迷走神经和DVC在胆碱能抗炎通路中的作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆碱能抗炎通路(cholinergic anti-inflammatory pathway,CAP)是指当致病细菌入侵时,体内的迷走神经及其递质乙酰胆碱(Acetylcholine,Ach)与免疫系统相互作用参与抗炎。已有的研究表明,迷走传出神经及其递质Ach参与了胆碱能抗炎通路的调控过程。黄健等通过先夹伤迷走神经干中枢端,注射内毒素后,发现迷走神经传出纤维放电频率增加。Borovikova等直接电刺激内毒素血症大鼠的迷走神经传出纤维,可抑制肝脏和心脏肿瘤坏死因子-α(TNF-α)的生成,降低血清TNF-α的含量。Thomas等研究显示,电刺激迷走神经能够抑制缺血再灌注损伤所导致的全血TNF-α升高,缓解缺血再灌注引起的休克。石德光、胡森等切断迷走神经则使心肌的TNF-α水平显著升高,炎性损伤加重;电刺激切断的迷走神经远端能使内毒素(LPS)血症大鼠肺组织中TNF-α含量显著降低,炎性病理改变减轻。以上主要通过夹伤、电刺激或切断迷走神经的方法来研究迷走传出神经对炎症反应的影响,但在迷走传出神经正常的情况下,其在炎症反应中放电频率变化,无相关报道。
     迷走传出神经及其递质Ach参与了抗炎反应,表明炎症反应中迷走传出神经位于迷走神经背核(DMV)内的节前神经元被激活,那么,炎症信息是如何传递至DMV的?通常认为周围免疫信息可通过两种途径传达到脑,一是血液中的细胞因子通过缺乏血脑屏障的最后区(AP)入脑,由AP直接传递至DMV,或由AP经孤束核(NTS)间接传递至DMV。二为细胞因子通过迷走传入神经将炎症信息传至NTS,由NTS传到DMV。胆碱能抗炎通路中炎症信号主要是通过缺乏血脑屏障的AP入脑还是通过迷走传入神经或两者兼之,还不明确。“延髓内脏带”(MVZ)含有儿茶酚胺(CA)类等多种神经活性物质。一系列研究表明MVZ内CA能神经元参与了心血管和胃肠道功能的调节,如脑出血急性期延髓内脏带内儿茶酚胺能神经元有Fos蛋白表达;大鼠在束缚浸水应激状态下DVC内Fos/TH表达增加。而内毒素炎症时,脑干NTS、DMV和AP内的儿茶酚胺能神经元是否参加了炎症信息的传递、分析和整合,有关该方面的研究至今尚未见报道。因此,本文拟采用辣椒素去神经化的方法观察内毒素炎症时对迷走神经传出纤维放电、血清TNF-α水平及DVC内c-Fos+TH表达的影响,以探讨迷走神经和DVC在胆碱能抗炎通路中的作用及其机制。
     本研究分为三部分:
     第一部分,观察内毒素(LPS)炎症时大鼠迷走神经放电、血压、血清TNF-α水平以及DVC内c-Fos表达情况。实验分两组:LPS组和对照(CON)组,LPS组静脉注射LPS;CON组静脉注射等容量的生理盐水。结果与结论:在LPS组,与LPS注射前相比迷走神经放电频率显著增加,血压降低但不显著;LPS组与CON组相比,神经放电频率和血清TNF-α水平显著升高,脑干NTS、DMV和AP的c-Fos表达均显著增强。提示迷走神经、AP和NTS参与了炎症反应。
     第二部分,辣椒素去神经化后再给予LPS刺激致炎,观察大鼠迷走神经传出纤维放电、血压、血清TNF-α水平的变化以及脑干DVC内c-fos表达情况。实验分为两组:辣椒素+内毒素(CAS+LPS)组和LPS组,CAS+LPS组先以辣椒素去神经化后再静脉注射LPS刺激致炎;LPS组直接静脉注射等容量的LPS。结果与结论:在CAS+LPS组,与LPS注射前相比迷走神经传出纤维放电频率显著增加,血压升高但不明显;CAS+LPS组与LPS组相比,血清TNF-α浓度显著升高,脑干NTS、DMV和AP内c-fos表达均显著减弱。提示内毒素炎症时,迷走传出神经纤维兴奋增多,参入了抗炎症作用。外周炎症信息主要通过迷走传入神经传递至NTS,由NTS传到DMN,部分炎症信号可通过AP传至DMN。
     第三部分,利用Fos蛋白与酪氨酸羟化酶(TH)免疫双标的方法,观察LPS炎症时对脑干NTS、DMV和AP内CA能神经元活动的影响。实验分为两组:LPS组和CON组,LPS组静脉注射LPS;CON组静脉注射生理盐水。结果与结论:LPS组与CON组相比,LPS炎症时,NTS、DMV和AP内TH阳性神经元和TH+Fos双标阳性神经元数目明显增多,表明儿茶酚胺能神经元参与了炎症反应。结果提示内毒素炎症时,脑干NTS、DMV和AP内的儿茶酚胺能神经元可能参与了胆碱能抗炎症通路炎症信息的传递和炎症反应的调节过程。
Some dataes have indicated that Acetylcholine (ACh), the principal neurotransm -itter of the vagus nerves, is a key mediator of the cholinergic anti-inflammatory pathway. Huang Jian have used a method of crushing the vagus nerve to record the frequency of cervical vagal efferent discharge and found the vagal efferent discharge significantly increased after LPS injection. Saddam studies revealed that surgical dissection of the efferent vagus nerve enhanced the production of proinflammatory cytokines and accelerated the development of septic shock. In addition, studies have revealed that electrical stimulation of efferent vagal nerve fibres inhibits inflammation and reduced lethality by suppressing the release of pro-inflammatory cytokines (Boro- vikova, Thomas, Shi Deguang and Hu Sen). The methods of crushing, electrical stimulation and vagotomy were used in the previous studies on the vagus nerves role in regulating inflammation. However, There is no study on the role of the intact vagus efferent nerve in systemic inflammatory response in endotoxemia rats.
     The vagus efferent nerve and neurotransmitter Ach involved in the anti-inflam- matory response, and this results showed that inflammatory response have activated vagus preganglionic neurons in the DMV. Howerver, how was the inflammatory information relayed to the DMV? the immune information can signal the brain through two pathways:The first, cytokines of the bloodstream passed through the lack of blood-brain barrier of the AP into the brain, then directly transmit to the DMV or indirectly transmit to the DMV by the NTS; The second, cytokine release in the periphery is sensed by receptors located on the vagus nerve. This information is transmitted to the NTS in the brain stem and subsequently to the DMN. It remains unclear whether inflammatory information was transmitted to the brain stem mainly through the lack of blood-brain barrier of the AP or vagus afferent nerve, or both in cholinergic anti-inflammatory pathway.The medulla oblongata internal organs belt contains many different types of active materials such as the catecholamines. A series of research indicated that CA neurons within the MVZ participated in the regulation of the cardiovascular and gastrointestinal function. Fos expression of CA neurons in the MVZ significantly increased during the acute stage of cerebral hemorrhage. The Fos/TH expression in DVC increased under water immersion and restraint stress however, whether CA neurons in NTS, DMV and AP participate in the transmission, analysis and conformity of inflammatory information has not been reported Therefore, This present study was designed to examine the discharge of vagal efferent fibers, levels of TNF-αin the serum and c-Fos/TH expression of DVC in endotoxin-induced inflammation to further explore the function and the mechanism of vagus nerve and DVC in the cholinergic anti-inflammatory pathway.
     This study was divided into three parts:
     The first part recorded the vagus nerve discharge, blood pressure, levels of TNF-αin the serum and the c-fos expression of DVC after LPS injection. The experiment was divided into two groups: the LPS group treated with LPS and the CON group treated with saline. Results and conclusions: discharge frequency of the vagal nerve was significantly increased after LPS injected, but there was no significant different on blood pressure before or after LPS injection;compared with the control group, discharge frequency of the vagal nerve, levels of serum TNF-αand c-Fos expression in the NTS, DMV and AP were significantly increased after LPS injected. This experiment showed the vagus nerve, AP and NTS participated in Inflammation.
     The second part recorded the vagus nerve discharge, blood pressure, level of serum TNF-αand c-fos expression of DVC in LPS-induced inflammation after capsaicin denervation. The experiment was divided into two groups: the CAS group which LPS was intravenous injected after denervation with capsaicin and the LPS group which LPS was intravenous injected. Results and conclusions: discharge frequency of vagal efferent fibers in CAS was significantly increased after LPS injected in CAS group, but not blood pressure; compared with the LPS group, the serum TNF-αlevel was obviously increased in CAS, but c-fos expression in DVC was significantly reduced. The results revealed that the excitability of vagus efferent nerve fibers increased during the endotoxin inflammation, so that the efferent vagus nerve fibers involved in anti-inflammatory response. Peripheral inflammatory information is mainly passed through the vagus afferent nerve to NTS, then transmit to the DMV, and some inflammatory signals can be transmitted through the AP to DMV.
     The third part, the method of double-target immunological of Fos protein and tyrosine hydroxylase (TH) was used to research the CA neurons activities in the brain stem NTS,DVC and AP during the endotoxin inflammation. The experiment was divided into two groups: the LPS group treated with LPS and the CON group treated with saline.Results and conclusions: compared with the CON group, the majority of the Fos protein activated neuron were CA neuron during the endotoxin inflammation.The results indicated that CA neuron which consisted in NTS,DMV and AP in brainstem involved in the inflammation information of the transfer, analysis and integration in the cholinergic anti-inflammatory pathway during the endotoxin inflammation.
引文
[1] Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway[J]. Clin Invest, 2007, 117(2): 289-296.
    [2] Lindstrom JM, Engel AG, Seybold ME, et a1. Pathological mechanisms in experimental autoimmune myasthenia gravis II Passive transfer of experimental autoimmune myasthen- ia gravis in rats with anti-acetylcholine recepotr antibodies[J]. Exp Med, 1976, 144(3): 739-753.
    [3] Besedovsky H, Sorkin E. Network of immunneuroencdocrine interaction[J]. Clin Exp Immunol, 1977, 27:5-12.
    [4] JE B. The molecular basis for bidirectional communication between the immune and neuroendocine systems[J]. Domest Anim Endocrinol, 1998, 15(5):363-369.
    [5] Borovikova LV,Ivanova S,Zhang M,et a1. Vagus nerve stimulation attenuates the systemi- c inflammatory response to endotoxin[J]. Nature, 2000, 405(6785): 458-462.
    [6] Thomas RBernik,Steven GFriedman,Mahendar Ochani,et al. Pharmacological stimulation of the cholinergic antinflammatory pathway[J].J Exp.Med, 2002, 195(6): 781-788.
    [7] HongWang,ManYu,et al. Nicotinic acetycholine receptorα7 subunit is an essential regulator of in flammation[J]. Nature, 2003, 421(6921): 384-388.
    [8] Konturek PC,et al. Role of brain-gut axis in healing of gastic ulcers[J]. J Physiol Pharmacol, 2004, 55(1-2): 179-192.
    [9] Bellinger DL,Felten DL,Lorton D, et al. Effects of interleukin-2 on the expression of corticotropin-releasing hormone in nerves and lymphoid cells in secondary lymphoid organs from the Fischer 344 rat [J]. J Neuoimmuol, 2001, 119(1): 37-50.
    [10] Tracey KJ. The inflammatory reflex[J]. Nature Publishing Group, 2002, 420(6917): 853-859.
    [11] Watkins LR,Wiertelak EP,Goehler LE,et a1. Neurocircuitry of illness-induced hyperalgesia[J]. Brain Res, 1994, 639(2): 283-299.
    [12] Hansen MK,Connor KA,Goehler LE,et a1. The contribution of the vagus nerve in interleukin-1β-induced fever is dependent on dose[J]. Am J Physiol Regul Integr Comp Physiol, 2001, 280(4): 929-934.
    [13] Hansen MK,Nguyen KT,Fleshner M,et a1. Effects of vagotomy on serum endotoxin, cytokines and corticosterone after intraperitoneal lipopolysaccharide [J]. Am J Physiol Regul hategr Comp Physiol, 2000, 278(2): 331-336.
    [14] Romanovsky AA,Ivanov AI,Szekely M. Neural route of pyrogen signaling tO the brain[J]. Clin Infect Dis, 2000, 31 Supp15: 162-167.
    [15] Berthoud HR,Neuhuber WL. Functional and chemical anatomy of the afferent vagal system[J]. Auton Neurosci, 2000, 85(1-3): 1-17.
    [16] Hansen MK,Taishi P,Chen Z. Vagotomy blocks the induction of interleukin-1beta (IL-1beta) mRNA in the brain of rats in response to systemic IL-1 beta[J]. Journal of Neuroscience, 1998, 18(6): 2247-2253.
    [17]黄健,杨志焕,陈力勇等.全身炎症反应大鼠迷走神经反射通路兴奋性的改变[J].重庆医学,2008, 37 (1):55-57.
    [18]路秀英,杨贵贞,孙辉臣.脂多糖通过诱导白细胞介素-1的生成引起迷走神经传入活动[J].生理学报, 2002, 54(2): 111-114.
    [19] JM L. Hand Book of Receptors and Channals: Ligand-and Voltage-Gated Ion Channals[J]. CRC Press, Boca Raton,Florida, 1995: 153-175.
    [20] Bernik TR,Friedman SG,Ochani M,et al. Cholinergic anti-inflamatory pathway inhibition of tumor necrosis factor during is chemia reperfusion[J]. Vasc Surg, 2002, 36(6): 1231-1236.
    [21] Bernik TR, Friedman SG,Ochani M,et al. Pharmacological Stimulation of the cholinergic antiinflammatory pathway[J]. Exp Med, 2002, 195(6): 781-788.
    [22] Ustinova E,Schuliz HD. Activation of cardiac vagal afferents by oxygen-derived free radical in rats[J]. Cire Res, 1994, 74(5): 895-903.
    [23]石德光,胡森,姜小国等.迷走神经完整性在减轻内毒素引起的大鼠心脏炎症反应中的意义[J].中国现代医学杂志, 2002, 12(24): 8-10.
    [24]石德光,胡森,姜小国等.电刺激迷走神经对内毒素血症所致急性肺损伤的影响[J].中国危重病急救医学, 2002, 14(12): 732-735.
    [25]姜小国,胡森,石德光等.迷走神经兴奋对内毒素血症大鼠肝脏氧自由基及TNF-α的影响[J].中国现代医学杂志, 2003, 13(20): 35-38.
    [26] Guarini S,Altavilla D,Giuliani D, et al. Eferent Vagal Fibre stimulation blunts nuclearfactor -κB activation and protects against hypovolemic hemorrhagic shock[J]. Circulation, 2003, 107(3): 1189-1194.
    [27] Sato E,Koyama S,OkuboY,et al. Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity[J]. Am J Physio1, 1998, 274(6Pt1): 970-979.
    [28] Francis J,Zhang ZH,Weiss RM,et a1. Neural regulation of the proinflammatory cytokine response to acute myocardial infraction[J]. Am J Physiol Heart Cire Physiol, 2005, 288(2): 977-978.
    [29] VanWesterloo DJ,Giebelen IA,Florquin S,et a1. The cholinergic anti- inflammatory pathway regulates the host response during septic peritonitis[J]. Infect Dis, 2005, 191(12): 2138-2148.
    [30] KZ S. Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines[J]. Neurosci Lett, 1999, 266(1): 17-20.
    [31] Leonard S,Bertrand D. Neuronal nicotinic receptors:from structure to function[J]. Nicotine Tob Res, 2001, 3(3): 203-223.
    [32] Brejc K,Dijk WJ,Klaassen RV,et al. Crystal structure of an Ach-binding protein reveals the ligand-binding domain of nicotinic receptors[J]. Nature, 2001, 411(6835): 269-276.
    [33] Pavlov VA, Tracey KJ. Neural regulators of innate immune responses and inflammation [J]. Cell Mol Life Sci, 2004, 61(18): 2322-2331.
    [34]柳垂亮,招伟贤,黄文起.胆碱能性抗炎通路的研究进展[J] .国家麻醉学与复苏杂志,2007,28(1):59-62.
    [35] Pavlov VA,Wang H,Czura CJ,et a1. The cholinergic anti-inflammatory pathway:a missing link in neuroimmunomodulation[J]. Mol Med, 2003, 9(5-8): 125-134.
    [36] JT S. Passage of immunomodulators across the blood-brain barrier[J]. Yale J Biol Med, 1990, 63(2): 121-131.
    [37] Goehler LE, Gaykema RP, et al. Vagal immune-to-brain communication:a visceral chemosensory pathway[J]. Auton Neurosci, 2000, 85(1-3): 49-59.
    [38]马岳峰,徐正宽,刘志海.重视胆碱能抗炎通路的研究[J]. 2009,18(10): 1016-1019.
    [39] Monk TH,Buysse DJ,Carrier J,et al. Inducing jet-lag in older people:Directionalasymmetry[J]. Journal of Research, 2000, 9(2): 101-116.
    [40]杨志军,葛煦,饶志仁等. Fos蛋白在LPS免疫激发大鼠脑内的分布[J].解剖学报, 2000, 31(4): 292-295.
    [41] Sagar SM,Sharp FR,Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level[J]. Science, 1988, 240(4857): 1328-1331.
    [42] Hinde JL,Hammalk SE,Gaykema RPA,et a1. Intraperitoneal injections of interleukin-1βinduce c-Fos immunoreactivity in vagal sensory neurons[J]. Sco Neurosci Abstr, 1998, 24: 1611-1618.
    [43]王敏,孙炳伟.炎症反应调控新机制--神经系统胆碱能抗炎通路的调节作用[J].江苏大学学报, 2010, 20(3): 274-276.
    [44]姚咏明,盛志勇.脓毒症信号转导机制的现代认识κB[J].中国危重病急救医学, 2003, 15(1): 3-6.
    [45] Villiger Y,Szanto I,Jaconi S,et a1. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes[J]. Neuroimmunol, 2002, 126(1-2): 86-98.
    [46]李琪,刘霞.胆碱能抗炎通路的信号机制研究[J].药学实践杂志, 2010, 28(5): 325-327.
    [47] DeJonge WJ,VanderZanden EP,TheFO et a1. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway[J]. Nat Immunol, 2005, 6(8): 844-851.
    [48]王景杰,黄裕新.心理性应急壮态下针刺对大鼠DMV放电、胃电和胃黏膜损伤的影响[J].第四军医大学学报, 2001, 22(9): 806-809.
    [49]王景杰,黄裕新. C-fos在电针调控大鼠胃运动中的表达及其意义[J].针刺研宄, 2001, 26(4): 274-278.
    [50]曹艳,刘伟华,张万峰. "关元穴"烧山火刺法对家兔失血性休克、血压、温度的影响[J].中医药信息, 1999, 2: 62-62.
    [51]张立德等.针刺对健康家兔体表胃电图和17肽胃泌素的影响[J].中国针灸, 1996, 26(1): 27-30.
    [52] George MS, Sackeim HA, Rush AJ E A. Vagus nerve stimulation:a new tool for brain research and therapy[J]. Biol Psychiatry, 2000, 47(4): 287-295.
    [53] Valencia I,Holder DL,Helmers SL,et al. Vagus nerve stimulation in pediatricepicepilepsy:a review[J]. Pediatr Neurol, 2001, 25(5): 368-376.
    [54] George MS.Sackeim HA. Marangell LB,et al. Vagus nerve stimulation.A potential therapy for resistant depression?[J]. Psychaitr Clin North Am, 2000, 23(4): 757-783.
    [55]姜小国,胡森,石德光,等.卡巴胆碱对肠缺血-再灌注大鼠血浆肿瘤坏死因子-α和白介素-10含量的影响[J].中国危重病急救医学, 2003, 15(3): 167.
    [56]石德光,杜欣,胡森,等.电刺激迷走神经对内毒素休克大鼠血压的影响[J].中国医院感染学杂志, 2004, 14(11): 1249-1251.
    [57] Borovikova LV,Ivanova S,Nardi D,et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation[J]. Auton Neurosci, 2000, 85(1-3): 141-147.
    [58] P V. Inhibition of multiple pro-inflammatory mediators(TNF,IL -6,and NO)abrogate lethality in a murine mode of polymicrobial sepsis[J]. Endot Res, 1997, 4: 197-204.
    [59] Martiney JA,Rajan AJ,Charies PC,et al. Prevention and treatment of experimental autoimmune encephalomylitis by CNI-1493,a macrophage deactivating agent[J]. J Immunol, 1998, 160(11): 5588-5595.
    [60] Tracey KJ, et al. Anti-inflammatory effects of a new TNF-αinhibitor (CNI-1493)in collagen- induced arthritis in rats[J]. Clin Exp Immunol, 1999, 115(1): 32-41.
    [61]张晓峰.卡巴胆碱与重症急性胰腺炎[J].实用肝胆病杂志, 2007, 10(3): 214-216.
    [62]胡森,曹卫红,孙丹,等.卡巴胆碱对肠部分缺血-再灌注损伤所致全身炎症反应和多器官功能障碍的影响[J].中国危重病急救医学, 2005, 17(1): 49-52.
    [63]周国勇,林凯,吕芝,等.卡巴胆碱抗炎作用受体机制的初步研究[J].感染、炎症、修复, 2007, 8(1): 30-33.
    [64] Vahide S,Sinan C,Sibel M E A. Reversal of haemorrhagic shock in rats by tetrahydroaminoaccridine[J]. Pharmacology, 2001, 62(1): 36-44.
    [65]王博杰,苏跃.胆碱能抗炎通路的临床应用[J]. Knowledge Lecture, 2005, 12(2): 112-115.
    [66] Liu C,Shen FM,Le YY,et a1. Antishock effect of anisodamine involves a novel pathway for activating alpha7 nicotinic acetylcholine receptor[J]. Crit Care Med, 2009, 37(2): 634.
    [67] Pavlov VA,Ochani M,Yang LH,et al. Selective alpha7-nicotinicacetylcholine receptor agonist GTS-21 improves survival in murineendotoxemia and severe sepsis[J]. Crit CareMed, 2007, 35(4): 1139-1144.
    [68] Nanri M,Kasahara N,Yamamoto J,et a1. A comparative studyon the effects of nicotine and GTS-2I,a new nicotinic agonist,on the locomotor activity and brain monoamine level[J]. Jpn J Pharmacol, 1998, 78(3): 385.
    [69] VanWesterloo DJ,Giebelen IA,Florquin S,et a1. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice[J]. Gastroenterology, 2006, 130(6): 1822-1830.
    [70] Giebelen IA,vanWesterloo DJ,LaRosa GJ,et a1. Stimulation of alpha 7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor alpha-independent mechanism[J]. SHOCK, 2007, 27(4): 443.
    [71]李霞,李文文,张雪萍等.尼古丁对小鼠应激性胃溃疡影响的研究[J].生物医学工程研究, 2010, 29(3): 168-171.
    [72]张雪萍,吕明明,李霞等.尼古丁对小鼠药物性胃溃疡影响的研究[J].食品与药品, 2011, 13(1): 30-32.
    [73] VanWesterloo DJ,Giebelen IA,Meijers JC,et a1. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats[J]. Journal of Thrombosis & Haemostasis, 2006, 4(9): 1997-2002.
    [74] Hermann G.E, G.S.Emch, C.A.Tovar, et a1. c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve[J]. Am J Physiol Regulatory Integrative Comp Physiol, 2001,280(1):289-299.
    [75] Zimmermann M. Ethical considerations in relation to pain in animal experimentation[J]. Acta Physiol Scand Suppl, 1986, 554: 221-233.
    [76]包伦,徐贤坤,曾宪银.大鼠股动、静脉插管手术方法的建立及应用[J].中国科技信息,2005,18:235-237.
    [77] Maier SF.Bi-directional immune-brain communication:Implications for understanding stress,pain,and cognition [J]. Brain Behav Immun,2003,17(2):69-85.
    [78]盛志勇,胡森.多器官功能障碍综合征[M].北京:科学出版社,1999,49-58.
    [79]石德光,杜欣,胡森等.电刺激迷走神经对内毒素休克大鼠血压的影响[J].中华医院感染学杂志,2004,14(11): 1249-1250.
    [80] Madden KS.Catecholamines,symPathetic innervation,and immunity[J].Brain BehavImmun. 2003, 17(11):5-10.
    [81] Elenkov IJ, Wilder RL, Chrousos GP,et al.The sympathetic nevre an integrative interface between two supersystems: the brain and the immune system[J]. Pharmacol-Rev. 2000,52(4): 595-638.
    [82] Schorr EC,Arnason BG.Interactions between the sympathetic nervous system and the immune system[J]. Brain Behav Immun, 1999, 13(4):271-278.
    [83] Hall DM,Suo JL,Weber RJ.Opioid mediated effects on the immune system: sympathetic nervous system involvement[J]. J Neuroimmunol, 1998, 83(l-2): 29-35.
    [84] Jonakait GM,Hart RP.Immune cytokine regulation of sympathetic ganglion response to injury[J]. Neuroimm -unomodulation, 1995, 2(4):236-240.
    [85] Kawashima K, Fujii T. Extraneuronal cholinergic system in lymphocytes[J]. Pharmacol Ther, 2000, 86(l):29-48.
    [86]陆秀英,杨贵贞,姜文等.膈下迷走神经切断降低LPS所致大鼠发热及室旁核神经元放电频率[J].中国应用生理学杂志, 2002, 18(4): 337-339.
    [87] Sagar SM, Price KJ, Kasting NW, Sharp FR. Anatomic patterns of Fos immunostaining in rat brain followi- ng systemic endotoxin administration[J]. Brain Res Bull, 1995, 36 (4): 381-392.
    [88] Yokoyama C, Sasaki K. Regional expressions of Fos-like immunoreactivity in rat cerebral cortex after stress: restraint and intraperitoneal lipopolysaccharide[J]. Brain Res, 1999, 816 (2): 267-275.
    [89] Elmquist JK, Ackermann MR, Register KB,et al. Induction of Fos-like immunoreactivity in the rat brain following Pasteurella multocida endotoxin administration[J]. Endocrinolog- y, 1993, 133 (6): 3054-3057.
    [90]韩秀引,王蕾,马玉琼等. LPS对大鼠下丘脑视上核nNOS和c-fos表达的影响[J].神经解剖学杂志, 2004, 20(5): 475-478.
    [91]李兆平,马晓丽,张薇薇等.辣椒素对束缚-浸水应激大鼠DMV和NTS神经元c-Fos蛋白表达和胃溃疡的影响[J].山东师范大学学报, 2008, 23(2): 122-124.
    [92] Gaykema RPA,Goehler LE,McGory M.Subdiaphragmatic vagotomy inhibits Fos expression in brain and pituitary after intraperitoneal but not intravenous administration of endotoxin.Soc Neurostr, 1997, 23: 1514.
    [93]陈良为,管振龙,张文斌.大鼠面部和胃肠道伤害性传入信息在延髓内的汇聚—c-fos表达研究[J].针刺研究,1997,4(3): 134-138.
    [94]张守信,宿长军,林宏等.大鼠脑出血后延髓内脏带内儿茶酚胺能神经元的Fos表达[J].第四军医大学学报,2000, 21(11):1341-1345.
    [95] Dong-Qin Zhao, Chang-Liang LU, Hong-Bin Ai.The role of catecholaminergic neurons in the hypothalamus and medullary visceral zone in response to restraint water-immersion stress in rats[J]. J Physiol Sci, 2010,61(1):37-45.
    [96] Moore RY,Bloom FE. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci, 1979, 2: 113-168.
    [97] Zigmond RE,Schwarzschild MA, Rittenhouse AR. Acute regulation of Tyrosine hydroxyl -ase by nerve activity and by neurotransmitters via phosphorylation. Annu Rev Neurosci,1989, 12: 415-461.
    [98] Sumal KK, Blessing WW, Joh TH et al. Synaptic interaction of vagal afferents and catec- holaminergic neurons in the rat nucleus tractus solitarius. Brain Res, 1983, 24, 277(1): 31-40.
    [99]唐竹吾.脑内单胺能神经元系统及其意义[J].遵义医学院学报, 1994, 3(1): 91-95.
    [100] Takeshige C,Sato T,Mera T et al. Descending pain inhibitory System involved in acupuncture analgesia. Brain Res Bull, 1992,29(5): 617-634.
    [101]党小荣,张文斌.大鼠孤束核内传递内脏伤害性信息的儿茶酚胺能神经元向臂旁核的投射.神经解剖学杂志,2001, 17(3): 235-238.
    [102]景德强,陈尔瑜,余争平等.梭曼急性中毒诱发大鼠脑干儿茶酚胺神经元表达c-fos[J].第三军医大学学报, 1998, 20(6): 496-499.
    [103]王昭金,饶志仁,施际武.大鼠孤束核含酪氨酸羟化酶、神经降压素和胆囊收缩素样神经元向伏核的投射—HRP和免疫细胞化学双重标记法的研究[J].解剖学报, 1992, 23(1): 37-42.
    [104] Karimnamazi H,Travers SP,Travers JB.Oral and gastric input to the parabrachial nucl- eus ofthe rat. Brain Res , 2002, 957(2): 193-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700