中国水牛遗传多样性与母系起源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水牛有着7000多年的驯化和选择历史,在分类学上属于沼泽型水牛,具有丰富的遗传资源。由于对我国地方水牛类群的遗传多样性及遗传特性缺乏全面和系统的认识,其利用方式往往只限于作为母本,用外来品种作为父本进行杂交改良,导致我国某些地方水牛类群的遗传多样性逐渐下降、甚至出现某些类群的遗传资源已近灭绝。但对我国水牛的起源进化及遗传多样性研究还不够全面和深入,为了更好的保护和利用我国珍贵的地方水牛类群的遗传资源,本研究对我国22个水牛类群共455个个体mtDNA D-loop区全序列进行统计分析,研究中国水牛的母系起源、类群之间的系统进化关系及遗传多样性,得到如下结果:
     1.中国22个水牛类群455个个体mtDNA D-loop区全序列长度为894 bp~920 bp,最常见的为916bp,长度多态性是由于全序列中存在三个较为特异的polyG/C造成的。
     2.检测到148种单倍型114个核苷酸多态位点,约占所测核苷酸总长的12.36%, 97个转换,12个颠换,5个转换与颠换共存,显示出碱基替换有明显的偏倚。其单倍型多样度(H)为0.4000±0.2373~1.0000±0.1265;核苷酸多样度(π值)为0.0070±0.0 039~0.0219±0.0116,表明中国水牛具有丰富的遗传多样性。
     3.mtDNA D-loop序列的NJ系统发育树和网络分析表明,中国沼泽型水牛具有两大支系,即支系A和支系B,支持中国水牛有2个母系起源的观点。支系B又可分为两个亚支,本研究首次命名为亚支B1和亚支B2。
     4.我国22个地方水牛类群间没有明显的群体结构。中国水牛各类群间都包含有两个主要的母系起源支系,类群间遗传分化不明显,但是支系内、群体间差异显著,但分化较小,同时支系B的分化程度较A支系较大,为较为古老的一支。
     5.对中国水牛两个支系的所有个体分别进行不配对分析,发现支系A表现线性降低的不配对分布,支系B分布曲线表现光滑的正态分布曲线,且亚支系B2及亚支系B1分布曲线均呈单峰型, Fs值分别为-26.32,-24.73,-21.09和-13.27,P值均小于0.01,显著偏离中性,表明各支系均曾经历了群体扩张,且主要支系A经历了最大的群体扩张,支系B经历了较小的两次群体扩张。
China is one of the countries that have the richest swamp buffalo resources in the world ,it has been domesticate and selected for 7000 years, which belonged swamp buffalo. Because of lacking comprehensive and systematic knowledge on the genetic diversity and characteristics of indigenous buffalo types, we only used the native breeds as the female parents and the foreign breeds as the male parents to hybrid, which has led to the decline of the genetic diversity of buffalo gradually and even the distinct of some genetic resource of buffalo soon. For we do not had a complete and deep knowing the domestic and genetic diversity of the China buffalo, to protect and use the domestic buffalo genetic resource perfectly, Through analyzing the mtDNA D-loop of 455 samples from 22 Chinese indigenous buffalo types, we studied the maternal origin of the buffalos, the phylogenetic relations between genetic varieties and diversity and got these results as follows:
     1. The length of the complete mtDNA D-loop sequences varied from 894bp to 920 bp in 455 individuals of 22 Chinese buffalo types. Most is 916 bp, this is because there are three special polyG/C in the complete sequence.
     2. 114 sites are polymorphic in 148 hyplotypes with 12.36% of 915 bp D-loop region, 97 of these sites are transitions,12 of them are transvertions, 5 of these sites have both transitions and transvertions. it is suggesting that the base bias which is in proportion to mammalian mitochondrial DNA nucleotide composition. The haplotype diversity and nucleotide diversity were 0.4000±0.2373~1.0000±0.1265 and 0.0070±0.0 039~0.0219±0.0116, respectively, indicating abundant genetic diversity in Chinese buffalo populations.
     3. NJ phylogenetic and a reduced median network analysis in Chinese buffalo mtDNA revealed two highly divergent, namely lineages A and B. which suggested that Chinese native buffalo may have two maternal origins. The lineage B also divided two bio-lineage, we first called them B1 and B2.
     4. There is poor population structure among 22 Chinese buffalo types. All the China buffalo types had two lineages, poor genetic difference. But in the lineages, types/population had the obvious difference, little variation; also the lineage B as the older lineage is deeper than the lineage A.
     5. There happened two population expansion events in Chinese swamp buffalo. Mismatch distributions of lineages A、B1 and B2. showed one peak, also Fs values were -26.32(P<0.01), -21.09 (P<0.01) and -13.27(P<0.01), respectively, which suggested Chinese buffalo lineage A underwent population expansion events, and lineage A did a larger one. And lineage B shows two peak -24.73(P<0.01)which suggestes lineage B has underwent two smaller population expansion events.
引文
[1] 耿社民,刘小林.中国家畜品种资源纲要.北京:中国农业出版社,2003,69.
    [2] 杨炳壮, 梁贤威, 曾庆坤, 等. 世界水牛发展趋势[J]. 中国牧业通讯, 2005, 15: 70-71
    [3] FAO《生产年鉴》(FAO 网站 2007)
    [4] 邱怀主编. 中国牛品种志. 上海: 上海科学技术出版社,1986.
    [5] 胡文平.中国水牛的遗传多样性.草与畜杂志,1998,2:1-3.
    [6] Bruford M W,Bradley D G, Luikart G.DNA markers reveal the complexity of livestock domestication. Nat Rev Genet,2003(4):900-910.
    [7] Zeder M A,Emshwiller E, Simith B D, et al Documenting domestication: the intersection of genetics and archaeology. Trends Genet,2006,22: 139-155.
    [8] Beja-PereiraA,England P R,Ferand N,et al. African origins of the domestic donkey. Science,2004,304:1781
    [9] Chu-Zhao Lei, Qing-Lan Ge, Hu-Cai Zhang, Ruo-Yu Liu, Wei Zhang, Yong-Qing Jiang,Rui-Hua Dang, Hui-Ling Zheng, Wen-Tong Hou and Hong Chen. African maternal origin and genetic diversity of Chinese domestic donkeys. Asian-Australasian Journal of Animal Sciences, 2007, 20(5): 645-652.
    [10]Shan-Yuan Chen, Yan-Hua Su, Shi-Fang Wu, Tao Sha, Ya-Ping Zhang, Mitochondrial diversity and phylogeographic structure of Chinese domestic goats Molecular. Phylogenetics and Evolution, 2005, 37:804–814
    [11]Shan-Yuan Chen, Zi-Yuan Duan, Tao Sha, Jing gong Xiang yu, Shi-Fang Wu, Ya-Ping Zhang Origin, genetic diversity, and population structure of Chinese domestic sheep.Gene, 2006,376: 216-223
    [12] Larson G, Dobney K,Albarella U,et al. Worldwide phylogeography of wild boar reveals multiple centers of Pig domestication. Science,2005,307:1618-1621.
    [13] Li W H. Molecular Evolution, Sunderland: Sinauer Associates,1997.
    [14] Savolainen P,Zhang Y P,Luo J,et al Genetic evidence for an East Asian origin of domestic dogs. Science,2002,298:1610-1613.
    [15]Tajima F. Evolutionary relationship of DNA sequence in finite populations. Genetics,1983,105:437-460.
    [16] Bostetin D, White RL, Skolnich M, et al. construction of a genetic linkage map in man using restriction fragment length polymorphism [J]. Hum Genet, 1980, 32: 314-331.
    [17] Avise J C, Lansman R A. Polymorphism of mitochondrial DNA in population of high animals [A]. In: Nei M, Koehn R K. Evolution of genes and proteins [C]. Sinauser Associates Inc. Sunderland, 1983.
    [18] Brown W M. Evolution of animal mitochondrial DNA: In Evolution of genes and proteins[J]. Nei M.and koehnl P.kced.Sunderland. 1983, 62~68.
    [19] Moritz, Dowling T E, Brown W M..Evolution of animal mitochondrial DNA: relevance for populationbiology and systematics[J]. Annu.Rev.Ecol.Syst, 1987, 18: 269~292.
    [20] 张亚平, 施立明. 动物线粒体 DNA 多态性的研究概况[J]. 动物学研究, 1992, 13 (3): 289~298.
    [21] 姜运良, 李宁, 吴常信等. 不同品种猪肌肉生长抑制素基因单核苷酸多态性分析[J]. 遗传学报, 2001, 28(9): 840~845.
    [22] 李国华, 张沅, 李宁. 奶牛乳铁蛋白基因部分序列的 PCR—SSCP 分析[J]. 农业生物技术学报,2001, 9(2): 139~141.
    [23] 王启贵,李宁,邓学梅等. 鸡细胞外脂肪酸结合蛋白基因单核苷酸多态性与腹脂性状的相关研究[J]. 中国科学(C辑), 2001, 31(3): 266~270.
    [24] Mannen H, Morimoto M, Oyama K et al. Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle[J]. J. Anim. Sci, 2003, 81: 68~73.
    [25] 师科荣, 王爱国, 李宁等. 中国地方猪种黑素皮质激素受体 1 基因(MC1R)的单核苷酸多态性[J].中国科学 C 辑 生命科学, 2004, 34(2): 144~149.
    [26] 李祥龙, 张增利, 巩元芳等. 我国主要地方绵羊品种遗传亲缘关系[J]. 中国兽医学报,2004, 24 (5): 508~511.
    [27] 陈桂芳, 谢庄, 强巴央宗等. 西藏牦牛、荷斯坦牛三个功能基因部分序列多态性的比较研究[J]. 畜牧兽医学报, 2003, 34(2): 128~131.
    [28] Avise J C, Lansman R A. Polymorphism of mitochondrial DNA in populations of high animals[C]. Sunderland, 1983, 147-164.
    [29] Brown W M, George M, Wilson A C. Rapid evolution of animal mitochondrial DNA [J]. Proc Nat Acad Sci USA, 1979, 76(4):1967-1971.
    [30] Upholt W B, Dawid I B. Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D loop region [J]. Cell, 1977, 11: 571-583.
    [31] Watanabe T, Hayashi Y, Kimura J, et al. Pig mitochondrial DNA: polymorphism, restriction map orientati on and sequence data [J]. Biochem Genet, 1986, 24:385-396.
    [32] Hutchinson C A, Newbold J E, Potter SS, et al. Maternal inheritance of mammalian mitochondrial DNA [J]. Nature, 1980, 251:536-538.
    [33] Chen Y C, Li X H. New evidence of the origin and domestication of the Chinese swamp buffalo (Bubalus bubalis) [J]. Buffalo Journal, 1989, 1: 51-55.
    [34] Guo J,Du L X,Ma Y H,et al. Anovel maternal lineage revealed in sheep(Ovisaries). Anim Genet,2005,36:331-336.
    [35] Luikart G, Gielly L,Excofier L,et al. Multiple maternal origin and wea k phylogeographic structure in domestic goats. Proc Natl Acad Sci USA,2001,98:5927-5932.
    [36] 雷初朝, 陈 宏, 杨公社, 等. 中国部分黄牛品种 mtDNA 遗传多态性研究[J].遗传学报, 2004, 31(1): 57-62.
    [37] Kijas J M H, Anderson L. A phylogenetic study of the origin of the domestic pig estimated from the near~complete mtDNA genome[J]. J Mol Evol, 2001, 52: 302~308.
    [38] Yang J, Wang J, Kijas J. Genetic diversity present within the near~complete mtDNA genome of 17 breeds of indigenous Chinese pigs[J]. Journal of Heredity, 2003, 94(5): 381~385.
    [39] Loftus R T, MacHugh D E, Bradley D G, et al. Evidence for two independent domestications of cattle [J]. Proc Natl Acad Sci USA, 1994, 91: 2757-2761.
    [40] Bradley D G, MacHugh D E, Cunningham P, et al. Mitochodrial diversity and the origins of African and European cattle [J]. Proc Natl Acad Sci USA, 1996, 93: 5131-5135.
    [41] Nijman I J, Otsen M, Verkaar E L C, et al. Hybridization of banteng and zebu revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites [J]. Heredity, 2003, 90: 10-16.
    [42] Troy C S, MacHugh D E, Balley J F, et al. Genetic evidence for Near-Eastern origins of European cattle[J]. Nature, 2001, 410: 1088-1091.
    [43] Lai S J, Liu Y P, Liu Y X, et al. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation [J]. Molecular Phylogenetics and Evolution, 2006, 38: 146-154.
    [44] Lei C Z, Chen H, Zhang H C, et al. Origin and phylogeographic structure of Chinese cattle [J]. Animal Genetics, 2006, 37(6): 579-582.
    [45]Tajima E. Statistical method for testing the neutral mutation hypothesis by DNA Polymorphism. Genetics,1989,123: 585-595.
    [46] Fu Y X,Li W H. StatisticaI tests of neutrality of mutations. Genetics,1993,133:693-709
    [47] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics,1997,147:915-925.
    [48]Schloterer C.A microsatelite-based multilocus screen for the identification of local selective sweeps. Genetics,2002,160:753-763.
    [49] Bhat P P, Mishra B P, Bhat P N. Polymorphism of mitochondrial DNA (mtDNA) in cattle buffalo[J]. Biocheical Genetics, 1990, 28: 311-317.
    [50] Barker J S F, Moore S S, Hetzel, et al. Genetic diversity or Asian water buffalo (Bubalus lubalis): microsatellite variation and a comparison with protein-coding loci [J]. Animal Genetics, 1997, 28: 103-115.
    [51] Amano T, Miyakoshi Y, Takada T, et al. Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes [J]. Animal Genetics, 1994, 25(Supl): 29-30.
    [52] 黄启昆, 王玉嵩, 王守信, 等. 云南省家畜家禽品种志[M]. 昆明: 云南科技出版社, 1987, 45-122.
    [53] Hu Wenping, Xu Baoming, Lian Linsheng. Polymorphism of mitochondrial DNAs of Yunnan domestic water buffaloes, Bubalus bubalus, in China, based on restriction endonuclease cleavage patterns [J]. Biochemical Genetics, 1997, 35: 225-231.
    [54] Tanaka K, Yamagata T, Masangkay J S, et al. Nucleotide diversity of mitochondrial DNAs between the swamp and the river types of domestic water buffaloes, Bubalus bubalus, based on restriction endonuclease cleavage patterns [J]. Biochemical Genetics, 1995, 3 (5/6): 137-148.
    [55] Lau C H, Drinkwater R D, Yusoff K, et al. Genetic diversity of Asian water buffalo(Bubalus bubalis)mitochondrial DNA D-loop and cytochrome b sequence variation[J]. Animal Gentics, 1998, 29, 253-264.
    [56] Kierstein G, Vallinoto M, Silva A, et al. Analysis of mitochondrial D-loop region casts new light on domestic water buffalo (Bubalus bubalis) phylogeny [J]. Molecular Phylogenetics and Evolution, 2004, 30(2): 308-324.
    [57] Kumar S, Gupta J, Kumar N, Dikshit K, Navani N, Jain P, Nagarajan M: Genetic variation and relationships among eight Indian riverine buffalo breeds. Mol Ecol 2006, 15: 593-600.
    [58] Kumar S, Nagarajan M, Sandhu J S, Kumar N, Behl V,Nishanth G: Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim Genet 2007, 38: 227–232.
    [59] Kumar S, Nagarajan Mi, Sandh J S, Kumar N, Behl V. Phylogeography and domestication of Indian river buffalo. BMC Evolutionary Biology 2007, 7:186.
    [60] 瓦格勒著, 王建新译. 中国农书(下册)[M]. 商务印书馆, 1936.
    [61] 邹介正. 中国古代畜牧兽医史[M]. 中国农业科技出版社, 1994, 101.
    [62] 谢成侠. 中国养牛羊史附养鹿简史[M]. 农业出版社, 1985, 9-16.
    [63] 浙江省博物馆自然组. 河姆渡遗址动植遗存的鉴定研究[J]. 考古学报, 1978, 1:95-107.
    [64] 中国科学院考古研究所. 新中国的考古发现与研究[M]. 文物出版社, 1984, 197.
    [65] 梅森. 驯化动物的进化[M]. 南京大学出版社, 1984, 64.
    [66] 赖松家,史荣仙,郑维明.中国水牛血清淀粉酶多态性及命名研究.四川农业大学学报,1995,13 (2):203-207.
    [67] 史荣仙,赖松家,郑维明等.中国水牛血红蛋白多态性及命名研究.南京农业人学学报,1995, 18 (3):94-99.
    [68] 郑维明, 赖松家,史荣仙.中国水牛血清白蛋白多态性研究.中国畜牧杂志,1995,31(1):3-6.
    [69] 许明.地方水牛品种遗传分化水平的研究. 硕士学位论文[D]. 扬州大学, 2005.
    [70] Lei CZ, Zhang W, Chen H, Lu F, Ge QL, Liu RY, Dang RH, Yao YY, Yao LB, Lu ZF, Zhao ZL. Two maternal lineages revealed by mtDNA D-loop sequences in Chinese native water buffaloes (Bubalus bubalis). Asian-Austral J Anim Sci, 2007, 20(4): 471-476.
    [71] Lei CZ, Zhang W, Chen H, Lu F, Liu RY, Yang XY, Zhang HC, Liu ZG, Yao LB, Lu ZF, Zhao ZL. Independent maternal origin of Chinese swamp buffalo (Bubalus bubalis). Animal Genetics, 2007, 38(2): 97-102.
    [72] Zhang Y, Sun D, Yu Y, Zhang Y. Genetic diversity and differentiation of Chinese domestic buffalo based on 30 microsatellite markers. Anim Genet, 2007, 38:569-575.
    [73] 刘若余, 张伟, 金大春, 陈宏, 雷初朝. 温州水牛线粒体 DNA D-loop 遗传多态性分析.中国牛业科学, 2007, 33 (1):1-3.
    [74] 杨钟健, 刘东生. 安阳殷墟之哺乳动物群补遗[J]. 中国考古学报, 1949, 4:12-15.
    [75] Giuffra E, Kijas J M H, Amarger V, et al. The origin of the domestic pig: independent domestication and subsequent introgression [J]. Genetics, 2000, 154: 1785-1791.
    [76] Larson G, Dobney K, Albarella U, et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication [J]. Science, 2005, 307: 1618-1621.
    [77] Guo J,DuL X,Ma Y H,et al. A novel maternal lineage revealed in sheep (Ovisaries) . Anim Genet,2005,36:331-336.
    [78] Hiendleder S, Mainz K, Plante Y, et al. Analysis of mitochondrial DNA indicates that domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions from urial and argali sheep [J]. Journal of Heredity, 1998, 89: 113-120.
    [79] Guo J, Du L X, Ma Y H, et al. A novel maternal lineage revealed in sheep (Ovis aries) [J]. Animal Genetics, 2005, 36: 331-336.
    [80] Luikart G, Gielly L, Excoffier L, et al. Multiple maternal origins and weak phylogeographic structure in domestic goats [J]. Proc Natl Acad Sci USA, 2001, 98: 5927-5932.
    [81] Joshi M B, Rout P K, Mandal A K, et al. Phylogeography and origin of Indian domestic goats [J]. Molecular Biology Evolution, 2004, 21: 454-462.
    [82] Loftus R T, MacHugh D E, Bradley D G, et al. Evidence for two independent domestications of cattle [J]. Proc Natl Acad Sci USA, 1994, 91: 2757-2761.
    [83] Bradley D G, MacHugh D E, Cunningham P, et al. Mitochodrial diversity and the origins of African and European cattle [J]. Proc Natl Acad Sci USA, 1996, 93: 5131-5135.
    [84] Troy C S, MacHugh D E, Balley J F, et al. Genetic evidence for Near-Eastern origins of Europeancattle [J]. Nature, 2001, 410: 1088-1091.
    [85] Mannen H, Kohnoa M, Nagataa Y, et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle[J]. Molecular Phylogenetics and Evolution, 2004, 32: 539-544.
    [86] Anderung C, Bouwman A, Persson P, et al.Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle[J]. Proc Natl Acad Sci USA, 2005, 102 (24): 8431- 8435.
    [87] Beja-Pereira A, Caramelli D, Lalueza-Fox C, et al. The origin of European cattle: Evidence from modern and ancient DNA [J]. Proc Natl Acad Sci USA, 2006, 103 (21): 8113-8118.
    [88] Jansen T, Forster P, Levine M A, et al. Mitochondrial DNA and the origins of the domestic horse[J]. Proc Natl Acad Sci U S A, 2002, 99 (16): 10905-10910.
    [89] Vila C, Leonard J A, Gotherstrom A, et al. Widespread origins of domestic horse lineages[J]. Science, 2001, 291: 474-477.
    [90] Beja-Pereira A, England P R, Ferrand N, et al. African origins of the domestic donkey[J]. Science, 2004, 304: 18.
    [91] Aranguren-Mendez J, Beja-Pereira A, Avellanet R, et al. Mitochondrial DNA variation and genetic relationships in Spanish donkey breeds (Equus asinus) [J]. Journal of Animal Breeding and Genetics, 2004, 21: 319-330.
    [92] Liu Y P, Wu G S, Yao Y G, et al. Multiple maternal origins of chickens: Out of the Asian jungles[J]. Molecular Phylogenetics Evolution, 2005, 38: 12-19.
    [93] 邹晓菊. 家犬起源的研究一来自线粒体基因组序列的证据.博士.学位论文.昆明:云南大学,2005
    [94] 罗玉柱,成述儒,BatsuriLkhagy,等,用mtDNAD一环序列探讨蒙古和中国绵羊的起源及遗传多样性.遗传学报,2005,32:1256-1265.
    [95] Pedrosa S,Uzun M,Aranz J J, et al. Evidence of three maternal lineages in near eastern sheep supporting multiple domesticalion events. Proc R Soc Lond B Biol Sci,2005,272:2211-2217.
    [96] 吴桂生.猪的起源分化.博士学位论文.昆明:中国科学院昆明,动物研究所,2005.
    [97] Kierstein G, Vallinoto M, Silva A, et al. Analysis of mitochondrial D-loop region casts new light on domestic water buffalo (Bubalus bubalis) phylogeny [J]. Molecular Phylogenetics and Evolution, 2004, 30(2): 308-324.
    [98] Thompson J D, Gibson T j, Plewniak F, et al. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Res, 1997, 25: 2682-2690.
    [99] Thompson J D, Plewniak F, Poch O A. comprehensive comparison of multiple sequence alignment programs[J]. Nucleic Acids Res. 1999, 27: 2682-2690.
    [100] Kumar S, Tamura K, Jakobsen I B. MEGA2: Molecular Evolutionary Genetics Analysis Software[J]. Arizona State University, 2001, 17(12): 1244-1245.
    [101] Rozas J, Sánchez-DelBarrio J C, Messegyer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods[J]. Bioinformatics, 2003, 19(18): 2496-2497.
    [102] Schneider S, Roessli D, Excoffier L:ARLEQUIN 2.0: A software for population genetic data analysis.Genetics and Biometry Laboratory, University of Geneva, Switzerland; 2002.
    [103] Rogers A R, Harpending H. Population growth curves in the distribution of pairwise genetic differences[J]. Mol Biol.Evol, 1992, 9: 552~569.
    [104] Rogers A R. Genetic evidence for a Pleistocene population expansion[J]. Evolution, 1995, 49: 608~615.
    [105] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147: 915~925.
    [106] 史荣仙, 赖松家, 付茂忠, 等. 江汉水牛血液蛋白多态性研究[J]. 湖北农业科学, 1994, (3), 50-52.
    [107] 史荣仙 , 左福元 , 董学虎 . 四川水牛血液蛋白多态性研究 [J]. 四川农业大学学报 , 1992,10(1):122-126.
    [108] 赖松家, 郑维明, 周江宁, 等. 海南水牛血液蛋白多态性研究[J]. 广东畜牧兽医科技, 1994, 19(2): 16-18.
    [109] 史荣仙, 左福元, 郑维明, 等. 云贵高原水牛血液蛋白多态性研究[J]. 西南农业学报, 1994,7(1):80-86.
    [110] 孙超, 杜森有, 龙火生. 家畜遗传多样性及其检测方法[J]. 黄牛杂志, 1999, 25(3): 4-8.
    [111] 邹介正. 中国古代畜牧兽医史[M]. 中国农业科技出版社, 1994, 101.
    [112] 薛祥煦, 李晓晨. 陕西水牛化石及中国化石水牛的地理分布和种系发生. 古脊椎动物学报, 2000, 38(3): 218-231.
    [113] Chen YC, Li XH. New evidence of the origin and domestication of the Chinese swamp buffalo (Bubalus bubalis). Buffalo J, 1989, 1: 51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700