温度对南方鲇幼鱼代谢对策的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为考察在不同温度下摄食对南方鲇游泳运动能力的影响,验证摄食在高温下比在低温下对其游泳运动能力有更显著影响的假说,本研究以嘉陵江和扬子江广泛分布,伏击取食的南方鲇(Silurus meridionalis)为对象,在不同温度(15, 21, 27和33℃)下,对其特殊动力作用(Specific dynamic action , SDA)、临界游泳速度(Critical swimming speeding,Ucrit)以及耗氧率(Oxygen consumption rate, VO2)进行了研究,旨在考察温度对南方鲇幼鱼代谢对策(Metabolic strategy)的影响,揭示其生理生化适应机制。
     主要结果:
     1.实验鱼的静止耗氧率(VO2rest)随着温度的增加VO2rest显著增加,各处理组间均有显著差异(p < 0.05)。摄食后各处理组实验鱼的耗氧率(VO2)在2 h后均显著增加(p < 0.05),经历一个平台期后回落到摄食前水平。各温度处理组实验鱼(15,21,27,33℃)的摄食代谢峰值时间(Time to peak)分别为摄食后的27.14,20.00,13.43,14.00 h,摄食代谢峰值(VO2peak)分别为57.8,112.5,135.0,160.5 mgO2 kg-1 h-1,随温度的增加VO2peak显著地增加(p < 0.05),然而峰值比率(Factorial metabolic scope)没有显著差异。当温度从33℃下降到15℃时,SDA持续时间从60.43h减短到40.29 h,它是一个显著地下降当温度从33℃下降到21时℃(p < 0.05)。当温度从15℃上升到21℃时,摄食代谢系数(SDA coefficient)显著地增加(p < 0.05),但在21,27,和33℃组之间没有显著差异。
     2.不同温度处理(15,21,27,33℃)禁食组实验鱼的临界游泳速度(Ucrit)分别为2.18,2.74,3.69,3.67 BL s?1,当温度从15℃增加到27℃时,Ucrit随温度的增加显著增加(p < 0.05),但27℃与33℃处理组之间没有显著差异(图2)。各温度处理组的游泳耗氧率随实验鱼游泳速度(U)的增加均显著增加(p < 0.05)。各温度处理组(15,21,27,33℃)实验鱼的活跃耗氧率(禁食实验鱼游泳过程中的最大耗氧率,VO2active)分别为101.4,161.9,240.0,265.2 mgO2 kg-1 h-1,VO2active随温度的增加而显著增加,且各温度组之间均有显著差异(p < 0.05)。
     3.在15,21,27和33℃条件下,各摄食组实验鱼的Ucrit分别为2.15, 2.41,3.00和2.90 BL s?1。在15℃下,在摄食组和禁食组实验鱼的Ucrit之间没有显著差异(p = 0.66),但在21,27,33℃下,摄食组的Ucrit与禁食组的相比较,分别下降了12.04,18.70,20.98%,且均有显著差异(p < 0.05)。
     4.各温度处理(15,21,27,33℃)禁食组实验鱼的VO2rest分别为25.43, 36.82,43.72,54.22 mgO2 kg-1 h-1,摄食组实验鱼在摄食代谢峰值时的耗氧率(VO2peak)在相应的温度下分别为49.7,89.8,127.6,163.5 mgO2 kg-1 h-1。在各温度处理下,各摄食组实验鱼的在各游泳速度下的VO2均显著高于禁食组在其相应流速下的VO2(p < 0.05)。各温度处理(15,21,27,33℃)摄食组实验鱼在游泳过程中的最大耗氧率(VO2max)分别是128.1,184.9,269.4,315.4 mgO2 kg-1 h-1,且均显著高于相应温度下禁食组实验鱼在相应温度下的VO2activ(p < 0.05)。
     结果表明:
     1.尽管南方鲇幼鱼的最大代谢(VO2max)随着温度的增加而增加,但其摄食后相对代谢剩余空间(VO2max-VO2peak)随着温度的升高而降低;南方鲇摄食对运动能力的削弱随温度的增加而加强的现象归因于其中心心鳃系统和外周系统(消化系统和运动组织)的功能随温度的影响具有不一致性。
     2.在不同温度下,南方鲇具有不同的代谢对策,这可能与其自身消化、运动以及摄食后运动的代谢需求,机体内外环境离子平衡和外环境溶解氧水平等因素相关。
To estimate whether the effects of feeding on swimming performance vary with acclimation temperature and test the hypothesis that digestion has a more notable physiological effect at high temperature than low temperature in juvenile southern catfish (Silurus meridionalis), an ambush forager distributed along the JiaLing and Yangtze Rivers, China, we investigated the specific dynamic action (SDA), critical swimming speeding (Ucrit) and oxygen consumption rate (VO2) of fasting and feeding fish at acclimation temperatures of 15, 21, 27, and 33 oC.
     The results as follows:
     1. The pre-fed resting oxygen consumption rate (VO2rest) values increased significantly with temperature (p < 0.05). The VO2 increased significantly 2 h after feeding in every temperature group, then reached a plateau and decreased significantly to the pre-fed level. The peak time values were 27.14 h at 15 oC, 20.00 h at 21 oC, 13.43 h at 27 oC, and 14.00 h at 33 oC. The VO2peak increased with temperature (p < 0.05), whereas the factorial metabolic scope did not significantly differ among the four temperature groups. The SDA duration decreased from 65.43 to 40.29 h as the temperature increased from 15 to 33 oC (p < 0.05). The duration of SDA did not differ in temperatures ranging from 15 to 21 oC, but it increased as the temperature increased from 21 to 33 oC (p < 0.05). The SDA coefficient increased from 15 to 21 oC (p < 0.05), but there was no significant difference among 21, 27 and 33 oC.
     2. The Ucrit values were 2.18, 2.74, 3.69, and 3.67 BL s-1 at 15, 21, 27 and 33 oC, respectively. The Ucrit significantly increased in the temperature zone of 15 to 25 oC (p < 0.05), but there was no significant difference between 27 and 33 oC. The VO2 increased with an increase of the swimming speeds (U) at every acclimation temperature (p < 0.05). The active oxygen consumption rate (VO2active) were 101.4, 161.9, 240.0, and 265.2 mgO2 kg-1 h-1 at 15, 21, 27 and 33 oC, respectively. The VO2active increased with the increase of temperature (p < 0.05).
     3. The Ucrit of the feeding groups were 2.15, 2.41, 3.00, and 2.90 BL s-1 at 15, 21, 27 and 33 oC, respectively. There was no significant difference between the unfed and fed group at 15 oC (p = 0.66). However, Ucrit values of the feeding groups were 12.04, 18.70, and 20.98% lower than those of the fasting groups at 21, 27, and 33 oC, respectively (p < 0.05).
     4. The VO2rest values of the fasting groups were 25.43, 36.82, 43.72, and 54.22 mgO2 kg-1 h-1 at 15, 21, 27 and 33 oC, respectively, whereas the resting metabolic rates of the feeding groups in peak times were 49.7, 89.8, 127.6, and 163.5 mgO2 kg-1 h-1 at 15, 21, 27 and 33 oC, respectively. The VO2max values of the feeding groups were 128.1, 184.9, 273.7, and 237.9 mgO2 kg-1 h-1 at 15, 21, 27 and 33 oC, respectively. The VO2max values of all feeding groups were higher than those of the fasting groups at all temperature (p < 0.05).
     The indications as follows:
     1. The VO2max increased with increasing temperature, but the relative residual metabolic scope (VO2max-VO2peak) during swimming decreased with increasing in temperature. The present study showed that the impairment of postprandial swimming performance increased with increasing temperature due to the unparalleled changes in the catfish’s central cardio-respiratory, peripheral digestive and locomotory capacities.
     2. The different metabolic strategies of juvenile southern catfish at different temperatures may relate to changes in oxygen demand, imbalances in ion fluxes and dissolved oxygen levels with changes in temperature.
引文
[1]陈湘遴.我国鲇科鱼类总述[J].水生生物学集刊. 1977, 6:197-218.
    [2]付世建,曹正东,谢小军.鱼类摄食代谢和运动代谢研究进展[J].动物学杂志, 2008, 43: 150-159.
    [3]施白南.嘉陵江南方大口鲇的生物学研究[J].西南师范大学学报. 1980, 2:45-52.
    [4]王玉山,王祖望,王德华等.哺乳动物最大代谢率的研究进展[J].兽类学报, 2002, 22:305-317.
    [5]王云松,曹正东,付世建,王宇翔.南方鲇幼鱼的热耐受性特征[J].生态学杂志, 2008, 27:2136-2140.
    [6]谢小军,孙孺泳.南方鲇的排粪量及消化率同日粮、体重和温度的关系[J].海洋与湖沼, 24: 627-634.
    [7]谢小军,孙孺泳.南方鲇的日总代谢和特殊动力作用的能量消耗[J].水生生物学报, 1992, 16: 2002-207.
    [8]张怡,曹振东,付世建.延迟首次投喂对南方鲇(Silurus meridionalis Chen)仔鱼身体含能量、体长及游泳能力的影响[J].生态学报,2007, 21: 1161-1167.
    [9]郑保珊,陈庆泰.中国鱼类志[M].科学出版社, 1987, pp:210.
    [10]Alsop D H, Wood C M. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss)[J]. J Exp Biol. 1997, 200:2337-2346.
    [11]Andersen J B, Wang T. Cardiorespiratory effects of forced activity and digestion in toads. Physiol. Biochem[J]. Zool. 2003, 76:459-470.
    [12]Bacigalupe L D, Bozinovic F. Design, limitations and sustained metabolic rate: lessons from small mammals[J]. J Exp Biol. 2002, 205: 2963-2970.
    [13]Barrionuevo, W.R., Burggren, W.W., 1999. O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am J. Physiol. Regulatory. Integrative. Comp. Physiol. 276, 505-513.
    [14]Blaikie H B, Kerr S R. Efect of activity level on apparent heat increment in Atlantic cod, Gadus morhua[J]. Can J Fish Aquatic Sci. 1996, 53:2093-2099.
    [15]Beamish F W H, Howlett J C, Medland T E. Impact of diet on metabolism and swimming performance in juvenile lake trout, Salvelinus namaycush[J]. Can Fish Aquatic Sci. 1989, 46:384-388.
    [16]Bell, W.H., Terhune, L.D.B., 1970. Water tunnel design for fisheries research. Fish. Res. BoardCan. Tech. Rep. 195, 1-69.
    [17]Bennett A F, Hicks J W. Postprandial exercise: prioritization or additivity of the metabolic response? [J] J Exp Biol. 2001, 204:2127-2132.
    [18]Brett J R. The respiratory metabolism and swimming performance of young sockeye salmom[J]. Can J Fish Res Boad. 1964, 21: 1183-1226.
    [19]Butler P J, Day N. The relationship between intracellular PH and swimming performance of brown trout exposed to neutral and sublethal PH [J]. J Exp Biol.1992, 176:271-284
    [20]Claireaux G, Couturier C, Groison, A L. Effect of temperature on maximum swimming speed and cost of transport in juvenile European sea bass (Dicentrarchus labrax)[J]. J Exp Biol. 2006, 200:3420-3428.
    [21]Claireaux G, Webber D M, Lagadere J P, Kerr S R. Influence of water temperature and oxygenation on the aerobic metabolic scope of Atlantic cod (Gadus morhua)[J]. J Sea Res. 2000, 44:257-265.
    [22]Dandrifosse G. Digestion in reptiles[M]. New York, Academic Press, pp:249-276.
    [23]Day N, Butler P J. The effects of acclimation to reversed seasonal temperature on the swimming performance of adult brown trout Salmo trutta[J]. J Exp boil. 2005, 208:2683-2692.
    [24]Diefnbach C O. Gastric function in Caiman crocodiles (Crocodylia: Reptilia). I. Rate of gastric digestive and gastric motility as a function of temperature[J]. Comp Biochem Physiol A. 1975a, 51:259-265.
    [25]Diefnbach C O. Gastric function in Caiman crocodiles (Crocodylia: Reptilia). II. Effects of temperature on pH and proteolysis [J]. Comp Biochem Physiol A. 1975b, 51:267-274.
    [26]Dickson K A, Donley J M, Sepulveda C, Bhoopat L. Effects of temperature on sustained swimming performance and swimming kinematics of the chub mackerel Scomber japonicus [J]. J Exp Biol. 2002, 205, 969-980.
    [27]Farlinger S, Beamish F W H. Changes in the blood chemistry and critical swimming speed of largemouth bass, Micropterus salmoides, with physical conditioning [J]. Am Trans Fish Sot. 1978, 107:523-527.
    [28]Farrell A P, Thorarensen H, Axelsson M, Crocker C E, Gamperl A K, Cech, J J Jr. Gut blood flow in fish during exercise and severe hypercapnia[J]. Comp Biochem Physiol A. 2001, 128: 549-561.
    [29]Fitzgibbon Q P, Srawbridge A S, Seymour R S. Metabolic scope, swimming performance and the effects of hypoxia in the mulloway, Argyrosomus japonicus (Pisces: Sciaenidae)[J]. Aquac. 2007,270:358-368.
    [30]Fry F E J, Cox E T. A relation of size to swimming speed in rainbow trout [J]. Can J Fish ResBoad. 1970, 7:976-978.
    [31]Fry, F.E.J., 1971. The effect of environmental factors on the physiology of fish. In: Hoar, W.S., Randall, D.J. (Eds.), Fish Physiology. Academic Press, San Diego, pp. 1–99.
    [32]Fu S J, Cao Z D. Efect of dietary protein and lipid levels on feed intake and growth performance of southern catfish, Silurus meridionalis[J]. Aqua Res, 2006, 37:107-110.
    [33]Fu S J, Cao Z D, Peng J L. Effect of feeding and fasting on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen)[J]. Comp Biochem Physiol. 2007, 146:435-439.
    [34]Fu S J. The growth performance of southern catfish fed diets with raw, precooked cornstarch and glucose at two levels[J]. Aqua Nutri. 2005, 11:257-261.
    [35]Fu S J, Xie X J, Cao Z D. Effect of dietary composition on specific dynamic action in southern catfish, Silurus meridionaliss[J]. Aqua Res, 2005a, 36:1384-1390.
    [36]Fu S J, Xie X J, Cao Z D. Effect of fasting and repeat feeding on metabolic rate in southern catfish,Silurus meridionalis Chen[J]. Mar Fresh Behav Physiol, 2005b, 31:191-198.
    [37]Fu S J, Xie X J, Cao Z D. Effect of fasting on resting metabolic rate and postprandial metabolic response in southern catfish (Silurus meridionalis Chen)[J]. J Fish Biol. 2005c, 67:279-285.
    [38]Fu S J, Xie X J, Cao Z D. Effect of feeding level and feeding frequency on specific dynamic action in southern catfish Silurus meridionalis Chen[J]. J Fish Biol. 2005d, 67:l7l-l81.
    [39]Fu S J, Xie X J, Cao Z D. Effect of meal size on specific dynamic action in southem catfish (Silurus meridionalis Chen)[J]. Comp Biochem Physiol A, 2005e, 140:445-451.
    [40]Fu S J, Zeng L Q, Li X M, Pang X, Cao Z D, Peng J L, Wang, Y X. The behavioral, digestive and metabolic characteristics of fishes with different foraging strategies[J]. J Exp Biol. 2009a, 212:2296-2302.
    [41]Fu S J, Zeng L Q, Li X M, Pang X, Cao Z D, Peng J L, Wang, Y X. Effect of meal size on exercise oxygen consumption in fishes with different locomotive and digestive performance[J]. J Comp Physiol. B 2009b, 179:509-517.
    [42]Gonzalez, R.J., McDonald, D. J., 1994. The relationship between oxygen uptake and ion loss in fish from diverse habitats. J. Exp. Biol. 190, 95-108.
    [43]Graham J B, Dewar H, Lai N C, Lowell W R, Arce S M. Aspects of shark swimming performance determ ined using a large water tunne1[J]. J Exp Biol, 2004, 151: 175-192.
    [44]Guderley H. Locomotor performance and muscle metabolic capacities: impact of temperature and energetic status[J]. Comp Biochem Physiol B. 2004, 139: 371-382.
    [45]Guinea J, Fernandez F. Eeffect of feeding frequency, feeding level and temperature on energy metabolism in Sparus aurata[J]. Aquatic. 1997, 148:125-142.
    [46]Green, B.S., Fisher, R., 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J. Exp. Mar. Biol. Ecol. 299, 115-132.
    [47]Gregory T R, Wood C M. Individual variation and interrelationships between swimming performance, growth rate, and feeding in juvenile rainbow trout (Oncorhynchus mykiss)[J]. Can Fish Aquat Sci. 1998, 55:1583-1590.
    [48]Hailey A, Davies P M C. Digestion, specific dynamic action, and ecological energetics if Natrix maura[J], J Herpetol. 1987, 1:159-166.
    [49]Hammer C. Fatigue and exercise tests with fish [J]. Comp Biochem Physiol A . 1995, 112 1:1-20.
    [50]Hicks, J W H, Bennett A F. Eat and run: prioritization of oxygen delivery during elevated metabolic states[J]. Res Physiol Neaurol. 2004, 144:215-244.
    [51]Hicks J W, Wang T, Bennett A F. Patterns of cardiovascular and ventilatory response to elevated metabolic states in the lizard Varanus exanthematicus[J]. J Exp Biol. 2000, 203:2437-2445.
    [52]Hunt von Herbing I, White L. The effects of body mass and feeding on metabolic rate in small juvenile Atlantic cod[J]. J Fish Biol. 2002, 61:945-958.
    [53]Jain K E, Farrell A P. Influence of seasonal temperature on the repeat swimming performance of rainbow trout Oncorhynchus mykiss[J]. J. Exp. Biol. 2003, 206, 3569–3579.
    [54]Jain K E, Hamilton J C, Farrell, A P. Use of a ramp velocity test to measure critical swimming speed in Rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A[J]. 1997, 117:441–444.
    [55]Jobling M, Davies P S. Effects of feeding on metabolic rate, and the specific dynamic action in plaice, Pleuronectes platessa L[J]. J Exp Biol. 1980, 16:629-638.
    [56]Jobling M. The influences of feeding on the metabolic rate of fishes: a short review[J]. J Fish Biol. 1981, 18:385-400.
    [57]Johnson I A, Temple G K. Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour[J]. J Exp Biol. 2002, 205:2305-2322.
    [58]Johnson T P, Bennett A F. The thermal acclimation of burst swimming escape performance in fish: an integrated study of molecular and cellular physiology and organismal performance[J]. J Exp Biol. 1995, 198:2165-2175.
    [59]Jordon A D, Steffensen J F. Effects of ration size and hypoxia on specific dynamic action in the cod. Physiol Biochem Zoll[J]. 2007, 80:178-185.
    [60]Katz S L, Syme D A, Shadwick R E. High-speed swimming: Enhanced power in yellowfin tuna[J]. Nature, 2001, 410:770-771.
    [61]Keen J E, Farrell A P. Maximum prolonged swimming speed and maximum cardiac performanceof rainbow trout, Oncorhynchus mykiss, acclimated two different temperatures[J]. Comp Biochem Physiol A. 1994, 108:287-295.
    [62]Kieffer J D. Limits to exhaustive exercise in fish[J]. Comp Biochem Physiol A. 2000, 126:161-179.
    [63]Lee C G, Farrell A P, Lotto A, MacNctt M J, Hinch S G, Healey M C. The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks[J]. J Exp Biol. 2003, 206:3239-3251.
    [64]Lillywhite H B. Temperature, energetics, and physiological[M]. New York, McGraw-Hill. 1987, pp:422-477.
    [65]Liu Y, Cao Z D, Fu S J, Peng J L, Wang Y X. The effect of exhaustive chasing training on swimming performance in juvenile darkbarber catefish (Peltebagrus vachelli)[J]. Comp Physiol B. 2009, 179:847-855.
    [66]Li X M, Cao Z D, Peng J L, Fu S J. The effect of exercise training on the metabolic interaction between digestion and locomotion in juvenile darkbarbel catfish (Peltebagrus vachelli) [J]. J Exp Zool. (Submited)
    [67]Li X M, Cao Z D, Peng J L, Fu S J. The effect of exercise training on the metabolic interaction between digestion and locomotion in juvenile darkbarbel catfish (Peltebagrus vachelli) [J]. Comp Biochem Physiol A. 2010, 156:67-73.
    [68]Lowe C J, Davison W. Thermal sensitivity of scope for activity in Pagothenia borchgrevinki, a cryopelagic Antarctic nototheniid fish[J]. Polar Biol. 2006, 29: 971–977.
    [69]Lowe T E, Wells R M G. Exercise challenge in Antarctic fishes: do haematology and muscle metabolite levels limit swimming performance?[J]. Polar Biology, 1997, 17:211-218.
    [70]Luo Y P, Xie X J. Effects of temperature on specific dynamic action of the southern catfish Silurus meridionalis[J]. Comp Biochem Physiol A. 2008, 149:150-156.
    [71]MacNutt M J, Hinch S G, Lee C G, Phibbs J R, Lotto A G, Healey M C, Farrell A P. Temperature effects on swimming performance, energetics, and aerobic capacities of mature adult pink salmon (Oncorhynchus gorbuscha) compared with those of sockeye (Oncorhynchus nerka)[J]. Can J Zool. 2006, 84:88-97.
    [72]McGaw I J. The interactive effects of exercise and feeding on oxygen uptake, activity levels, and gastric processing in the graceful crab Cancer gracilis[J]. Physiol Biochem Zool. 2007, 80:335-343.
    [73]Mcginnis S M, Moore R G. Thermoregulation in the boa constricter Boa constrictor[J]. Herpetologica. 1969, 25:38-45.
    [74]Motais R., Isaia J. Temperature-dependence of permeability to water and to sodium of the gillepithelium of the eel Anguilla anguilla[J]. J Exp Biol. 1972. 56: 587-600.
    [75]Pang X, Cao ZD, Fu SJ. The effects of dissolved oxygen on resting oxygen consumption and swimming performance in juvenile darkbarbel catfish (Peltebagrus vachelli). Fish Biochem Physiol. (Submited)
    [76]Pang X, Cao ZD, Peng JL, Fu SJ. The effects of feeding on the swimming performance and metabolic response of juvenile southern catfish, Silurus meridionalis, acclimated at different temperatures. Comp Biochem Physiol A. 2010, 155: 253-258.
    [77]Pavlov D S, Sbikin Yu N, Vashchinnikov A Ye, Mochek A D. The effect of light intensity and water temperature on the current velocities critical to fish [J]. Journal of Ichthyography. 1972, 12:703-711.
    [78]Peck L S, Buckley L J Bengstson D A. Energy losses due to routine and feeding metabolism in young-of-year juvenile Atlantic cod (Gadus morhua)[J]. Can. J. Fish. Aquat. Sci. 2003, 60:929-937.
    [79]Plaut I. Does pregnancy affect swimming performance of female Mosquitofish, Gambusia affinis? [J]. Functional Ecology 2002, 16, 290–295.
    [80]Priede I G.. Metabolic scope in fishes. In Tytler, P. and Calow, P. (Eds), Fish Energetics: New Perspective[M]. London, Croom-Helm, 1985, pp:33-64.
    [81]Pulgar M J, Aldana M, Bozinovic F, Ojeda F P. Does food quality influence thermoregulatory behavior I the intertidal fish Girella laevifrons?[J] J Therm Biol. 2003, 28:539-544. ]Randall D, Brauner C. Effects of enviromental factors on exercise in fish [J]. Journal of Experimental Biology, 1991, 160:113-126.
    [82]Randall D, Brauner C. Effects of enviromental factors on exercise in fish [J]. J Exp Biol. 1991, 160:113-126.
    [83]Regal P J. Thermophilic response following feeding in certain reptiles. Copeia. 1996, 588-590.
    [84]Reidy S P, Kerr S R, Nelson J A. Aerobic and anaerobic swimming performance of individual Atlantic cod[J]. J Exp Biol. 2002, 203: 347-357.
    [85]Robertson R F, Meagor J, Taylor E W. Specific dynamic action in the shore crab, Carcinus maenas (L.), in relation to acclimation temperature and to the onset of the emersion response[J]. Physiol Biochem Zool. 2002, 75:350–359.
    [86]Rome L C, Funke R P, Alexander R M. The influence of temperature on muscle velocity and sustained performance in swimming carp[J]. J Exp Biol. 1990, 154:163-178.
    [87]Rome L C. Influence of temperature on muscle recruitment and muscle function in vivo[J]. Am J Physol R. 1990, 28:210-222.
    [88]Secor S M, Faulker A C. Effect of meal size, meal size, meal type, body temperature, and bodysize on the specific dynamic action of the marine toad, Bufo marinus[J]. Physol Biochem Zool. 2002, 75:557-571.
    [89]Secor S M. Regulation of digestive performance: a proposed adaptive response. Comp Biochem Physol A[J]. 2001, 128:565-567.
    [90]Secor S M. Specific dynamic action: a review of the postprandial metabolic response[J]. J Comp Physiol B 2009, 179:1–56.
    [91]Secor, S.M., Wooten, J.A. and Cox, C.L., Effects of meal size, meal type, and body temperature on the specific dynamic action of anurans[J]. J Comp Physiol B. 2007, 177:165–182.
    [92]Silverstein J T, Shearer K D, Dichhoff W W, Plisetskaya E M. Regulation of nutrient and energy balance in salmon. Aquac. 1999, 177:161-169.
    [93]Skoczylas R. Influence of temperature on gastric digestion in the grass snake, Natrix natrix L[J]. Comp Biochem Physiol. 1970, 33:793-803.
    [94]Sollid, J., Weber, R.E. Nilsson, G.E., 2005. Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J. Exp. Biol. 208, 1109-1116.
    [95]Sprague J B. Measurement of pollutant toxicity to fish. III. Sublethal effects and“safe”concentrations [J]. Water Res. 1971, 5:245-266.
    [96]Swanson C, Young P S, Cech J J. Swimming performance of delta smelt: maximum performance, and behavioral and kinematic limitations on swimming at submaximal velocity[J]. J Exp Biol. 1998, 201, 333-345.
    [97]Tandler A, Beamish F W H. Specific dynamic action and diet in largemouth bass,Micropterus salmoides Lacepede[J]. J Nutri. 1980, 110:750-764.
    [98]Taylor S E, Egginton S, Taylor E W. Seasonal temperature acclimatization of rainbow trout: cardiovascular and morphometric influences on maximal sustainable exercise level[J]. J Exp Biol. 1996, 199:835-845.
    [99]Thorarensen H, Farrell A P. Postprandial intestinal blood flow, metabolic rate, and exercise in Chinook salmon (Oncorhynchus tshawytscha). Physiol Biochem Zool[J]. 2006, 79:688–694.
    [100]Toledo L F, Abe A S, Aheam D V. Temperature and feeding level effects on the postprandial metabolic and energetics in a boid snake[J]. Physol Biochem zool. 2003, 76:240-246.
    [101]Wang T, Busk M, Overgaard J. The respiratory consequences of feeding in amphibians and reptiles[J]. Comp Biochem Physiol A. 2001, 128:535-549.
    [102]Wang T, Zaar M, Arvedsen S, Vedel-Smith C, Overgaard J. Effects of temperature on the metabolic response to feeding in Python molurus[J]. Comp Biochem Physol. 2003, 133:519-527.
    [103]Warren C E, David G E. Laboratoty studies on the feeding bioengetics and growth of fish[M].Oxford. Blackwell sci. publ. 1967, pp:175-214.
    [104]Whitley H A, Humphreys S M, Campbell I T. Metabolic and performance responses during endurance exercise after high-fat and high-carbohydrate meal[J]. J apply physiol. 1998, 85:418-424.
    [105]Zeidel, M. L. 1996. Low permeabilities of apical membranes of barrier epithelia: what makes watertight membranes watertight? Am J Physiol F. 271, 243-245.
    [106]Zeng L Q, Cao Z D, Fu S J, Peng J L, Wang Y X. Effect of temperature on swimming performance in juvenile southern catfish (Silurus meridionalis Chen)[J]. Comp Biochem Physiol A. 2009, 153:125-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700