运动界面模拟技术及在环境分层流问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然环境水体中的分层流动通常是由温度、主动输运物质(如盐度、泥沙等)或者它们的组合作用诱导产生的。由于各组分对水体密度的贡献以及其自身的扩散特性的差异使得该类分层流动更为复杂。本文从两流体的角度,采用Level Set方法追踪两流体分层界面的运动,对每相流体分别求解,并考虑界面处两流体间的相互作用,模拟了污水排海等分层流问题,详细阐述了海水入侵过程和机理。本文研究的主要成果包括:
     (1)采用Level Set方法追踪界面的时空变化。本文基于快速行进法和源点扫描法的思想,提出了非结构同位网格下Level Set的实现策略。并通过实例,对Level Set法与VOF法作了比较分析。
     (2)界面附近网格点密度、扩散系数等物理参数处理,二维三维采用了不同的策略。对二维情形,根据符号距离函数精确计算各网格单元的相体积分布,而后可计算网格单元的密度和扩散系数;对三维情形,直接采用正弦函数光滑处理。对于界面物理量的扩展采用一阶的isobaric fix ghost处理。
     (3)将密度方程和动量方程统一成一个积分方程,采用梯度重构策略,结合限制器,改进了两流体的SIMPLE(SIMPLEC)算法和人工压缩算法,建立了非结构网格下N-S方程的求解系统。改进了出口边界的处理策略,能有效地处理“无反射”出口边界问题。对不同的密度比的两流体系统进行了验证分析。
     (4)建立了κ-ε紊流模型,壁面采用对数率壁函数处理技术。
     (5)从两流体角度对污水排海问题建立了二维和三维数学模型,详细探讨了污水排海工程中海水入侵的机理。
Stratified flows are often induced by single component (e.g. temperature, active scalars) or multi-components in natural water body. Multi-components caused complicated flow characteristics of stratified flows due to the difference of their own diffusion and component's contribution to water density. In the paper, the Level Set Method is applied to track the moving interface between two fluids and every phase is calculated respectively combined the interface effects. Finally, Sewage outfall problem is simulated by 2D and 3D system based the paper, and the process and mechanism of the saline intrusion is explained. The main works of the paper include as follows:
     (1) To track the moving interface,the Level Set Method is applied in the paper. Under the unstructured grids system, the method is studed and established based the idea of Fast Marching Method and Source Point Scanning Method, and then the Level Set Method is compared with the VOF Method based a given example.
     (2) On the paremeters of the cell near the interface between the two fluids, such as the density and diffusion coefficient, etc. in the paper, two different methods is studied. To the 2D problem, the volume of phase fluids can be calculated from sign distance function,and then the paremeters can be acquired also; To the 3D problem, the paremeters are dealed smothly using sinusoid. Finally ,the method of isobaric fix ghost is applied to extend the variable of the cell near the interface.
     (3) In the paper, the density-equation and momentum-equation are unified as a integral style by transforming the momentum-equation, and then the equations are dispersed under unstructured grids with the use of reconstruction of grads and superbee limiter. SIMPLE(SIMPLEC) Method and Artificiale Compressibility Method are improved to solve the pressure-velocity coupling . The problem of outlet boundary is studied in the paper, and some technique are put forward to deal the free boundary. Finally , some example are given to test the technique.
     (4) In the paper, the standard k-εturbulence model is established with Wall Functions dealing the flow near walls.
     (5) Finally, Sewage outfall problem is simulated by 2D and 3D system based the paper, and the process and mechanism of the saline intrusion is explained.
引文
[1] 康建华.污水排海大有可为[J].水处理技术,1997,23(5):309-310.
    [2] 刘朴,韦鹤平,钟迪锋.污水排海管扩散器中盐水楔阻塞的研究[J].同济大学学报,1998,26(5): 580-584.
    [3] 刘朴,韦鹤平.污水排海管扩散器中海水循环阻塞的研究[J].同济大学学报,1996, 24(6): 714-718.
    [4] Wilkinson D L. Purging of saline wedges from ocean outfalls[J]. Journal of Hydraulic Engineering, 1984, 110(12): 1815-1829.
    [5] 厦门东部污水系统一期工程报告,河海大学水利水电学院,2002.
    [6] Neville Jones P J D, Dorling C, McNamara M. Hydraulic performance of long sea outfalls[R]. WRC Report ER261E July, 1987.
    [7] Palmer M H. Seawater entry into tunneled sewage outfalls,BHRA,TREC 1137,1978.
    [8] Harlow F H, Welch J E. Numerical study of large-amplitude free-surface motions[J]. Physics of fluid, 1966, 9: 842-851.
    [9] 李德元,徐国荣,水鸿寿等.二维非定常流体力学数值方法[M].北京:科学出版社, 1998.
    [10] Daly B J, Pracht W E. Numerical study of density-current surges[J]. Physics of Fluids, 1968, 11: 15-30.
    [11] Glimm J, Isaacson E, Marchesin D, et al. Front tracking for hyperbolic systems[J]. Advances in Applied Mathematics, 1981,2:91-119.
    [12] Glimm J,Klingenberg C,et al. Front tracking and two-dimensional Riemann Problems[J]. Advances in Applied Mathematics, 1985, 6: 259-290.
    [13] Chen I L, Glimm J. Front tracking for gas dynamics[J]. Journal of Computational Physics, 1986, 62: 83-110.
    [14] Juric D, Tryggvason G. Numerical simulations of phase change in cicrogravity[J]. Heat Transfer in Microgravity Systems, 1996, 332: 33-44.
    [15] Unverdi S O,Yraggvason G. A front-tracking method for viscous, incompressible, mluti-fluid flows[J]. Journal of Computational Physics, 1992, 100:25-37.
    [16] Juric D, Tryggvason G. A front-tracking method for dendritic solidification[J]. Journal of Computational Physics, 1996, 123: 127-148.
    [17] 汪德爟.高等计算水力学[M].南京:河海大学出版社,1999.
    [18] 窦振兴,杨连武,Ozer J.渤海三维潮流数值模拟[J].海洋学报,1993,15(5):1-15.
    [19] Zhu Y L, et al. Three dimensional nonlinear numerical model with inclined pressure for saltwater in intrusion at the Yangtze River estuary[J]. J. Hydrodynamic, Ser. B., 2000, 1: 57-66.
    [20] Bai Y C, Sheng H T, Hu S X. Three dimensional mathematical model of sediment transport in estuarine region[J]. Int. J. Sediment Res., 2000, 15(4): 410-423.
    [21] Stansby P K, Lloyd P M. A semi-implicit lagrangian scheme for 3-D shallow water flow with a two-layer turbulence model[J]. Int. J. Numer. Meth. fluids, 1995, 20:115-133.
    [22] Balas L, Ozhan E. An implicit three-dimensional numerical model to simulate transport process in coastal water bodies[J]. Int. J. Numer. Meth. fluids, 2000, 34: 307-339.
    [23] Deleermijder E,Beckers J M. On the use of the σ-coordinate system in regions of large bathymetric variation[J]. J. Mar. Sys., 1992, 3: 381-390.
    [24] Oberhuber J M. Simulation of the Atlantic circulation with a coupled sea ice-Mixed layer isopycnical general circulation model, 1.Model description[J]. J. Phys. Oceanogr., 1993, 23(5): 830-845.
    [25] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamicsof free boundary[J]. Compute Phys, 1981, 39:201-225.
    [26] Nob W F, Woodward R SLIC (simple line interface calculation) in van Dooren A I and Zandberger P J[J]. Lecture Notes in Physics, 1982,59:273-285.
    [27] Youngs D L. Time dependent multi material flow with large fluid distortion[D]. New York:Academic, 1982,273-285.
    [28] Ashgriz N,Poo J Y. FLAIR:Flux line-segment model for advection and interface reconstruction[J]. J Comput Phys, 1991,39:449-468.
    [29] Ubbink O,Issa R I. A method for capturing sharp fluid interfaces on arbitrary meshes[J]. J Comput Phys, 1999,153:26-50.
    [30] 刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2004.
    [31] 刘全,水鸿寿,张晓轶.数值模拟界面流方法进展[J].力学进展,2002,32(2):259-274.
    [32] Osher S, Sethian J A. Fronts Propagating with Curvature-dependent Speed:Algorithms Based on Hamilton-Jacobi Formulations[J]. Journal of Computational Physics, 1988, 79: 12-49.
    [33] Strain J. Semi-lagrangian methods for Level Set equations[J]. J Comput Phys, 1999, 151: 498-533.
    [34] Strain J. Tree methods for moving interfaces[J]. J Comput Phys, 1999, 151: 616-648.
    [35] Strain J. Fast tree-based redistancing for level set computations[J]. J Comput Phys, 1999, 152: 664-686.
    [36] SUSSMAN M, SMEREKA D, OSHER S. A Level Set approach for computing solutions to incompressible two phase flow[J]. J. of Comp. Phys., 1994, 114: 146-159.
    [37] Sethian J A. Fast marching methods[J]. SIAM Review, 1999, 41 (2): 199-235.
    [38] Sethian J A. A fast marching level set method for monotonically advancing fronts[J]. In: Proceedings of the National Academy of Sciences, 1996, 93:1591-1595.
    [39] Malladi R, Sethian J A. An O(Nlog(N)) algorithm for shape modeling[J]. In: Proceedings of the National Academy of Sciences, 1996, 93: 9389-9392.
    [40] Sethian J A. Level Set Methods and Fast Marching Methods:Evolving interfaces in computational geometry, fluid mechanics,computer vision,and materials science [M]. Cambridge University Press, 1999.
    [41] Malladi R, Sethian J A, Vemuri B C. Shape Modeling with Front Propagation: A Level Set Approach [J]. IEEE Transactions on PAMI,1995, 17(2): 158-175.
    [42] Alvarez L, Lions P L, Morel J M. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion Ⅱ [J]. SIAM Journal on Numerical Analysis, 1992, 29(3): 845-866.
    [43] Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(3):266-280.
    [44] Bertalmio M, Sapiro G, Randall G. Region tracking on level-set methods[J]. IEEE Transactions on Medical Imaging, 1999,18(5): 448-451.
    [45] Masouri A R, Sirivong B, Konrad J. Multiple motion segmentation with level sets[J]. In: Proceedings of the SPIE, 2000, 3974: 584-595.
    [46] 李会雄,杨冬,等.Level set 方法及其在两相流数值模拟研究中的应用[J].工程热物理学报,2001,22(2):233-236.
    [47] 封建湖,蔡力,等.基于Level Set的多维双曲守恒律标量方程的激波追踪法[J].应用力学学报,2005,22(1):17-21.
    [48] 陈菲,张梦萍,徐胜利.运动激波和气泡串相互作用的初步数值模拟[J].计算物理, 2004,21(5):443-448.
    [49] 袁德奎,陶建华.用Level Set方法求解具有自由面的流动问题[J].力学学报,2000, 32(3):264-271.
    [50] 谷汉斌,李炎保,李邵武.界面追踪的Level Set和Particle Level Set方法[J].水动力学研究与进展A辑,2005,20(2):152-160.
    [51] 袁政强,祝家麟.边界元中三维重调和方程的精确积分法[J].重庆大学学报,2002, 25(4):43-46.
    [52] 陈耀松,毕远峰,江涛.Marangoni效应下的液桥自由面[J].力学学报,1999,31(2): 137-142.
    [53] 陶建华,谢伟松.用LEVEL SET方法计算溃坝波的传播过程[J].水利学报,1999, 10: 17-22.
    [54] 李俊,杨新,施鹏飞.对水平集方法鲁棒初始化的双向快速步进法[J].系统仿真学报,2001,第13增刊:163-167.
    [55] Tsai Y H. Rapid and accurate computation of the distance function using grids[R]. UCLA Mathematics Department, UCLA CAM Report, 2000:00-36.
    [56] 李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图象分割方法[J].计算机学报,2002,25(11):1175-1183.
    [57] 张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,1997, 14(1): 91-102.
    [58] Nitikitpaiboon C,Bathe K J. An arbitrary Lagrangian-Eulerian Velocity potential Formulation for fluid-structure interaction[J]. Computers and Structures, 1993, 47(4/5): 871-891.
    [59] Nomura T. ALE finite element computations of fluid-structure interaction problems[J]. Comput. Meths. Appl. Mech. Engrg., 1994, 112: 291-308.
    [60] Daly B J. Numerical Fluid Dynamics Using the Particle-and-Force Method [R]. Los National Laboratory, 1965, LA-3144.
    [61] Batina J T. A Gridless Euler/Navier-Stokes Solution Algorithm for Complex Aircraft Applications [R]. American Institution of Aeronautics Astronautics, 1993, AIAA Paper: 93-0333.
    [62] Belytschko T, Lu Y Y, Gu L. Element-Free Galerkin Methods [J]. International Journal of Numerical Methods Engineering, 1994,37: 229-240.
    [63] Happer F T. Simulation of liquid Drop Breakup Behavior in a Flow Field Using Discrete Element Techniques [R]. Proceedings of the. 5th International Topl. Reactor Thermal Hydraulics, Salt Lake City, Utah, September 21-24, 1992, Ⅱ:605.
    [64] Gingord R A. Kernel estimates as a basis for general particle methods in hydrodynamics [J]. Journal of Computational Physics, 1982, 46: 429.
    [65] Koshizuka S, Tamako H, Oka Y. A particle method for incompressible viscous flow with fluid fragmentation [J]. Computational Fluid Dynamics, 1995, 4(1): 29-46.
    [66] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. Astron J, 1977, 88(10): 1013-1024.
    [67] Monaghan J J. Shock simulation by the particle method SPH [J]. Journal of Computational Physics, 1983, 52: 374-383.
    [68] Monaghan J J. Preprint. Dept.of Math.Monash University, Clayton,Victoria3186(1990)
    [69] Cummins S J, Rudman M. An SPH projection method [J]. Journal of Computational Physics, 1999, 152: 584-607.
    [70] Edmond Y M. Simulation of near-shore solitary wave mechanics by an incompressible SPH method [J]. Applied Ocean Research, 2002, 24: 275-286.
    [71] Shao S D. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003.
    [72] Koshizuka S, Tamako H, Oka Y. A particle method for incompressible viscous flow with fluid fragmentation [J]. Computational Fluid Dynamics, 1995, 4(1): 29-46.
    [73] Koshizuka S, Tamako H. Moving-particle semi-implicit method [J]. Nuclear Science Engineering, 1996, 123: 421-434.
    [74] Koshizuka S, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method [J]. International Journal of Numerical Method in Fluids, 1998, 26: 751-769.
    [75] Gotoh H, Sakai T. Lagrangian Simulation of Breaking Waves Using Particle Method [J]. Coastal Engingeering Journal, 1999, 41 (3/4): 303-326.
    [76] Gotoh H, Freds e J. Lagrangian Two-phase Flow Model of the Settling Behavior of Fine Sediment Dumped into Water [R]. Proceedings International Coastal Engineering, Sydney, 2000:3907-3919.
    [77] Gotoh H, Shibahara T, Sakai T. Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for Hydraulic Engineering [J]. Computational. Fluid Dynamics Journal, 2001, 9(4): 339-347.
    [78] 鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社,2002.
    [79] 郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
    [80] Speziale C G. Turbulence modeling for time dependent RANS and VLES: A review[J]. AIAA J., 1998, 36(2): 173-184.
    [81] Sini J F, Dekeyser I. Numerical prediction of turbulent plane buoyant jets discharging in a stratified stagnant or flowing ocean[J]. Numer. Heat Transf., Part A., 1989, 16: 371-387.
    [82] 符松.非线性湍流模式研究及进展[J].力学进展,1995,25(3):318-327.
    [83] Jaw S Y, Hwang R R. A two-scale low-Reynolds number turbulence model[J]. Int J Numer Methods Fluids. 2000, 33(5): 695-710.
    [84] Yakhot V, Orzag S A. Renormalization group analysis of turbulence:basic theory[J]. J Scient Comput., 1986, 1: 3-11.
    [85] 吴玮.污水海洋扩散器海水入侵及清除特性研究[D].南京:河海大学,2005.
    [86] 肖洋.横向流动条件下多孔水平动量射流掺混特性研究[D].南京:河海大学,2005.
    [87] 陶文铨.数值传热学,第2版[M].西安:西安交通大学出版社,2001.
    [88] Speziale C G, Abid R, Blaisdell L A. On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory[J]. Phys. Fluids, 1996, 8(3).
    [89] 邓云,李嘉,等.水库温差异重流模型的研究[J].水利学报,2003,7:7-11.
    [90] 陈丽星,姚朝晖,Bottoni Maurizio.Reynolds应力模型在热分层流场中的应用及优化[J].清华大学学报(自然科学版),2003,43(8):1079-1082.
    [91] 褚克坚.温差剪切分层流运动特性试验及数值模拟研究[D].南京:河海大学,2006.
    [92] Rodi W. Turbulence models and their application in hydraulics: state of the art Paper, IAHR, Delft, The Netherlands, 1984.
    [93] Gatski T B, Speziale C G. On explicit algebraic Reynolds stress models for complex turbulent flows[J]. J. Fluid Mech. 1993, 254: 59-78.
    [94] Wallin S, Johansson A V. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows[J]. J. Fluid Mech. 2000,403:89-132.
    [95] 赖锡军.温盐分层流的非结构网格数值模拟[D].南京:河海大学,2004.
    [96] Patel V C. Perspective: Flow at High Reynolds number and over rough surfaces-Achilles Heel ofCFD[J]. ASME J. Fluids Engrg., 1998, 120: 434-444.
    [97] Patel V C, Rodi W, Scheuerer G. Turbulence models for near-wall and low eynolds number flows: a review[J]. AIAA J., 1984, 23(9): 1308-1319.
    [98] 刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].北京:中国科技大学出版社, 2001.
    [99] Ferziger, Peric M. Computational methods for fluids dynamics[M]. Springer, 1999.
    [100] Mathur S R, Murthy J Y. A pressure based method for unstructured meshes[J]. Numer. Heat Transf., Part B, 1997, 31: 195-216.
    [101] Pan D,Cheng J. A second-order upwind finite-volume method for the Euler solution on unstructed triangle meshes[J]. Int. J. Numer. Fluids, 1993, 16:1079-1098.
    [102] 于普兵.二维浅水水流数值模拟技术研究[D].南京:南京水利科学研究院,2006.
    [103] Chakravarthy S R,Osher S. High resolution application of the Osher upwind scheme for the Euler equations[C]. AIAA paper presented at 6th CFD Conference,1983.
    [104] 付德薰.流体力学数值模拟[M].北京:国防工业出版社,1993.
    [105] 薛具奎,赵金保.人工压缩法数值模拟非定常不可压缩热对流流场[J].西北师范大学学报(自然科学版),1998,34(2):32-37.
    [106] 陈传淡.守恒双曲型方程式激波计算区域分解法中的追踪及人工压缩方法[J].厦门大学学报(自然科学版),1999,38(3):229-333.
    [107] 朱自强,贾剑波.三角翼大迎角不可压粘流的数值模拟[J].力学学报,1996,28(6): 716-740.
    [108] Rhie C M, Chow W L. A numerical study of the turbulent flow past an isolated airfoil with training-edge separation[J]. AIAA J., 1983, 21: 1525-1532.
    [109] Van Doormaal J P, Raithyby F D. Enhancements of the SIMPLE method for predicting incompressible fluid flows[J]. Numer. Heat Transf., 1984, 7: 147-163.
    [110] Yan R H, Liu C H. Enhancement of the SIMPLE algorithm by an additional explicit step[J]. Numer. Heat Transfer, Part B, 1990, 17: 63-82.
    [111] Sani R L, Gresho P M. Resume and remarks on the open boundary condition minisymposuim[J]. Int J Numer Methods Fluids, 1994, 18: 983-1008.
    [112] Saad Y, Schultz M. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J. Sci. Stat. Comput., 1986, 7: 856-869.
    [113] Martin J C, Moyce W J. An experimental study of the collapse of liquid columns on a rigid horizontal plane[M]. Philos.Trans. R. Soc.London,Ser.A 244,312(1952).
    [114] Meng-Hsuan Chung. A Level Set Method for Solution of Incompressible Laminar Free Surface Flows[C]. ICHE,2002.
    [115] Shannon N R. Development and validation of a two-dimension CFD model of the saline intrusion in a long sea outfall[D]. The Queen's University of Belfast, Sept. 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700