2型糖尿病及相关代谢性疾病的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的了解2型糖尿病(T2DM)家系中T2DM患者和非糖尿病(DM)一级亲属代谢综合征(MS)及主要组分的患病率,并采用遗传度分析,了解各种代谢指标受遗传因素影响的程度。
     方法(1)选取重庆地区汉族人群中符合入选条件的T2DM家系。共纳入247个家系,1312名研究对象,其中男587名,女725名。家系组共1178名,配偶组134名。研究对象测定人体测量学参数、血压、血脂谱、超敏C-反应蛋白(hsCRP)、非酯化脂肪酸(NEFA)等,行口服葡萄糖耐量试验(OGTT)。分别采用IDF和NCEP-ATPⅢ(根据亚洲人群腰围切点修正)标准诊断MS。(2)去除家系组中的二级亲、配偶组中有DM家族史和患有T2DM者,将剩余成员分为T2DM组、一级亲属(FDR)组和对照组三组。比较三组人体测量学参数、血压、血糖、血脂、胰岛素、hsCRP、NEFA等指标的差别;比较三组MS及主要成分的患病率。(3)采用S.A.G.E.软件,计算各项代谢指标在T2DM家系的遗传度。
     结果在校正年龄因素后,FDR组腰围(waist)和腰臀比(WHR)显著高于对照组,差异有统计学意义(P<0.05和P<0.01)。在校正年龄、BMI后,与对照组比较,FDR组SBP、OGTT 2h血糖、空腹胰岛素和HomaIR也显著增高(P<0.01或P<0.05),HDL-C显著降低(P<0.05)。TG、空腹血糖、OGTT2h胰岛素、超敏C反应蛋白(hsCRP)等指标FDR组较对照组有增高趋势,但差异无统计学意义(P>0.05)。FDR组糖调节受损(IGR)、肥胖、腹型肥胖、高血压、高TG血症、低HDL-C血症、MS(IDF标准)和MS(NCEP-ATPⅢ标准)的患病率分别为44.9%、33.3%、34.1%、21.1%、28.2%、30.1%、20.8%和19.2%。在校正年龄、性别影响后,FDR组患IGR的风险是对照组的13.2倍(95%CI=5.91~29.46),肥胖、腹型肥胖和低HDL-C血症的风险分别是对照组的2.13倍(95%CI=1.23~3.68)、1.92倍(95%CI=1.14~3.21)和1.73倍(95%CI=1.01~2.98),MS患病风险是对照组的2.57倍(IDF标准,95%CI=1.14~3.21)或2.35倍(NCEP-ATPⅢ标准,95%CI=1.17~4.71)。T2DM患者各种代谢紊乱的发生更为明显。肥胖、腹型肥胖、高血压风险是对照组的3.81倍(95%CI=2.22~6.56)、3.91倍(95%CI=2.34~6.51)和3.82倍(95%CI=2.17~6.74),MS风险是对照组的7.96倍(IDF标准,95%CI=4.03~15.74)或12.13倍(NCEP-ATPⅢ标准,95%CI=6.14~23.96),高TG血症和低HDL-C血症的患病风险分别是2.51倍(95%CI=1.53~4.11)和2.31倍(95%CI=1.38~3.89)。遗传度分析显示空腹血糖、空腹胰岛素和Homaβ的遗传度最高,分别为0.71、0.68和0.68;Homaβ的遗传度(0.68)高于Homa IR(0.54);BMI、腰围和hsCRP的遗传度0.45左右;血脂谱中TC、HDL-C遗传度较高,分别为0.51和0.55,TG稍低,为0.32;所有指标中,SBP和DBP的遗传度最低,分别为0.25和0.28。
     结论T2DM及相关的代谢代谢疾病如肥胖、高血压、脂代谢紊乱等有明显的家族聚集性。T2DM家系中非DM一级亲属已表现出程度不同的代谢紊乱。各种代谢指标在T2DM家系中具有中等程度的遗传度,提示相关代谢指标受遗传因素和环境因素的共同作用。
     目的研究过氧化物酶体增殖活化受体γ共活化因子-1β(PGC-1β)基因单核苷酸多态性(SNPs)与T2DM和相关代谢疾病的关联。
     方法(1)选择无亲缘关系的18例正常人,39例T2DM患者。PCR扩增PGC-1β基因12个外显子及侧翼序列和启动子上游1.6kb,经变性高效液相色谱(DHPLC)结合测序技术筛查SNPs位点,估计变异位点之间的连锁不平衡(LD)。(2)选择重庆地区474例T2DM患者,313例对照,对筛查到的编码区SNPs行病例-对照分析。
     结果在PGC-1β基因共发现9个SNPs,5个位于编码区,其中4个为错义突变(Ala203Pro、Arg265Gln、Val279Ile、Arg292Ser)、1个为同义突变(Leu42Leu),启动子区2个(-1263G>A、-985C>T),其余2个位于内含子区域(IVS2-132 G>A和IVS9-31G>C)。4个错义突变呈强LD,位于同一单倍域内,其中Ala203Pro和Val279Ile完全相关。4个错义突变相距仅268bp,采用直接测序技术进行基因型鉴定。对Ala203Pro、Arg265Gln和Arg292Ser位点的病例—对照研究提示这3个SNPs均与T2DM无显著关联(P>0.05)。病例—对照研究提示Arg265Gln与肥胖的发生有关,与GG基因型个体相比,GA或AA基因型的个体对肥胖的易感性显著增加(additive模式:OR=1.436,95%CI=1.079~1.921,P=0.013;dominant模式:OR=1.424,95%CI=1.029~1.970,P=0.033;recessive模式:OR=2.648,95%CI=1.008~6.961,P=0.048)。Arg265Gln与肥胖的关联受性别影响。在男性,与GG型比较,GA/AA型的BMI、腰围、腰臀比和DBP均显著增加(P<0.05)。女性则无上述指标的差别。Ala203Pro和Arg292Ser位点与肥胖无显著相关(P>0.05)。4个错义突变共构成3种常见单倍型,占所有单倍型的95.3%。3种单倍型与T2DM均无显著关联(P>0.05)。肥胖者H3单倍型的频率高于对照组(16.6%vs12.8%,P=0.039)。
     结论PGC-1β基因SNPs与中国重庆地区T2DM无明显关联。但Arg265Gln及一个常见单倍型可能与肥胖的发生有关,具有A等位基因的265Gln可能作为危险因子参与肥胖发生的病理过程。Arg265Gln与肥胖的关联在男性更明显。
     目的研究过氧化物酶体增殖活化受体γ共活化因子-1α(PGC-1α)和过氧化物酶体增殖活化受体γ(PPARγ)基因SNPs与T2DM和肥胖的关系。并研究PGC-1α、PGC-1β和PPARγ三个基因SNPs交互作用对T2DM和肥胖的影响。
     方法RFLP技术鉴定基因型。分析PGC-1α基因Gly482Ser和Thr394Thr位点、PPARγ基因Pr012Ala和C161T位点与T2DM和肥胖的关联。采用多因素维度降低法(MDR)法和Logistic回归,研究PPARγ、PGC-1α和PGC-1β基因多个位点之间的交互作用对T2DM和相关疾病的影响。
     结果PPARγ基因Pro12Ala和C161T位点,PGC-1α基因Gly482Ser和Thr394Thr位点均与T2DM无显著相关。除dominant模式下PGC-1αThr394Thr与肥胖关联外(OR=0.697,95%CI=0.497~0.977,P=0.036),其余三个SNPs与肥胖均无显著关联。PPARγ基因C161T位点可能和IR的发生有关,CT/TT基因型与CC基因型比较,空腹胰岛素和HomaIR显著增加(分别为11.13±5.36 mU/L vs 9.83±5.50 mU/L,P=0.030和2.474±1.23 vs 2.18±1.30,P=0.033)。本组人群中,PPARγ、PGC-1α和PGC-1β3个基因交互作用与T2DM的发病无关。通过MDR法,在3个基因5个位点中建立了与肥胖关联的2位点交互模型,PGC-1α基因Gly482Ser和PGC-1β基因Arg265Gln对肥胖的发生有交互作用。该模型的交叉确认一致性最高(10/10),检验正确率为0.5432(P=0.0010)。基因型组合高危组较低危组发生肥胖的风险增加,OR为1.6034(95%CI 0.5493~4.6804,X~2=7.7275,P=0.0054),经Logistic回归验证的结果与MDR法一致。
     结论PPARγ基因Pro12Ala和C161T位点,PGC-1α基因Gly482Ser和Thr394Thr位点与重庆地区T2DM不相关,但PPARγCl61T位点可能参与IR的发生,PGC-1αThr394Thr位点可能与肥胖有关。MDR法建立了与肥胖关联的2位点交互模式,PGC-1α基因Gly482Ser和PGC-1β基因Arg265Gln对肥胖的发生有交互作用。MDR法可作为研究多基因交互关系的有力工具。
Objeetive To estimate the prevalence of the metabolic syndrome (MS) and its main components in diabetic patients and non-diabetic first degree relatives(FDR) in families with type 2 diabetes mellitus(T2DM), and estimate the heritabilities of MS and its related features.
     Methods (1) 1312 subjects(587male and 725 female) from 247 Chongqing Han families were enrolled. 1178 of them came from T2DM family, and 134 of them were their spouses. Anthropometry, blood pressure, oral glucose tolerance test (OGTT), lipid levels、high-sensitivity C-reactive protein (hsCRP)、non-esterified fatty acid (NEFA) were examined. MS was defied according to International Diabetes Federation(IDF) definition and National Cholesterol Education Program Adult Treatment PanelⅢ(NCEP-ATPⅢ) guideline with Asian criteria for obesity. (2)Except second degree relatives and spouses who had diabetic relatives or who per se were diabetic, all the subjects were divided into three groups: T2DM, first degree relatives (FDR)and control group. The clinical and metabolic characteristics and the prevalence of MS and its main components were compared among three groups. (3) The Statistical Analysis for Genetic Epidemiology (S.A.G.E.) program was applied to calculate heritability of the metabolic traits.
     Results After adjusted for age, waist circumferences and WHR in FDR group were higher than those in controls(P<0.05and P<0.01). After adjusted for age and BMI, the levels of SBP, OGTT 2h glucose, fasting insulin, and HomaIR in FDR group were higher than those in controls(P<0.05 or P<0.01), and HDL-C lower than that in controls(P<0.05). Although there were higher TG, fasting glucose, OGTT 2h insulin, hsCRP in FDR group than in control group, there were no statistic difference between two groups(P>0.05). In FDR group, the prevalence of IGR, obesity, central obesity, hypertension, hypertriglyceridemia, decreased blood HDL-C, MS(IDF criterion) and MS (NCEP-ATPⅢcriterion) were 44.9%, 33.3%, 34.1%, 21.1%, 28.2%, 30.1%, 20.8% and 19.2% respectively. After adjusted for age and sex, the risk of MS and its main components increased in FDR than in controls: IGR (OR 13.2, 95%CI=5.91~29.46), obesity(OR 2.13, 95% CI=1.23~3.68), central obesity(OR 1.92, 95 %CI=1.14~3.21), decreased blood HDL-C (OR 1.73, 95%CI=1.01~2.98), MS (IDF OR 2.57, 95%CI=1.14~3.21; NCEP-ATPⅢOR 2.35, 95%CI=1.17~4.71). There were higher prevalence of MS in T2DM than in controls, the risk of obesity was 3.81 (95% CI=2.22~6.56), obesity(OR 3.91, 95% CI=2.34~6.51), central obesity(OR 3.91, 95% CI=2.34~6.51), hypertension (OR 3.82, 95% CI=2.17~6.74), MS (IDF OR 7.96, 95%CI=4.03~15.74, NCEP-ATPⅢOR 12.13, 95%CI=6.14~23.96 ), hyper- triglyceridemia(OR 2.51, 95%CI=1.53~4.11), decreased blood HDL-C (OR 2.31, 95%CI=1.38~3.89). In T2DM family, there were moderate heritability estimates of metabolic phenotypes. Fasting glucose concentration, fasting insulin and Homaβhad the highest heritability estimates of 0.71, 0.68 and 0.68 respectively. The heritability estimate of Homaβwas higher than HomaIR(0.68 vs 0.54). Heritability estimates for the features of BMI, waist, hsCRP, TG and HDL-C were also high (0.32~0.55). Among all of the metabolic traits, SBP and DBP had the lowest heritability(0.25 and 0.28 respectively).
     Conclusion There is significant familial aggregation of T2DM and related phenotypes including obesity, hypertension and dyslipidaemia There are more or less metabolic abnormalities in the non-diabetic FDR. The moderate heritability of metabolic traits in T2DM family is due to both genetic and environmental factors.
     Objective To study the association of single nucleotide polymorphisms (SNPs) in peroxisome proliferators- activated receptorγcoactivator-1β(PGC- 1β) with T2DM and with related metabolic disease.
     Methods (1) The DNA samples of 18 controls and 39 T2DM patients were selected to identify SNPs in PGC- 1βgene. all of 12 exons, including exon-intron boundaries and promoter region (□31.6 kb) were amplificated, and the PCR products were examined by denaturing high performance liquid chromatography(DHPLC) followed by sequencing to search SNPs, then pairwise linkage disequilibrium (LD) test and haplotype were examined. (2)The missense variants were genotyped in 474 T2DM patients and in 313 controls in Chongqqing area to investigate their genetic association with T2DM and obesity.
     Results A total of 9 SNPs were identified in PGC- 1βgene, including four missense variants(Ala203Pro,Arg265Gln,Val279Ile, Arg292Ser)in exon 5, one silent variant (Leu42Leu), two SNPs in promoter region (-1263G>A, -985C>T) and two SNPs in intron (IVS2-132 G>A, IVS9-31G>C). The four missense variants were in LD and in a haplotype block. Because the four missense SNPs were 268bp apart, sequencing was used for genotyping. There was no association between Ala203Pro, Arg265Gln, rg292Ser and T2DM (P>0.05). The SNP of Arg265Gln showed an increased risk with obesity (additive model: OR=1.436, 95% CI=1.079~1.921, P=0.013; dominant model: OR=1.424, 95%CI=1.029~1.970, P=0.033: recessive model: OR=2.648, 95%CI=1.008~6.961, P= 0.048). In male, subjects with Arg265Gln GA/AA genotype had higher BMI, waist and Waist-to-hip ratio(WHR) than those with GG genotype(P<0.05). Among four missense SNPs genotyped, three common haplo- types (frequency>0.05) accounted for 95.3% of the observed haplotypes. There were no association between the three haplotypes and T2DM (P>0.05). The frequency of haplotype H3 was higher in obesity group than in controls(16.6%vs12.8%, P=0.039).
     Conclusion There is no association between PGC- 1βSNPs and T2DM in Chongqing area. Arg265Gln and a common haplotypes in PGC-1βgene may contribute to the pathogenesis of obesity, especially in male.
     Objective To investigate the impact of peroxisome proliferators-activated receptorγcoactivator-1α(PGC- 1α) and of Peroxisome proliferators- activated receptorγ(PPARγ) polymorphisms on T2DM and on obesity. To explore the effects of gene to gene interactions among PGC- 1α、PGC- 1βand PPARyon the risk of T2DM and obesity.
     Methods Genotyping was performed by means of RFLE Case-control analysis were studied to investigate genetic association of SNPs (PGC-1αGly482Ser and Thr394Thr,PPARγPro 12Ala and C161T) with T2DM and obesity. Multifactor dimensionality reduction (MDR) and logistic regression were used to analyze gene-gene interactions of PGC-1α、PGC- 1βand PPARy.
     Results There was no association between the four SNPs and T2DM (P>0.05). The PGC-1αThr394Thr showed an increased risk of obesity with an dominant model (OR=0.697, 95%CI=0.497~0.977, P=0.036). There was no relationship between Gly482Ser,Pro 12Ala, C161T polymorphisms and obesity (P>0.05). Subjects with PPARγC161T CT/TT genotype had higher fasting insulin and higher HomaIR than those with CC genotype (11.13±5.36 mU/L vs 9.83±5.50 mU/L, P=0.030 and 2.47±1.23 vs 2.18±1.30, P=0.033 respectively). No interaction among the three candidate genes associated with T2DM. Using the MDR method, a significant two-locus interaction between PGC-1αGly482Ser and PGC-1βArg265Gln was found among 5 loci in three genes on the risk of obesity. This model showed a cross-validation consistency of 10 of 10 and a testing accuracy of 0.5432 (P =0.0010). The odds ratio of the high-risk to low-risk group was 1.6034 (95 %CI0.5493~4.6804, X~2=7.7275, P=0.0054) .The gene-gene interactions could be validated by Logistic regression analysis.
     Conclusion There is no association between the four SNPs of PGC- 1α, PPARγ, and T2DM, but PGC-1αThr394Thr could be related to obesity ,and PPARγC161T may be contribute to insulin resistance. Using the MDR method, a significant interaction between PGC-1αGly482Ser and PGC-1β,Arg265Gln for obesity has been shown. MDR analysis could be a useful method to study polygenetic disease.
引文
[1] Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. [J]. Lancet. 2005,365(9468): 1415-28.
    [2] Srinivasan SR, Frontini MG, Berenson GS, et al. Longitudinal changes in risk variables of insulin resistance syndrome from childhood to young adulthood in offspring of parents with type 2 diabetes: the Bogalusa Heart Study[J]. Metabolism. 2003 ,52(4):443-53.
    [3] Nauck MA, Meier JJ, Wolfersdorff AV, et al. A 25-year follow-up study of glucose tolerance in first-degree relatives of type 2 diabetic patients: association of impaired or diabetic glucose tolerance with other components of the metabolic syndrome. Acta Diabetol[J]. 2003 ,40(4): 163-72.
    [4] Patti ME. Gene expression in humans with diabetes and prediabetes: what have we learned about diabetes pathophysiology? [J] Curr Opin Clin Nutr Metab Care. 2004 ,7(4):383-90
    [5] Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes[J]. N Engl J Med. 2004,350(7):664-71.
    [6] Patti ME, Butte AJ, Crunkhorn S, et al.Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1[J]. Proc Natl Acad Sci U S A. 2003 ,100(14): 8466-71.
    [7] Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators[J]. Cell Metab, 2005 ,1(6):361-70.
    [8] Andersen G, Wegner L, Yanagisawa K,et al. Evidence of an association between genetic variation of the coactivator PGC-1b and obesity [J] J Med Genet, 2005,42: 402-407.
    [9] O'Rahilly S, Barroso I, Wareham NJ. Genetic factors in type 2 diabetes: the end of the beginning? Science, 2005 ,307(5708):370-3.
    [10] Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer[J]. Am J Hum Genet, 2001 ,9(1):138-47.
    [11] Motsinger AA, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies[J]. Hum Genomics, 2006,2(5):318-28.
    [12] Chan IH, Leung TF, Tang NL,et al. Gene-gene interactions for asthma and plasma total IgE concentration in Chinese children[J]. J Allergy Clin Immunol. 2006,117(1):127-33.
    [1] King H, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025: prevalence, numerical estimates, and projections[J]. Diabetes Care. 1998,21 (9): 1414-31.
    [2] Shaw JT, Purdie DM, Neil HA, et al. The relative risks of hyperglycaemia, obesity and dyslipidaemia in the relatives of patients with Type Ⅱ diabetes mellitus. Diabetologia[J]. 1999,42(1):24-7.
    [3] 张素华,余路,邱鸿鑫,等.家族性非胰岛素依赖型糖尿病患者的家系调查[J].中华医学杂志,1996,76(6):435-439.
    [4] Poulsen P, Kyvik KO, Vaag A, et al. Heritability of type Ⅱ (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a population-based twin study[J]. Diabetologia. 1999,42(2): 139-45.
    [5] Elbein SC. Perspective: the search for genes for type 2 diabetes in the post-genome era[J]. Endocrinology. 2002,143 (6):2012-8.
    [6] Srinivasan SR, Frontini MG, Berenson GS, et al. Longitudinal changes in risk variables of insulin resistance syndrome from childhood to young adulthood in offspring of parents with type 2 diabetes: the Bogalusa Heart Study[J]. Metabolism. 2003,52(4):443-53.
    [7] Humphriss DB, Stewart MW, Berrish TS,et al. Multiple metabolic abnormalities in normal glucose tolerant relatives of NIDDM families[J]. Diabetologia, 1997, 40(10): 1185-90.
    [8] 陈蕾,贾伟平,陆俊茜,等.上海市成人代谢综合征流行调查[J].中华心血管病杂志,2003,31(12):909-12.
    [9] 李蓉,张素华,任伟,等.重庆地区老年人群代谢综合征及相关因素的流行病学调查[J].中国临床康复,2005,9(11): 1-3.
    [10] 任涛,吴顶峰,胡永华,等.双生子人群的代谢综合征相关指标的遗传度分析[J].中国慢性病预防与控制,2003,11(1):13—15.
    [11] Lin HF, Boden-Albala B, Juo SH, ,et al. Heritabilities of the metabolic syndrome and its components in the Northern Manhattan Family Study[J]. Diabetologia. 2005,48(10):2006-12.
    [12] Shaw JT, Purdie DM, Neil HA, et al. The relative risks of hyperglycaemia, obesity and dyslipidaemia in the relatives of patients with Type Ⅱ diabetes mellitus[J]. Diabetologia. 1999,42(1):24-7.
    [13] Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome[J]. Lancet, 2005,365(9468): 1415-28.
    [14] 中华医学会糖尿病学分会代谢综合征研究协作组.中华医学会糖尿病学分会关于代谢综合征的建议[J].中华糖尿病杂志,2004,12(3):156—161.
    [15] Li JK, Ng MC, So WY, et al. Phenotypic and genetic clustering of diabetes and metabolic syndrome in Chinese families with type 2 diabetes mellitus[J]. Diabetes Metab Res Rev. 2006,22(1):46-52.
    [16] Mills GW, Avery PJ, McCarthy MI, et al. Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to type 2 diabetes. Diabetologia[J]. 2004,47(4):732-8.
    [17] Austin MA, Edwards KL, McNeely MJ, et al. Heritability of multivariate factors of the metabolic syndrome in nondiabetic Japanese americans[J]. Diabetes. 2004,53(4): 1166-9.
    [18] Lin HF, Boden-Albala B, Juo SH, et al. Heritabilities of the metabolic syndrome and its components in the Northern Manhattan Family Study[J]. Diabetologia. 2005,48(10):2006-12.
    [19] 韩学尧,纪立农.家族性早发2型糖尿病的病理生理和临床特征[J].中华糖尿病杂志,2005,13(2):83—86.
    [20] Dandona P, Aljada A, Chaudhuri A,et al. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation[J]. Circulation. 2005,111 (11): 1448-54.
    [21] Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men[J]. JAMA. 2002 Dec 4;288(21):2709-16.
    [1] O'Rahilly S, Barroso I, Wareham NJ. Genetic factors in type 2 diabetes: the end ofthe beginning?[J] Science, 2005 , 307(5708):370-3.
    [2] Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1[J]. Proc Natl Acad Sci U S A, 2003 ,100(14):8466-71.
    [3] Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease[J]. J Clin Invest. 2006 ,116(3):615-22.
    [4] Kim JH, Shin HD, Park BL, et al. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha promoter polymorphisms are associated with early-onset type 2 diabetes mellitus in the Korean population[J]. Diabetologia. 2005, 48(7):1323-30.
    [5] Barroso I, Luan J, Sandhu MS, et al. Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes[J]. Diabetologia. 2006 ,49(3): 501-5.
    [6] Meirhaeghe A, Crowley V, Lenaghan C, et al. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo[J]. Biochem J, 2003 ,373(Pt 1):155-65.
    [7] Reynisdottir I, Thorleifsson G, Benediktsson R, et al. Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2[J]. Am J Hum Genet, 2003 ,73(2):323-35.
    [8] Risch JN. Searching for genetic determinants in the new millennium[J].Nature, 2000,405: 847-56.
    [9] Keyue Ding, Kaixin Zhou, Fuchu He, et al. LDA - A java-based linkage disequilibrium analyzer[J]. Bioinformatics. 2003, 19: 2147-2148.
    [10] Abecasis GR, Cookson WO. GOLD—graphical overview of linkage disequilibrium[J]. Bioinformatics. 2000,16(2): 182-3.
    [11] Stephens M, Donnelly P.A comparison of bayesian methods for haplotype reconstruction[J]. Am J Human Genetics 2003,73, 1162-69.
    [12] Shuldiner AR, McLenithan JC. Genes and pathophysiology of type 2 diabetes: more than just the Randle cycle all over again[J]. J Clin Invest. 2004,114(10): 1414-7.
    [13] Andersen G, Wegner L, Yanagisawa K,et al. Evidence of an association between genetic variation of the coactivator PGC-lb and obesity[J].J Med Genet, 2005,42: 402-407.
    [14] Muredaeh P, Reilly, Daniel J,Rader. The metabolic syndrome:More than the sam of its parts? [J]Circulation,2003,108:1546-1551.
    [15] Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function[J]. Genes & Dev. 2004 18: 357-368.
    [16] Kamei Y, Ohizumi H, Fujitani Yet al. PPARc coactivator lb/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity[J]. Proc Natl Acad Sci USA, 2003; 100:12378-83.
    [17] Lin J, Yang R, Tart PT, et al. Hyperlipidemic effects of dietary saturated fats mediated through pge-1β eoaetivation of SREBP[J]. Cell, 2005, 120(1): 261-273.
    [18] Purcell S, Sham P, Daly MJ. Parental phenotypes in family-based association analysis[J]. Am J Hum Genet. 2005,76(2):249-59.
    [1] Finck BN, Kelly DE PGC-1 coactivators: inducible regulators of energy metabolism in health and disease[J]. J Clin Invest. 2006,116(3):615-22.
    [2] Shuldiner AR, McLenithan JC. Genes and pathophysiology of type 2 diabetes: more than just the Randle cycle all over again[J]. J Clin Invest, 2004, 114(10):1414-7.
    [3] Puigserver P, Wu Z, Park CW,et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998,92(6):829-39.
    [4] Stumvoll M, Haring H. The peroxisome proliferator-activated receptor-gamma2 Pro 12Ala polymorphism[J]. Diabetes, 2002,51 (8):2341-7.
    [5] 傅茂,程桦,李秀钧,等.过氧化物酶增殖体激活受体γ基因Pro12Ala变异与2型糖尿病的关系[J].中华医学遗传学杂志,2002,19(3):234-238.
    [6] Doney AS, Fischer B, Cecil JE, et al. Association of the Prol2Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes[J]. Diabetologia, 2004,47(3):555-8.
    [7] Ek J, Andersen G, Urhammer SA,et al. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator- 1 (PGC- 1) and relationships of identified amino acid polymorphisms to Type Ⅱ diabetes mellitus[J]. Diabetologia. 2001,44(12):2220-6.
    [8] Esterbauer H, Oberkofler H, Linnemayr V,et al. Peroxisome proliferatoractivated receptor-gamma coactivator-1 gene locus: associations with obesity indices in middle-aged women[J]. Diabetes, 2002 Apr;51 (4): 1281-6.
    [9] Andersen G, Wegner L, Jensen DP, et al. PGC-lalpha Gly482Ser polymorphism associates with hypertension among Danish whites[J]. Hypertension, 2005,45(4):565-70.
    [10] Hara K, Tobe K, Okada T, et al. A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type Ⅱ diabetes[J]. Diabetologia, 2002,45(5):740-3.
    [11] Oberkofler H, Linnemayr V, Weitgasser R, et al. Complex haplotypes of the PGC-lalpha gene are associated with carbohydrate metabolism and type 2 diabetes[J]. Diabetes. 2004,53(5): 1385-93.
    [12] Ling C, Poulsen P, Carlsson E,et al. Multiple environmental and genetic factors influence skeletal muscle PGC-lalpha and PGC-lbeta gene expression in twins[J]. J Clin Invest, 2004,114(10): 1518-26.
    [13] O'Rahilly S, Barroso I, Wareham NJ. Genetic factors in type 2 diabetes: the end of the beginning? [J]Science, 2005 , 307(5708):370-3.
    [14] Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer[J]. Am J Hum Genet, 2001 , 69(1):138-47.
    [15] Hahn LW, Ritchie MD, Moore JH,et al. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions [J]. Bioinformatics, 2003, 19(3):376-82.
    [16] Frederiksen L, Brodbaek K, Fenger M,et al. Comment: studies of the Pro12Ala polymorphism of the PPAR-gamma gene in the Danish MONICA cohort: homozygosity of the Ala allele confers a decreased risk of the insulin resistance syndrome[J]. J Clin Endocrinol Metab, 2002,87(8):3989-92.
    [17] Wang XL, Oosterhof J, Duarte N. Peroxisome proliferator-activated receptor gamma C161-->T polymorphism and coronary artery disease[J]. Cardiovasc Res, 1999,44(3):588-94.
    [18] Keyue Ding, Kaixin Zhou, Fuchu He, et al. LDA - A java-based linkage disequilibrium analyzer [J]. Bioinformatics. 2003, 19: 2147-2148.
    [19] Stephens M, Donnelly P.A comparison of bayesian methods for haplotype reconstruction[J]. Am J Human Genetics 2003,73,1162-69.
    [20] Altshuler D, Hirschhorn JN, Klannemark M,et al. The common PPARgamma Prol2Ala polymorphism is associated with decreased risk of type 2 diabetes[J]. Nat Genet,2000,26(1):76-80.
    [21] Meirhaeghe A, Amouyel P. Impact of genetic variation of PPARgamma in humans[J]. Mol Genet Metab,2004 ,83(1-2):93-102.
    [22] Meirhaeghe A, Fajas L, Helbecque N, et al. A genetic polymorphism of the peroxisome proliferator-activated receptor gamma gene influences plasma leptin levels in obese humans[J]. Hum Mol Genet. 1998 ,7(3):435-40.
    [23] Doney AS, Fischer B, Leese G,et al. Cardiovascular risk in type 2 diabetes is associated with variation at the PPARG locus: a Go-DARTS study [J]. Arterioscler Thromb Vasc Biol. 2004 ,24(12):2403-7.
    [24] Doney AS, Fischer B, Cecil JE,et al. Association of the Pro 12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes[J]. Diabetologia. 2004,47(3):555-8.
    [25] 赵艳红,丛祥凤,陈曦.PPARγ2基因C1431T多态与肥胖的关联研究[J].中国分子心脏病学杂志,2003,3(3):140-143.
    [26] Kim JH, Shin HD, Park BL,et al. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha promoter polymorphisms are associated with early-onset type 2 diabetes mellitus in the Korean population[J]. Diabetologia. 2005,48(7): 1323-30.
    [27] Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1[J]. Proc Natl Acad Sci U S A. 2001,98(7): 3820-5.
    [28] Barroso I, Luan J, Sandhu MS,et al. Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes[J]. Diabetologia, 2006,49(3):501-5.
    [29] Elbein SC. Perspective: the search for genes for type 2 diabetes in the post-genome era[J]. Endocrinology. 2002,143(6):2012-8.
    [30] Cho YM, Ritchie MD, Moore JH,et al. Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus[J]. Diabetologia, 2004,47(3):549-54.
    [31] Williams SM, Ritchie MD, Phillips JA 3rd, et al. Multilocus analysis of hypertension: a hierarchical approach[J]. Hum Hered,2004;57(1):28-38.
    [32] Chan IH, Leung TF, Tang NL,et al. Gene-gene interactions for asthma and plasma total IgE concentration in Chinese children[J]. J Allergy Clin Immunol. 2006,117(1): 127-33.
    [33] Patti ME, Butte A J, Crunkhom S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC 1 and NRF 1 [J]. Proc Natl Acad Sci U S A, 2003,100(14):8466- 71.
    [34] Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function[J]. Genes Dev, 2004,18(4):357-68.
    [35] Cho YM, Shin HD, Park BL,et al. Association between polymorphisms in the nuclear respiratory factor 1 gene and type 2 diabetes mellitus in the Korean population[J]. Diabetologia. 2005,48(10):2033-8.
    [36] 纪立农.2型糖尿病的自然病程与遗传学研究进展[J].中国医学科学院学报,2002,24(5)512-518.
    [1] Puigserver P, Wu Z, Park CW, et al.A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998 Mar 20;92(6):829-39.
    [2] Lin J, Puigserver P, Donovan J, et al. Peroxisome proliferator-activated receptor gamma coactivator lbeta (PGC-lbeta ), a novel PGC-1-related transcription coactivator associated with host cell factor[J]. J Biol Chem, 2002 , 277(3): 1645-8.
    [3] Andersson U, Scarpulla RC. Pgc-1-related coactivator, a novel, serum- inducible coactivator of nuclear respiratory factor 1 -dependent transcription in mammalian cells. Mol Cell Biol[J],2001 ,21(11):3738-49.
    [4] St-Pierre J, Lin J, Krauss S,et al. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators lalpha and lbeta (PGC-1 alpha and PGC-lbeta) in muscle cells. J Biol Chem[J], 2003 ,278(29):26597- 603.
    [5] Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest[J], 2006,116(3):615-22.
    [6] Wu Z, Puigserver P, Andersson U,et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 [J]. Cell,1999,98(1): 115-24.
    [7] Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function[J]. Genes Dev,2004 ,18(4):357-68.
    [8] Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators[J]. Mol Cell Biol. 2005,25(4): 1354-66.
    [9] Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1 alpha gene in human skeletal muscle[J]. J Physiol,2003, 546(Pt3):851-8.
    [10] Finck BN, Lehman JJ, Leone TC,et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus[J]. J Clin Invest,2002,109(1):121-30.
    [11] Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting response by PPARgamma coactivator-lalpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis[J]. Proc Natl Acad Sci U S A, 2003, 100(7):4012-7.
    [12] Lin J, Tarr PT, Yang R, et al. PGC-lbeta in the regulation of hepatic glucose and energy metabolism[J]. J Biol Chem, 2003,278(33):30843-8.
    [13] Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC- 1 [J]. Nature,2001,413(6852): 179-83.
    [14] Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres[J]. Nature, 2002,418(6899):797-801.
    [15] Lin J, Yang R, Tarr PT, et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-lbeta coactivation of SREBP[J]. Cell, 2005, 120(2): 261-73.
    [16] Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC- 1 alpha null mice[J]. Cell, 2004,119(1): 121-35.
    [17] Oberkofler H, Schraml E, Krempler F, et al.Potentiation of liver X receptor transcriptional activity by peroxisome-proliferator-activated receptor gamma co-activator 1 alpha[J]. Biochem J. 2003 Apr 1; 371(Pt 1):89-96.
    [18] Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptorgamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator[J]. Endocr Rev,2003,24(1):78-90.
    [19] Zhang Y, Castellani LW, Sinal CJ, et al.Peroxisome proliferator-activated receptor-gamma coactivator lalpha (PGC-lalpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR[J]. Genes Dev, 2004, 18(2):157-69.
    [20] Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators[J]. Cell Metab, 2005,1(6): 361-70.
    [21] Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-I[J]. Proc Natl Acad Sci U S A. 2001, 98(7): 3820-5.
    [22] Kamei Y, Ohizumi H, Fujitani Y, et al. PPARgamma coactivator lbeta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity[J]. Proc Natl Acad Sci U S A, 2003,100 (21):12378-83.
    [23] Shuldiner AR, McLenithan JC. Genes and pathophysiology of type 2 diabetes: more than just the Randle cycle all over again[J]. J Clin Invest. 2004,114(10): 1414-7.
    [24] Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1[J]. Nature. 2001 ,413(6852): 131- 8.
    [25] Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3[J]. Nat Med, 2004,10(5): 530-4.
    [26] Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis[J]. Am J Physiol Endocrinol Metab,2003 ,285(4):E685-92.
    [27] Coghlan MJ, Jacobson PB, Lane B, et al. A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects[J]. Mol Endocrinol. 2003 ,17 (5):860-9.
    [28] Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes[J]. Science, 2005,307(5708):384-7.
    [29] Morino K, Petersen KF, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents[J]. J Clin Invest,2005 ,115(12):3587-93.
    [30] Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes[J]. N Engl J Med. 2004,350(7):664-71.
    [31] Parti ME, Butte AJ, Crunkhorn S, et al.Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1[J]. Proc Natl Acad Sci U S A. 2003 ,100(14): 8466-71.
    [32] Patti ME. Gene expression in humans with diabetes and prediabetes: what have we learned about diabetes pathophysiology? [J] Curr Opin Clin Nutr Metab Care. 2004 ,7(4):383-90.
    [33] Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance[J]. Science. 2003 ,300(5622): 1140-2.
    
    [34] Ling C, Poulsen P, Carlsson E,et al. Multiple environmental and genetic factors influence skeletal muscle PGC-1 alpha and PGC-l beta gene expression in twins[J]. J Clin Invest. 2004 ,114(10):1518-26.
    [35] Yoon JC, Xu G, Deeney JT, et al. Suppression of beta cell energy metabolism and insulin release by PGC-1 alpha[J]. Dev Cell, 2003 ,5(1):73-83.
    [36] Zhang P, Liu C, Zhang C, et al. Free fatty acids increase PGC-1 alpha expression in isolated rat islets[J]. FEBS Lett, 2005 ,579(6): 1446-52.
    [37] Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics[J]. Circ Res. 2004 ,95(6):568-78.
    [38] Arany Z, He H, Lin J, et al.Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle[J]. Cell Metab. 2005 ,1(4):259-71.
    [39] Leone TC, Lehman JJ, Finck BN, et al. PGC-lalpha deficiency causes multisystem energy metabolic derangements:muscle dysfunction, abnormal weight control and hepatic steatosis[J]. PLoS Biol,2005 ,3(4):el01.
    [40] Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling[J]. Biochem Soc Trans,2003 ,31 (Pt 6): 1300-1.
    [41] Ek J, Andersen G, Urhammer SA,et al. Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus[J]. Diabetologia. 2001 ,44(12):2220-6.
    [42] Hara K, Tobe K, Okada T,et al. A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes[J]. Diabetologia, 2002 ,45(5):740-3.
    [43] Muller YL, Bogardus C, Pedersen O, et al. A Gly482Ser missense mutation in the peroxisome proliferator-activated receptor gamma coactivator-1 is associated with altered lipid oxidation and early insulin secretion in Pima Indians[J]. Diabetes, 2003 ,52(3):895-8.
    [44] Lacquemant C, Chikri M, Boutin P, et al. No association between the G482S polymorphism of the proliferator-activated receptor-gamma coactivator-1 (PGC-1) gene and Type II diabetes in French Caucasians[J]. Diabetologia, 2002,45(4):602-3
    [45] Esterbauer H, Oberkofler H, Linnemayr V, et al. Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with obesity indices in middle-aged women[J]. Diabetes. 2002, 51(4): 1281-6.
    [46] Oberkofler H, Holzl B, Esterbauer H, et al. Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with hypertension in middle-aged men. Hypertension[J]. 2003,41(2):368-72.
    [47] Kim JH, Shin HD, Park BL,et al. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha promoter polymorphisms are associated with early-onset type 2 diabetes mellitus in the Korean population[J]. Diabetologia. 2005,48(7): 1323-30.
    [48] 路文盛,陈超刚,梁蔚文,等.PGC-1α基因Thr394 Thr/Gly482Ser联合变异与2型糖尿病相关关系[J].临床荟萃,2005,20(24):1385-87.
    [49] 王艳波,于永春,李智.中国上海地区汉族人PGC-1α基因多态性与2型糖尿病相关性研究[J].中华医学遗传学杂志,2005,22(4):453-456.
    [50] Barroso I, Luan J, Sandhu MS,et al. Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes[J]. Diabetologia, 2006,49(3):501-5.
    [51] Andersen G, Wegner L, Yanagisawa K,et al. Evidence of an association between genetic variation of the coactivator PGC-1b and obesity[J]. J Med Genet, 2005,42: 402-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700