, 15: 933-939
    [25] Do MC, Schneider C, Chong RKY. Factors influencing the quick onset of stepping following postural perturbation. Journal of Biomechanics, 1999, 32: 795-802
    [26] Hsiao ET, Robinovitch SN. Biomechanical influence on balance recovery by stepping. Journal of Biomechanics, 1999, 32: 1099-1106
    [27] Maki BE, Mcllroy WE, Perry SD. Influence of lateral destabilization on compensatory stepping responses. Journal of Biomechanics, 1996, 29: 343-353
    [28] McIlroy WE, Maki BE. The control of lateral stability during rapid stepping reactions evoked by anterior-posterior perturbation: does anticipatory control play a role. Gait and Posture, 1999, 9: 190-198
    [29] Thelen DG, Muriuki M, James J. Muscle activities used by young and old adults when stepping to regain balance during a forward fall. Journal of Electromyography and Kinesiology, 2001, 10: 93-100
    [30] Wojcik LA, Thelen DG, Schultz AB. Age and gender differences in peak lower extremity joint torques and ranges of motion used during single-step balance recovery from a forward fall. Journal of Biomechanics, 2001, 34: 67-73
    [31] Wojcik LA. A biomechanical analysis of the mechanisms of fall recovery in young and elderly adults: [Ph.D. Dissertation]. U.S.A.: Department of Mechanical Engineering of University of Michigan. 1997
    [32] Winter DA. Human balance and posture control during standing and walking. Gait and Posture, 1995, 3: 193-214
    [33] Winter DA. Sagittal plane balance and posture in human walking. IEEE Engineering in Medicine and Biology Magazine, 1987: 8-11
    [34] Townsend MA. Biped gait stabilization via foot placement. Journal of Biomechanics, 1985, 18: 21-38
    [35] MacKinnon CD, Winter DA. Control of whole body balance in the frontal plane during human walking. Journal of Biomechanics, 1993, 26: 633-644
    [36] Bauby CE, Kuo AD. Active control of lateral balance in human walking. Journal of Biomechancis, 2001, 33: 1433-1440
    [37] Redfern MS, Schumann T. A Model of foot placement during gait. Journal of Biomechanics, 1994, 27: 1339-1346
    [38] 刘延柱, 徐俊. 人体步行的稳定性. 应用力学学报, 1996, 13: 22-27
    [39] Tucker C.A., Ramirez J., Krebs D.E.. et al. Center of gravity dynamic stability in normal and vestibulopathic gait. Gait & Posture, 1998, 8: 117-123
    [40] Eng JJ, Winter DA, Patla AE. Strategies for recovery from a trip in early and late swing during human walking. Experimental Brain Research, 1994, 102(2): 339-349
    [41] Owings TM, Pavol MJ, Grabiner MD. Mechanisms of failed recovery following postural perturbations on a motorized treadmill mimic those associated with an actual forward trip. Clinical Biomechanics, 2001, 16: 813-819
    [42] Strandberg L, Lanshammar H. The dynamics of slipping accidents. Journal of Occupational Accidents, 1981, 3: 153-162
    [43] Perkins PJ. Measurement of slip between the shoe and ground during walking. In: Anderson C, Senne J, eds. Walkway Surfaces: Measurements of Slip Resistance. Special Technical Publication ASTM 649, Philadelphia: ASTM, 1978. 71–87.
    [44] Brady RA, Pavol MJ, Owings TM, Grabiner MD. Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking. Journal of Biomechanics, 2000, 33(7): 803–808
    [45] Cham R, Redfern MS. Lower extremity corrective reactions to slip events. Journal of Biomechanics, 2001, 34: 1439-1445
    [46] Bring C. Testing of slipperiness: forces applied to the floor and movements of the foot in walking and in slipping on the heel (Document D5). Stockholm: Swedish Council for Building Research, 1982.
    [47] Skiba R, Bonefeld X, Mellwig D. Voraussetzung Zur Bestimmung der Gleitsicherheit beim menschlichen Gang. Zeitschrift fur Arbeitswissenschaft, 1983, 9: 227-232 (in German with English Abstract)
    [48] Leamon TB. Experimental Study of Falling. Proceedings of the Annual Conference of the Human Factors Association of Canada, Edmonton, Canada, 1988: 157-159
    [49] Gr?nqvist R. An apparatus and a method for determining the slip resistance of shoes and foors by simulation of human foot motions. Ergonomics, 1989, 32(8): 979-995
    [50] Peter R. How to reduce falling injuries. National Safety and Health News, 1985
    [51] Rosen SI. The Slip and Fall Handbook. Columbia: Hanrow Press Inc. 1983
    [52] Strandberg L. On accident analysis and slip-resistance measurement. Ergonomics, 1983, 26: 11-32
    [53] Perkins PJ, Wilson MP. Slip resistance of testing shoes new developments. Ergonomics, 1983, 26: 73-82
    [54] Redfern MS, Bidanda B. Slip resistance of the shoe-floor interface under biomechanically relevant conditions. Ergonomics, 1994, 37(3): 511-524
    [55] Redfern MS, DiPasquale J. Biomechanics of descending ramps. Gait and Posture, 1997, 6(2): 119–125
    [56] Hanson JP, Redfern MS, Mazumdar M. Predicting slips and falls considering required and available friction. Ergonomics, 1999, 42: 1619-1633
    [57] James DI. Assessing the slip resistance of fooring materials. In: Gray BE, eds. Slips, Stumbles, and Falls: Pedestrian Footwear and Surfaces. Philadelphia: ASTM, 1990. 133-144.
    [58] You JY, Chou YL, Lin CJ, Su FC. Effect of slip on movement of body center of mass relative to base of support. Clinical Biomechanics, 2001, 16: 167-173
    [59] Tang PF, Woollacott MH. Inefficient postural responses to unexpected slips during walking in older adults. Journals of Gerontology Series A-BiologicalSciences and Medical Sciences, 1998, 53(6): M471-M480
    [60] Tang PF, Woollacott MH, Chong RKY. Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Experimental Brain Research, 1998, 119(2): 141-152
    [61] Tang PF, Woollacott MH. Phase-dependent modulation of proximal and distal postural responses to slips in young and older adults. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 1999, 54(2): M89-M102
    [62] Ferber R, Osternig LR, Woollacott MH, et al. Reactive balance adjustments to unexpected perturbations during human walking. Gait and Posture, 2002, 16: 238-248
    [63] Dietz V, Fouad K, Bastiaanse CM. Neuronal coordination of arm and leg movements during human locomotion. European Journal of Neuroscience, 2001, 14(11): 1906-1914
    [64] Misiaszek JE. Early activation of arm and leg muscles following pulls to the waist during walking. Experimental Brain Research, 2003, 151(3): 318-329
    [65] Marigold DS, Bethune AJ, Patla AE. Role of the Unperturbed Limb and Arms in the Reactive Recovery Response to an Unexpected Slip during Locomotion. Journal of Neurophysiology, 2003, 89: 1727-1737
    [66] Hansen PD, Woollacott MH, Debu B. Postural responses to changing task conditions. Experimental Brain Research, 1988, 73: 627-636
    [67] Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. Journal of Neurophysiology, 1986, 55: 1369-1381
    [68] Mummel P, Timmann D, Krause UWH, Boering D, et al. Postural responses to changing task conditions in patients with cerebella lesions. J Neurol Neurosurg Psychiatry, 1998, 65: 734-742
    [69] Nashner LM. Adaptation of human movement to altered environments. Trends Neurosci, 1982, 5: 358-361
    [70] Nashner LM, Black FO, Wall C. Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. J Neurosci, 1982, 2: 536-544
    [71] Buchanan JJ, Horak FB. Emergence of postural patterns as a function of vision and translation frequency. Journal of Neurophysiology, 1999, 81: 2325-2339
    [72] Corna S, Tarantola J, Nardone A, Giordano A, Schieppati M. Standing on a continuously moving platform: is body inertia counteracted or exploited? Exp Brain Res, 1999, 124: 331-341
    [73] Dietz V, Horstmann GA, Berger W. Interlimb coordination of legmuscle activation during perturbation of stance in humans. J Neurophysiol, 1989, 62: 680-693
    [74] Cham R, Redfern MS. Changes in gait when anticipating slippery floors. Gait and Posture, 2002, 15: 159-171
    [75] Marigold DS, Patla AE. Strategies for dynamic stability during locomotion on a slippery surface: effects of prior experience and knowledge. J Neurophysiol, 2002, 88: 339-353
    [76] Ivanenko YP, Poppele RE, Lacquaniti E. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol-London, 2004, 556: 267-282
    [77] Aruin AS, et al. Anticipatory postural adjustments during standing in below-the-knee amputees. Clin Biomech, 1997, 12: 52-59
    [78] Buckley JG, et al. Postural sway and active balance performance in highly active lower-limb amputees. Am J Phys Med Rehabil, 2002, 81: 13-20
    [79] Blumentritt S, et al. Influence of static prosthetic alignment on standing posture and walking in transtibial amputees. Orthopade, 2001, 30: 161-168
    [80] Blumentritt S, et al. Effects of sagittal plane prosthetic alignment on standing trans-tibial amputee knee loads. Prosthet Orthot Int, 1999, 23: 231-238
    [81] Lemaire ED, et al. Osteoarthritis and Elderly amputee Gait. Archives of Physical Medicine and Rehabilitation, 1994, 75(10): 1094-1099
    [82] Powers CM, et al. Knee kinetics in trans-tibial amputee gait. Gait and Posture, 1998, 8: 1-7
    [83] Tesio L, et al. The 3-d motion of the centre of gravity of the human body during level walking. ii. lower limb amputees. Clinical Biomechanics, 1998, 13(2): 83-90
    [84] Nolan L, et al. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait and Posture, 2003, 17: 142-151
    [85] Powers CM, et al. Stair ambulation in persons with transtibial amputation: an analysis of the seattle lightfoot (TM). J Rehabil Res Dev, 1997, 34: 9-18
    [86] Tokuno CD, et al. Postural and movement adaptations by individuals with a unilateral below-knee amputation during gait initiation. Gait and Posture, 2003, 18: 158-169
    [87] Wilkins KL, et al. Phantom limb sensations and phantom limb pain in child and adolescent amputees. Pain, 1998, 78: 7-12
    [88] van der Schans CP, et al. Phantom pain and health-related quality of life inlower limb amputees. Journal of Pain and Symptom Management, 2002, 24(4): 429-436
    [89] 高云峰, 刘颖. 体育运动中统一的人体多刚体模型及动力学分析方法. 工程力学, 2000, 17(2): 142-144
    [90] 王宪民, 赵拥军, 孙天成, 等. 失重条件下人体动力学方程及开门动作分析. 航天医学与医学工程, 1997, 10(3): 187-191
    [91] Huang SC. Analysis of human body dynamics in simulated rear-end impacts. Human Movement Science, 1998, 17: 821-838
    [92] Huang SC. Biomechanical modeling and simulations of automobile crash victims. Computers & Structures, 1995, 57(3): 541-549
    [93] 张瑞红. 具有路况识别功能的智能膝上假值系统的研究: [博士学位论文]. 北京: 清华大学精密仪器与机械学系. 2000.5.
    [94] Braune W, Fischer O. On the Center of Gravity of the Human Body, New York: Springer-Verlag, 1985.
    [95] Elftman H, Manter J. A cinematic study of the distribution of pressure in the human foot. Science, 1934, 80: 484.
    [96] Elftman H, Forces and energy changes in the leg during walking. American Journal of Physiology, 1939, 25: 339-356
    [97] Bresler B, Frankel JP. The forces and moments in the leg during level walking. Transactions of the American Society of Mechanical Engineers, 1950: 27-36
    [98] Hanavan EP. A mathematical model of the human body. Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio. 1964
    [99] Hardt DE, Mann RW. Technical note: a five body --three dimensional dynamic analysis of walking. Journal of Biomechanics, 1980, 13: 455-457
    [100] Onyshko S, Winter DA. A mathematical model for the dynamics of human locomotion. Journal of Biomechanics, 1980, 13: 361-368
    [101] Mena D, Mansour JM, Simon SR. Analysis and synthesis of human swing leg motion during gait and its clinical applications. Journal of Biomechanics, 1981, 14: 823-832
    [102] Pandy MG, Berme N. A numeral method for simulating the dynamics of human walking. Journal of Biomechanics, 1988, 12(12): 1043-1051
    [103] Pandy MG, Berme N. Synthesis of human walking: A planar model for single support. Journal of Biomechanics, 1988, 12(12): 1053-1060
    [104] Kagaya H, Ito S, Iwami T, Obinata G, Shimada Y. A computer simulation of human walking in persons with joint contractures. Tohoku Journal of Experimental Medicine, 2003, 200(1): 31-37
    [105] Bauby CE, Kuo AD. Active control of lateral balance in human walking. Journal of Biomechanics, 2000, 33: 1433-1440
    [106] Carson MC, Harrington ME, Thompson N, O’Connor JJ, Theologis TN. Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. Journal of Biomechanics, 2001, 34: 1299-1307
    [107] Komistek RD, Kane TR, Mahfouz M, et al. Knee mechanics: a review of past and present techniques to determine in vivo loads. Journal of Biomechanics, 2005, 38: 215-228
    [108] Taga G. A model of the neuro-muscle-skeletal system for human locomotion: 1. Emergence of basic gait. Biological Cybernetics, 1995, 73(2): 97-111
    [109] Taga G. A model of the neuro-muscle-skeletal system for human locomotion: 2. Real-time adaptability under various constraints. Biological Cybernetics, 1995, 73(2): 113-121
    [110] Neptune RR, Hull ML. Evaluation of performance criteria for simulation of submaximal steady-state cycling using a forward dynamic model. Journal of Biomechanical Engineering, 1998, 120: 334-341
    [111] Spagele T, Kistner A, Gollhofer A. Modeling, simulation and optimization of a human vertical jump. Journal of Biomechanics, 1999, 32: 521-530
    [112] DeWoody Y, Martin CF, Schovanec L. A forward dynamic model of gait with application to stress analysis of bone. Mathematical and Computer Modeling. 2001, 33: 121-143
    [113] Jonkers I, Spaepen A, Papaioannou G, Stewart C. An EMG-based, muscle driven forward simulation of single support phase of gait. Journal of Biomechanics, 2002, 35: 609-619
    [114] Pandy MG, Anderson FC. Dynamic optimization of human gait (abstract). 11th Conference of the ESB, Toulouse, France. 1998
    [115] 董玉振. 人体步态动力学及智能下肢假肢的研究: [博士学位论文]. 北京: 清华大学精密仪器与机械学系. 1995
    [116] 张培玉. 人体-假肢系统全步态周期动力学模型与假肢性能的研究: [博士学位论文]. 北京: 清华大学精密仪器与机械学系. 1998
    [117] 杨义勇. 人体神经肌骨系统运动协调及其控制机理的研究: [博士学位论文]. 北京: 清华大学精密仪器与机械学系. 2004
    [118] 徐秩群, 黄茂林. 机器人动力学分析新方法——Kane 方法. 四川轻化工学院学报. 1995, 8(4): 28-33
    [119] 泽村诚志 (孙国凤 译). 假肢学. 北京: 中国社会出版社, 1992.
    [120] Kane TR, Levinson DA. Dynamics: theory and applications. New York: McGraw-Hill Book Co. 1985
    [121] Winter DA. The biomechanics and motor control of human gait. Canada: University of Waterloo Press. 1987
    [122] Franghignoni F. Reliability of four simple, quantitative test of balance and mobility in healthy elderly females. Aging, 1998; 10(1):26-31
    [123] 中国国家标准化管理委员会. GB/T 17245-2004. 成年人人体惯性参数. 北京. 2004.
    [124] Whittle MW. Gait analysis: an introduction (second edition). U.K.: Reed Educational and professional publishing. 1997
    [125] 刘延柱, 杨海兴. 理论力学. 北京: 高等教育出版社, 1992
    [126] 杨年峰. 人体运动协调规律及其参数化描述: [博士学位论文]. 北京: 清华大学精密仪器与机械学系. 2001
    [127] Bonato P, Ebenbichler GR, Roy SH, Lehr S, Posch M, Kollmitzer J, Della UC. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task. Spine 2003, 28: 1810-1820
    [128] 申永胜. 机械原理教程. 北京: 清华大学出版社, 1999, 34-87
    [129] Nakagawa A. Intelligent knee mechanism and the possibility to apply the principle to the other joints. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998, 20(5): 2282-2287
    [130] De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech, 1997, 13: 135-163
    [131] 孙文爽, 陈兰详. 多元统计分析. 北京: 高等教育出版社, 1994, 393-425
    [132] 王学民. 应用多元分析. 上海: 上海财经大学出版社, 1999, 209-236.
    [133] Miller WC, Speechley M, Deathe AB, Koval J. The influence of falling, fear of falling, and balance confidence on prosthetic mobility and social activity among individuals with a lower extremity amputation. Arch Phys Med Rehab, 2001, 82: 1238-1244
    [134] Kaiser HF. An index of factorial simplicity. Psychometrika, 1974, 39: 31-36
    [135] Morlock MM, Bonin V, Müller G, Schneider E. Trunk muscle fatigue and associated EMG changes during a dynamic iso-inertial test. Eur J Appl Physiol, 1997, 76: 75-80
    [136] Airaksinen O, Rantanen P, Sihvonen T, Airaksinen K, Hanninen O, Herno A. Monitoring of muscle fatigue during isokinetic exercise. Acupuncture Electro, 2001, 26: 253-261
    [137] Hogan N. A review of the methods of processing EMG for use as a proportional control signal. Riomed Eng, 1976, 11: 81-86
    [138] Hudgins B, Parker P, Scott RV. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng, 1993, BMEIO: 82-94
    [139] Kaplanis PA, Pattichis CS, Roberts CV. Influence of isometric voluntary contraction on time and frequency domain parameters of surface EMG. Second Joint EMBS-BMES Conference, Conference Proceedings-Bioengineering-Integ- rative Methodologies, New Technologies, 2002, 1-3: 2408-2409
    [140] Pai YC. Induced limb collapse in a sudden slip during termination of sit-to-stand. J Biomech, 1999, 32: 1377-1382
    [141] Kiayama I, Nakagawa N, et al. A microcomputer controlled intelligent A/K prosthesis –fundamental development. Proceedings Seventh World Congress of ISPO, CHICAGO. 1992. 347
    [142] Zhou XD, Draganich LF, Amirouche F. A dynamic model for simulating a trip and fall during gait. Medical Engineering & Physics, 2002, 24: 121-127
    [143] http://www.ottobock.com
    [144] 盛骤, 谢式千, 潘承毅. 概率论与数理统计(第二版). 北京: 高等教育出版社. 1993, 241-290
    [145] Whittle MW. Gait analysis: an introduction. Boston: Butterworth-Heinemann, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700